Generalization Error of Random Features Models

A. Definitions of quantities in the main text
A.1. Full definitions of I/, T, Ay, and A7 in Proposition 2

We first define functions m; (+), m2(-), which could be understood as the limiting partial Stieltjes transforms of A(q) (c.f.
Definition 1).

Definition 3 (Limiting partial Stieltjes transforms). For { € Cy and q € Q where
Q = {(s1,52,t1,t2,p)  [sata] < pi(1+p)*/2}, (25)

deﬁnefunctions Fl('a ! §f§q,7/11a1/12,ﬂ1aﬂ*)7 F2('a : ;g; Qai/Jlﬂ/JQa#l,ﬂ*) :Cx C— Cvia:

1+ tyma)sy — p3 (1 4 p)°my -t
Fi(m ,M25654, ) ) s M) = (_ + 51— im + ( )
1(m1,mo; & @, 1, Y2, i, ) = 1 — €+ 51— pime (LT s2m1) (L + tama) — j2(1 + p)2mrma

1+ somq)ta — pi(1+ p)*my -1
F ) 76,4, 9 ) y Fox = (_ t - 2 ( ) .
2(m1, ma; & @1, Yo, i, i) = 2 — €+t — pima + (L + tama) (L + s3my) — 2(1 + p)2myms

Let my(-; ;%) ma(-;q;v) : C1 — Cy be defined, for () > C' a sufficiently large constant, as the unique solution of
the equations
my = Fl(mla ma; ga q, 1#17 1/)27 M1, ,U/*),

(26)
mg = Fa(my1, ma; & q, 1,2, p1, k)

subject to the condition |my| < ¥1/(§), |ma| < 12/S(€). Extend this definition to I(§) > 0 by requiring my, ms to be

analytic functions in C .

We next define the function g(-) that will be shown to be the limiting log determinant of A(q).
Definition 4 (Limiting log determinants). For ¢ = (s1, $2,t1, t2,p) and ¥ = (¢1,12), define

E(& 21, 204 ) = log[(s2z1 + 1) (taze + 1) — pi (1 + p)’2120] — pl 2120

27
+ 5121 + t12e — Y1 log(z1 /1) — P2 log(za/1h2) — E(21 + 22) — 1 — . @7

Let my(&; q; ), ma(&; q; 1) be defined as the analytic continuation of solution of Eq. (26) as defined in Definition 3. Define
9(& @) = E(Ema(§ q: ), ma(§ @) q; ). (28)

We next give the definitions of I/, T, Ay, and A7.
Definition 5 (I/, T, Ay, and A7 in Proposition 2). For any X € Ay, define

AU()‘v wla ¢2) = - li%l_*_ wl (F]?M%88182 + Flzaslp + Flzasltz + 7-2851t1) g(’L’LL, q; ¢’)‘q q ’
u L =qu |
U P1,12) = FF +7° — lim [(Ffufasg + F{0p + F{0y, + 720, ) g(iu; ¢; ) ] )
u—04 9=qu
AT()‘awladb) = lig)l+ wl (Ffu?aswz + F12851p + F12651t2 + 7_26511&1) g(iu; q; ¢)‘q q )
u I =qr |

T\, ¢0) = FY + 7% — lim [(Ffu%asz + 20y + F20, + 7201, ) gliu; 9| ] :
u + qg=4qr

where qu = (p? — Mb1, 12,12,0,0), qr = (12 — M1, 43,0,0,0).

In the following, we give a simplified expression for I/ and Ay .
Remark 2 (Simplification of I and Ay). Define ¢, X as the rescaled version of 3 and

2

M —
g:%, A= .

Hy Hy



Generalization Error of Random Features Models

Let my( ;%) ma(-;9) : Cp — C be defined, for (&) > C a sufficiently large constant, as the unique solution of the
equations

¢(1—my) ]_17

1+ ¢my — (mymy

my = [—54'(1—)\1/)1)—77124-

~1 (29)
¢my ]

1+ (my — (mime ’

subject to the condition |mq| < 11 /(E), |ma| < 12 /S(E). Extend this definition to I(§) > 0 by requiring my, ms to be
analytic functions in C.. Let

ma = —s [f+1/)2—m1—

my = lim mq(tu, ),
U—r 00

Mo = lim ma(iu, ).

U—r 00
Define
X1 =m1( —mimal + 1,
X2 =M1 — P2 + m71C7
X1
((m2 —1)

X3 =My +Tmg — 1+ >— 2.
X1

Define two polynomials &1, &5 as

E1(1, 2, X, €) = i (axi + ¥2x30),
Ex(Y1, 92, N, €) = VI (XIX3M3C — 2xTxX3M2C + XIX5C + Yaxi — homima(® + 200mimaC® — omi(® + (),
E3(h1, 02, A, Q) = — XIX3X3 + 1vax] + UixIxamaC” — 201X xamaC? + vixixa¢?

+ YaxiXEMIC? + 20192 x ¢ — Yiamima(t + 201y maCt — YoMyt + P11

Then ( 2 -~ 2)
R (m271) T Xl(wla¢23A7<)+Fl
UK, 1, ) = — = :
( djl wQ) Xi(wla wQa Aa C) _
AU<X, w17w2> _ 7'281(’(/“,’(/)2,)\74-) + F1251(¢171/)27)\ag).

52 (1/}1 5 ¢2 5 Xa C)
Remark 3 (Simplification of T and A7). Define ¢, X as the rescaled version of 2 and
2
Py A
M M

Let my( ;%) ma(-;v) : Cp — C be defined, for 3(&§) > C a sufficiently large constant, as the unique solution of the
equations

¢(1—my) ]_17

my =1 [—§+ (1= Xbr) —ms + 1+ ¢my — (mama

1 (30)
¢my }
14+ ¢my — (mimo ’

subject to the condition |mq| < 11 /(E), |ma| < 2 /S(E). Extend this definition to I(§) > 0 by requiring my, ms to be
analytic functions in C.. Let

mg = —s {f+m1+

my = lim mq(tu, ),
uU—r 00

Mo = lim mo(du, ).
U— 00

Define
mi(

X4 =M1+ ———,
X1 (M1, ma, ()
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and
X1 =M1 —mima¢ + 1,
— mo — 1
X3:)\¢1+m2—1+c(;),
1

where the definitions of X1, x3 are the same as in Remark 2. Define three polynomials E3,E4, E5 as
Ea(un, 2, X, €) =t (vaxcd + xbdmimict — axiimimac + xhamic + achdmimic?
— AEXAMIMaC? + 2 XAMIC — Yax AT 4 XIXATIMEC — 2x3 XMy ¢
2.2_3 2. 2 2 5_2 .5 2—5__ .5 255
+ XTXAMC + YaxTXaMC — Yax MM + 2o XM M2C” — Pax 1My ¢
— 2o xR C + Ao xamymCt — 20 x TGt — Yoy ma (P
+ 205mmaC? — amiC? ).
_ 2
Es(Y1,2, N, ¢) =My (C +1+mi¢— m1W2C) ( — XTX3xamT
+ 1ax i — 201¥axixami € + Yaxix3mIC + Xt xamyms¢?
— 2y X TxAm M2 + P XIMECE + 201e X xaTC + 1o xTmT (P
— 201 pox 112 — YrbetmsCt + 20 o maCt — it + ¢1¢QW%C2),
_ 2
Eo(wn, 2, X, €) =Gt (xad — il + ) (¢ — mmad + 1)

Then .
(M2 — 1) (T2x1 (1, Y2, A, ¢) + FE)
x1(¢1, 92, A, €)
FREL (1,2, N, Q) + 72E6 (Y1, 92, A, €)
Es (1,102, A, Q)

)

T(Xv ¢17¢2) = -

A (N 1, 12) = =1y

A.2. Definitions of R and A

In this section, we present the expression of R and .4 from Mei & Montanari (2019) which are used in our results and plots.

Definition 6 (Formula for the prediction error of minimum norm interpolator). Define
C=ui/ui, p=Fi/r°

Let the functions vy,vs : Cy — C. be be uniquely defined by the following conditions: (i) vy, vo are analytic on C; (i)
For (&) > 0, v1(&), v2(§) satisfy the following equations

_ Cra 7!

V1—¢1(—5—V2—m) Gah)
_ SZE

V2—¢2(—5—V1—m) ;

(#i1) (v11(&),12(&)) is the unique solution of these equations with |v1(€)| < i1 /S(E),
with C a sufficiently large constant.

Let

v2(§)] < ¥2/S(8) for 3(§) > C,

X = lim vy (4u) - v2(du), (32)
u—0

and
Eo(Cotb1,2) = — XPC8 4+ 3x*CH + (Y1the — o — o1 + 1)x3¢0 — 2x3¢* — 3x3¢?

+ (1 + b2 — 3190 + 1)xZCH + 2x%C% + X2 + 3o xC? — Y1he,
E1(¢tb1,¥2) = Pax®Ct — ax?C? + v1thax(? — 1o,
E5(C 1, 2) = x°C% = 3x ¢ 4 (01 — DX+ 2x3¢CH + 337 + (= — DXCH = 2x3¢7 — X7

(33)
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Then the expression for the asymptotic risk of minimum norm interpolator gives

_ 2E1(<7¢17w2) 2E2(<>1/J17¢2)
R = B g 0a) 7 Bolc, vn, )

The expression for the norm of the minimum norm interpolator gives

+ + 72

A= ﬁ — X2 (¢t = XC? + 2P 4 ¢ — xalt + 1)} + ﬁlp [XQ(XCQ D3P =2+ + 1)}7

Ag = — x°CC +3x* ¢+ (Y1the — b2 — Y1 + 1)X3CC — 2x3¢* — 3 3¢
+ (b1 + b2 — 3190 + 1)XZCH + 2x%C% + X2 + 3Y19axCE — Y1y,
A1, h2) = 1 (FT + 7%) Ay /(112 Ao).

B. Experimental setup for simulations in Figure 2

In this section, we present additional details for Figure 2. We choose y; = (x;, 3) for some ||3||3 = 1, the ReLU activation
function o(z) = max{x,0}, and ¢y = N/d = 2.5 and ¢y = n/d = 1.5.

For the theoretical curves (in solid lines), we choose A € [0.426,2], so that Ay () € [0, 15], and plot the parametric
curve (Ay (A),U(N) + AAy (N)) for the uniform convergence. For the uniform convergence over interpolators, we choose

A € ]0.21,2] so that A () € [6.4,15], and plot (A (A), T (A) + AAr(X)). The definitions of these theoretical predictions
are given in Definition 5, Remark 2 and Remark 3

For the empirical simulations (in dots), first recall that in Proposition 2, we defined

au(A) = argmax [R(a) — Ra(a) — vr)|al3],

ar()\) = argmax a inf [R(a) — M |al2 +2(n, Za — y/Vd >}

7

After picking a value of A, we sample 20 independent problem instances, with the number of features N = 500, number
of samples n = 300, covariate dimension d = 200. We compute the corresponding (v1||ay |3, R(ay) — R, (ay)) and
(¢1]lar||3, R(ar)) for each instance. Then, we plot the empirical mean and 1/+/20 times the empirical standard deviation
(around the mean) of each coordinate.
C. Proof of Proposition 1
The proof of Proposition 1 contains two parts: standard uniform convergence U and uniform convergence over interpolators
T'. The proof for the two cases are essentially the same, both based on the fact that strong duality holds for quadratic program
with single quadratic constraint (c.f. Boyd & Vandenberghe (2004), Appendix A.1).
C.1. Standard uniform convergence U
Recall that the uniform convergence bound U is defined as in Eq. (4)

U(A,N,n,d) = sup (R(a) - ﬁn(a)>
(N/d)||all3<A

Since the maximization problem in (4) is a quadratic program with a single quadratic constraint, the strong duality holds. So
we have
sup R(a) — R, (a) = inf sup [R(a) — R, (a) — 1 A\(|al3 - ¢;1A)]
(N/d)||a||3< A2 A20 a

Finally, by the definition of U as in Eq. (20), we get

U(A,N,n,d) = inf [U()\,N,n,d) 1Al
A>0
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C.2. Uniform convergence over interpolators 7'
Without loss of generality, we consider the regime when N > n.
Recall that the uniform convergence over interpolators 7" is defined as in Eq. (5)

T(A7 N7 n, d) = sup R(a)
(N/d)||al|3<A, R, (a)=0

When the set {a € RN : (N/d)||a|2 < A, R,(a) = 0} is empty, we have

T(A7N7 n, d) = lnf [T()‘aNanvd) +)\A:| = —OQ.
A>0

In the following, we assume that the set {a € RY : (N/d)|a||2 < A, R,(a) = 0} is non-empty, i.c., there exists a € R
such that R,,(a) = 0 and (N/d)||a|3 < A.

Let m be the dimension of the null space of Z € R™*¥ i.e. m = dim({u : Zu = 0}). Note that Z € RV*" and N > n,
we must have N —n < m < N. We let R € RY*™ be a matrix whose column space gives the null space of matrix Z. Let
ao be the minimum norm interpolating solution (whose existence is given by the assumption that {a € RY : R,,(a) = 0}
is non-empty)

ao = lim arg min |R,(a)+ A|a|3| = arg min l|al|.
A—=04 acRN a€RN:R,,(a)=0

Then we have

{acRY :R,(a) =0} ={acRY :y=VdZa} = {Ru+ay: ucR™}.

Then T can be rewritten as a maximization problem in terms of u:

sup R(a) = sup [(Ru + ao, U(Ru + ag)) — 2(Ru + ag,v) + E(yQ)}
(N/d)|a3<A, Bn(a)=0 weR™:|| Rutaol3<pi ' A
= R(ag) + sup [(u, R"URu) + 2(Ru,Uag — v)} .
wER™:|| Rutao|3<y; ' A

Note that the optimization problem only has non-feasible region when A > (N/d)||aol|3. By strong duality of quadratic
programs with a single quadratic constraint, we have

sup [(u, R'URu) + 2(Ru,Uag — v)
u€R™:||Ru+tao|3<y; ' A

= inf sup [(u, R'URu) + 2(Ru,Uag — v) — \(¢1 || Ru + ag||3 — A)}
A20 yeR™

The maximization over u can be restated as the maximization over a:

R(ap) + sup {(u, RTURu> +2(Ru,Uag — v) — M| Ru + a0||§ = sup {R(a) — /\leaH%}.
ucR™ a:R,(a)=0

Moreover, since sup,. z (4)—o [R(a) — M\1]|a||3] is a quadratic programming with linear constraints, we have

sup | R(a) — X al}3] = supinf | R(a) — M lall3 +2(p. Za —y/Vd)|.
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Combining all the equality above and the definition of T as in Eq. (21), we have

T(A7 N7 n, d) = sup R(a)
(N/d)||all3<A,Rn(a)=0

= R(ap) + sup [(u, R'URu) + 2(Ru,Uag — 'v)}
u€R™:||Rutao||3<y; 'A

= R(ao) + inf sup [(u, RTURu) + 2(Ru. Uay — v) ~ At | Ru + a3 - 4)]

= r>1 {)\A—i—R ap) +sup [(u,RTURu>+2<Ru,Ua0—v>—)\w1||Ru+a0H§}}
_ _ 2
= uf {AA+G;I£) 0[ (a) = M lal3]}
= inf {M + supinf [R(a) ~ Mo lal}} + 2(u, Za — y/Vd)] }
= inf [ (\, N, n,d) +AA]
A>0

This concludes the proof.

D. Proof of Proposition 2

Note that the definitions of U and T as in Eq. (20) and (21) depend on 3 = ,B(d), where ,B(d) gives thg coefficients of
the target function fq(x) = (z, B(d)>.§uppose we explicitly write their dependence on 3 = ,B(d)i ie, U\ N,n,d) =
U(B,\,N,n,d)and T(\, N,n,d) = T(8,\, N,n,d), then we can see that for any fixed 3, and 3 with || 3|2 = ||B«||2.

we have U(B,, \, N, n,d) 4 U(B, A\, N,n,d)and T(B,,\, N, n,d) 4 T(B, \, N, n, d) where the randomness comes from
X, ©, e. This is by the fact that the distribution of x;’s and 6,’s are rotationally invariant. As a consequence, for any fixed
deterministic 3,, if we take 3 ~ Unif(S?~1(||3,]|2)), we have

U(Bs, A, Ny, d) LT(B, A\, N,n, d),
T(B., A\ Ny, d) £ T(8, A\, N,n, d).
where the randomness comes from X, ©, €, 8.
Consequently, as long as we are able to show the equation
U(B,\,N,n,d) =U(N\1b1,12) + 0qp(1)

for random 3 ~ Unif(S"~1(F})), this equation will also hold for any deterministic 3, with ||3,||3 = F2. Vice versa for T,
[@v 13 and [[@r (3.

As a result, in the following, we work with the assumption that 3 = B(® ~ Unif(S?"!(F})). That is, in proving
Proposition 2, we replace Assumption 1 by Assumption 6 below. By the argument above, as long as Proposition 2 holds
under Assumption 6, it also holds under the original assumption, i.e., Assumption 1.

Assumption 6 (Linear Target Function). We assume that f4 € L*(S*'(v/d)) with fs(x) = (8D, x), where B(D ~
Unif (S4-1(F))).
D.1. Expansions
Denote v = (v;);en] € RY and U = (U;); jein) € RV *Y where their elements are defined via
vi = Ec olyo((2,6,)/Vd),
Uy = Balo((z,0:)/Vd)o ((,0;)/Vd)).

Here, y = (z,8) + ¢, where 8 ~ Unif(S?}(F))), o ~ Unif(S1(vd)), e ~ N(0,7%), and (6;);e(n] ~iid
Unif (S~ (v/d)) are mutually independent. The expectations are taken with respect to the test sample = ~ Unif (S~ (v/d))
and € ~ N(0, 72) (especially, the expectations are conditional on 3 and (6;);¢(n))-
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Moreover, we denote y = (y1,...,yn)' € R™ where y; = (x;, 3) + &;. Recall that (;);e[n) ~iid Unif (S 1(/d))
and (£;);e[n] ~iia N'(0,72) are mutually independent and independent from 8 ~ Unif (S~ (v/d)). We further denote
Z = (Zij)ien),je[n) Where its elements are defined via

Zij = o({xi, 0;)/Vd)/Vd.

The population risk (1) can be reformulated as
R(a) = (a,Ua) - 2(a,v) + E[y?],
where a = (a1, ...,ayx) € RV, The empirical risk (2) can be reformulated as

(Z'y,a)

+ L2
\/& n y 2

Ru(a) =, a, ZT Za) — 25"

By the Appendix A in Mei & Montanari (2019) (we include in the Appendix F for completeness), we can expand o (z) in
terms of Gegenbauer polynommials

= i )\d,k(U)B(da k)Q}(cd) (\/a : .%‘),
k=0

where Q,&d) is the k’th Gegenbauer polynomial in d dimensions, B(d, k) is the dimension of the space of polynomials on
S%=1(v/d) with degree exactly k. Finally, \g 4 (o) is the k’th Gegenbauer coefficient. More details of this expansion can be
found in Appendix F.

By the properties of Gegenbauer polynomials (c.f. Appendix F.2), we have

Em~Unif(§d71(\/E))[ka(<5'3a 6:))] =0, vk #1,
B Unit(a-1(vay) [2Q1((z, 04))] = 6;/d, k=1
As a result, we have
= E. 2[yo((w,6:)/Vd)] ZAd 8 B Eg[(, Q'Y (Vd - 2)] = Mg (0)(6;, B). (34)

D.2. Removing the perturbations

By Lemma 6 and 7 as in Appendix D.6, we have the following decomposition

U =13Q+ ilIy + A, (35)
with @ = ©OT/d, E[|A||2,] = 0a(1), and yf and 12 are given in Assumption 2.
In the following, we would like to show that A has vanishing effects in the asymptotics of U, T, ||y |3 and |[a@r 3.

For this purpose, we denote

U.= 1Q‘|‘,u In,
R.(a) = (a,U.a) — 2(a,v) + E[y?],
em(@) =(a,¥; ' Z" Za) - 2{a, ;' Z"y/Vd) + By,

~ (36)
T\ Nn,d) = sup (Rola) = Benla) = 1\ al).

Te(A\N.n,d) = supint [Re(a) = Xéi|lal} + 2(n, Za — y/Vd)|.
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For a fixed A € Ay, note we have

T

VA
sup (@, (U ~ 03272 — i X)) —2(a0 —v3* " 2) -

Uc(A,N,n,d)

= sup ((a,ﬂa) - 2<a,ﬁ>)

where M = U.— ;' Z7Z — ) \Iy and ¥ = v —¢; ' ZTy/v/d. When X, © are such that the good event in Assumption
4 happens (which says that M < —eI for some € > 0), the inner maximization can be uniquely achieved at

ay,c(A\) = argmax ((mﬂa) - 2((1,@)) =M . (38)
a

and when the good event {||A||,, < £/2} also happens, the maximizer in the definition of U(\, N, n, d) (c.f. Eq. (20)) can
be uniquely achieved at

@y ()\) = arg max (<a, (M + A)a) — 2<a,§>) — (M +A) 5.

a

Note we have

ar(\) —ar.\)=(M+A)"5—M v=M+A)'AM v,

so by the fact that || A|op = 04,p(1), we have

[au(A) = @ue(N2 < (M + &) Allpllav,c (V|2 = oap()[@v.c(V)]2-
This gives [[@y (V)[|3 = (1 + 0ap(1))l[@v.c (V)3
Moreover, by the fact that || Al|op = 04,p(1), we have

e\ Ny, d) = sup (R(a) — Bula) — i )|al — (@, Aa)) +E[y?) — lyl/n

a

= U\ N,n,d) + oap(1)([[@v,c (N3 +1).

As a consequence, as long as we can prove the asymptotics of U, and |[ay,.(\)||3, it also gives the asymptotics of U and
l@ (N)]|3. Vice versa for T and |[ar(\)]|3.

D.3. The asymptotics of U. and ¢ ||ay .(\)||3

In the following, we derive the asymptotics of U (A, N, n,d) and 91 ||@y,.(A)||3. When we refer to @y .()), it is always
well defined with high probability, since it can be well defined under the condition that the good event in Assumption 4
happens. Note that this good event only depend on X, ® and is independent of 3, .

By Eq. (37) and (38), simple calculation shows that

T.\N,n,d) = — (5, M @)= -0, — Ty — T,

[Gucll} = (8, M%) = @1 + B3 + 0,
where
\Ijl = <’U7M71'U>, (bl = <'U,M72’U>,
ZTy — 1 Zly — 2
Uy = — 20, (=2 M v), By = — 20, (== M “v),
2 wQ <\/a > 2 ¢2 <\/67i >
Zy — 1 ZTy Zy 27Ty
Uy =gy — M > Dy =1py° — M .
3 ¢2 < \/;i \/g> 3 ’(/)2 < \/g \/8>

The following lemma gives the expectation of ¥;’s and ®;’s with respect to 3 and .
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Lemma 1 (Expectation of ¥;’s and ®;’s). Denote qu (X, ) = (12 — Mp1, p2,12,0,0). We have

Eel0] = ptF? - 5To(M'Q) x (1-+04(1))

d

Eeg[0s] = — 25212 : én(zﬁ’lzf) x (1+ 0a(1)),

Ee 5[0s] = ig - éﬁ(zﬁ’lzTH) + ;2% : éﬂ(zﬁ’lzT),
B pl@1] = iF7 - STe(M7Q) x (14 0u(1))

Beslttal = — 20 JTe(Z8 7 4T) x (14 0ul1),

E. g[®s] = f;g : éﬁ(Zﬁ’QZTH) + ;2% : %T&«(ZM’Z'ZT).

Here the definitions of Q, H, and Z1 are given by Eq. (19).

Furthermore, we have

E = — [ F} - 05,05,Ga(04; qu (A, ) x (1 + 0a(1)),
Eepl®2) = — F} - 05,0,Ga(04;qu (A %)) x (14 04(1)),
Esﬁ O3] = — F12 : 85181‘.2Gd(0+; qU()‘aw)) - 7—2 : C%Iathd(O_H QU()\71/)))-

The definition of G4 is as in Definition 1, and Vng(O_,.; q) for k € {1,2} stands for the k’th derivatives (as a vector or a
matrix) of G 4(tu; q) with respect to q in the w — 0+ limit (with its elements given by partial derivatives)

ViGa(04;q) = Jim ViGaliu; q).

We next state the asymptotic characterization of the log-determinant which was proven in (Mei & Montanari, 2019).
Proposition 3 (Proposition 8.4 in (Mei & Montanari, 2019)). Define

E(&, 21, 204 9) = log[(s2z1 + 1) (taza + 1) — 3 (1 + p)’2120] — p 2120
+ 5121 + tize — 1 log(z1/v1) — Yo log(ze/12) — (21 + 22) — Y1 — 1ha.

For{ € Cyand q € Q(cf Eq. (25)), let m1(&; q; ), ma(&; q; 1) be defined as the analytic continuation of solution of
Eq. (26) as defined in Definition 3. Define

(39)

9&a ) =26 (& @), ma (& @) @ ). (40)
Consider proportional asymptotics N/d — 11, N/d — 1o, as per Assumption 3. Then for any fixed ¢ € C and q € Q,
we have .
Jim E[|Ga(&q) — 9(&a;9)|] = 0. 41)
Moreover, for any fixed w € Ry and q € Q, we have
Jim Ef[|0gGa(iu; q) — 0qg(iu; g:4p)l2] = 0, 42)
Jim E[||VgGaliu; @) — Vag(iu; ;9)|lop] = 0. 43)

Remark 4. Note that Proposition 8.4 in (Mei & Montanari, 2019) stated that the Eq. (42) and (43) holds at ¢ = 0. However,
by a simple modification of their proof, one can show that these equations also holds at any q € Q.
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Combining Assumption 5 with Proposition 3, we have

Proposition 4. Let Assumption 5 holds. For any A\ € Ay, denote qu = qu (M, ¥) = (u2 — Mp1, p3,12,0,0), then we have,
fork =1,2,

IVEGa(04;qu) — uﬁ;& Vig(iu; qus )|l = oap(1).

As a consequence of Proposition 4, we can calculate the asymptotics of ¥;’s and ®;’s. Combined with the concentration
result in Lemma 2 latter in the section, the proposition below completes the proof of the part of Proposition 2 regarding the
standard uniform convergence U. Its correctness follows directly from Lemma 1 and Proposition 4.

Proposition 5. Follow the assumptions of Proposition 2. For any \ € Ay, denote qu(\, ) = (u2 — My, u3,19,0,0),
then we have

Ee [01] 5 p3F2 - 00,9(045 qu (A, ) 9),

Ee 6[Wa] = F2 - 0,9(04: qu(\,%);9),

EeplWs] 5 F - (990045 a0\ w)i) = 1) +72(9, 9045 qu (A, )i 9) — 1),
Eeg[®1] % — p2F2 - 0010:29(01; qu(A, ) ),

Eeﬁ[q’ﬂ E) - F12 : aslapg(0+§QU()‘a"/’)§"/))7

Eepl®s] 5 — F2 - 04,0,0(045 qu(\,9):9) — 72 - 03,01, 9(045 qu (X, %)),

where V’;g(OJr; q; V) for k € {1, 2} stands for the k’th derivatives (as a vector or a matrix) of g(tu; q; V) with respect to
q in the uw — 04 limit (with its elements given by partial derivatives)

k . _ 1 Kk (g2 .
vqg(0+7 q; ,l/)) - ull>r{]l+ ng(lu7 q; 1/7)

As a consequence, we have

]Ee,ﬁ [Uc(Aa Na n, d)] E) H(A7 wla ¢2)7 EE,,@ [wl HEU,C()‘) ||§] ﬂ AU ()\7 '(/}17 T/)Q)a

where the definitions of U and Ay are given in Definition 5. Here L5 stands Sor convergence in probability as N/d — n
and n/d — 1 (with respect to the randomness of X and ©).

Lemma 2. Follow the assumptions of Proposition 2. For any A € Ay, we have
Vare g[V1), Vare g[Wa], Vare g[Vs] = oqp(1),
Vare g[®1], Vare g[®s], Vare g[®s] = 0qp(1),

so that
Vare [Uc(A, N, n, d)], Vare gll[@v,(A\)||3] = oap(1).

Here, 0qp(1) stands for converges to 0 in probability (with respect to the randomness of X and ©) as N/d — 1 and
n/d — 1o and d — .

Now, combining Lemma 2 and Proposition 5, we have

P _ P
UC(A7 N7 n, d) — U(Aa 1;[}15 1/}2)7 ¢1 HaU,C(A)”g — AU()\’ 11[}17 1/}2)7
Finally, combining with the arguments in Appendix D.2 proves the asymptotics of U and 1 ||ay (M) ||3.

D.4. The asymptotics of 7. and 1 ||ar.(\)||3

In the following, we derive the asymptotics of (A, N, n, d) and ¢y |[@r,.())]|3. This follows the same steps as the proof
of the asymptotics of U.. and 11 [[@y,.(\)[|3. We will give an overview of its proof. The detailed proof is the same as that of
U, and we will not include them for brevity.
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For a fixed A € Ap, recalling that the definition of T. asin Eq. (36), we have

Te(A, N.n.d) = supinf | Ro(a) — X lalf} +2(u. Za —y/Vd)|

= supinf (<a, (Ue = My Iy)a) —2(a,v) +2(u, Za) — 2(p, y/ﬁ>) +E[y’] (44)
= sup (a,(U,— \pIy)a)—2(a,v)+E[y?
VdZa=y

Whenever the good event in Assumption 4 happens, (U, — A1 Iy) is negative definite in null(Z). The optimum of the
above variational equation exists. By KKT condition, the optimal a and dual variable p satisfies

» Stationary condition: (U, — M1 In)a + Z'p = v.
+ Primal Feasible: Za = y/\/d.

The two conditions can be written compactly as
U.— 0\ Iy Z7] [a v
= . 45
{ z 0] |u|  ly/vd @
We define

3 = {UG — i Ny ZT] ’

_ v
z 0 v= [y /\/g] : (46)
Under Assumption 4, M is invertible. To see this, suppose there exists vector [a],u{]" # 0 € RVT" such that
Mla{,pu]]" = 0, then
(Uc - )\'l/)lIN)al + ZTHI = 07
Za1 =0.
As in Assumption 4, let P,,; = Iy — ZYZ. We write a; = Pyv; for some vy #0¢€ RY. Then,
(Ue — M1 IN)Ppanvr + Z py = 0,
= Pnull(Uc - )\wlIN)Pnull’Ul + PnuIIZTlJ/l = 01
= Pnull(Uc - AwlIN)Pnull'Ul = Oa
where the last relation come from the fact that ZP,,,; = 0. However by Assumption 4, Pp,,11(U. — Ab1 I )Py is negative
definite, which leads to a contradiction.

In the following, we assume the event in Assumption 4 happens so that M is invertible. In this case, the maximizer in Eq.

(44) can be well defined as
Gr.o(\) = [Iy,Onun] M .
Moreover, we can write T, as
T.(\N,n,d) =E[y*] -5 M w.

‘We further define

B - Iy Onsn
U1 = [vTvolxl]Ta V2 = [OTVxlvyT/\/g}T7 E= |:0 ) ONX :| .
nxN nxn

Simple calculation shows that
TC()\) Na nad) = E[y2] - <63 M_1ﬁ> - F‘l2 + 7-2 - l:[/1 - \IJQ - \1133

@2 = (@M 'EM %) = ® + oy + 0,

where . L
Uy = (v, M ), ¢ =(w,,M EM 7w),
Uy = 2(@,H*1§1>, o, = 2(@,H71Eﬁflm)7
Uy = (52, M ), by = (5o, M EM '5y).

The following lemma gives the expectation of ¥;’s and ®;’s with respect to 3 and .
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Lemma 3 (Expectation of ¥;’s and ®;’s). Denote qr(\, 1) = (u2 — \p1, 142, 0,0,0). We have

Ee p[W1] = pF} - 05,Ga(04; 97N, ) x (14 04(1)),

Ee (V2] = FT - 9,Ga(04+5 g1 (A 9)) x (1 +04(1)),

E. p[Us] = F} 3t2Gd(0+a ar(\ ) + 72 0, Ga(045 97 (N, ),
Eeg®1] = — piFT - 05,05,Ga(04: qr (N, ) x (1+ 04(1)),

Eepl®o] = — F} - 5S15de(0+;QT()\,¢)) x (1+0a4(1)),

Esﬁ[q’ii] = - F1 05,01,Ga(04;qr (A, ) — T 05,01, Ga(04; T (A, ).

The definition of G is as in Definition 1, and VZGd(OJr; q) for k € {1, 2} stands for the k’th derivatives (as a vector or a
matrix) of G 4(tu; q) with respect to q in the w — 0+ limit (with its elements given by partial derivatives)

ViGa(04;q) = Jim ViGa(iu; q).

The proof of Lemma 3 follows from direct calculation and is identical to the proof of Lemma 1. Combining Assumption 5
with Proposition 3, we have

Proposition 6. Let Assumption 5 holds. For any X € Ar, denote qr = qr(\, ) = (u2 — M1, 12,0,0,0), then we have,
fork =1,2,

IVgGaO4sar) = lim Veg(iu; qrsw)| = oap(1).

As a consequence of Proposition 6, we can calculate the asymptotics of ¥;’s and ®;’s.

Proposition 7. Follow the assumptions of Proposition 2. For any X\ € Ar, denote qr(\, ) = (u2 — M\p1, u3,0,0,0), then
we have

Eepl01] 5 p3F2 - 0,,9(04; ar(N 4); ),

EepWa] = F2 - 0,9(045 qr(\ 9); ),

Ee p[Us] = FY - 0,9(045qr(\ )i %) + 72 - 01, 9(045 qr (A, ) %),
Eepl®1] & — (2 F?2 - 9510509(04; ar(A\, ); ),

Eeg[®2] 55 — F} - 0,10,9(045 ar(\ ) ),

Eepl®s] = — F2 - 05,00,9(045ar (X, 9);9) — 72 - 85,0, 9(045 ar (N, )5 9),

where ng(0+, q; V) for k € {1,2} stands for the k’th derivatives (as a vector or a matrix) of g(tw; q; 1) with respect to
q in the u — 0+ limit (with its elements given by partial derivatives)

k oy _ 1 K (g2 e
vqg<0+7 q; "/J) - u£%+ vqg(zu7 q; w)
As a consequence, we have

EE,,@[TC()H Na n, d)] E) 77—()‘7 ¢17 ¢2), Es,,@[wl ||6T,c()\) ||§] ﬂ AT()\a wh ¢2)»

where the definitions of T and Ar are given in Definition 5. Here 5 stands for convergence in probability as N/d — 1,
and n/d — o (with respect to the randomness of X and ©).

The Proposition above suggests that U; and ®; concentrates with respect to the randomness in X and ®. To complete the
concentration proof, we need to show that ¥, and ®; concentrates with respect to the randomness in 3 and e.

Lemma 4. Follow the assumptions of Proposition 2. For any A € Ap, we have

Vare g[V1), Vare g[Ws], Vare g[¥s] = 0q.p(1)
Vare g[®1], Vare g|®2], Vare g[®s] = 0ap(1),
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so that
Vareﬁ[TC(A7N7n7d)}’Varé,ﬁ[”aT,C( )H ]_Odﬂ”( )

Here, 0q,p(1) stands for converges to 0 in probability (with respect to the randomness of X and ®) as N/d — 11 and
n/d — 1y and d — oo.

Now, combining Proposition 7 and 4, we have

= P = _ P
TC<)\7 N» n, d) — T()‘7 ¢17 ¢2), 7/}1 HaT,c()\)Hg — AT()‘7 ’(/}17 ’(/}2)
The results above combined with the arguments in Appendix D.2 completes the proof for the asymptotics of T and
villar(N)|f3.
D.5. Proof of Lemma 1 and Lemma 2

Proof of Lemma 1. Note that by Assumption 4, the matrix M = U, — ;' Z7Z — y1 A\l is negative definite (so
that it is invertible) with high probability. Moreover, whenever M is negative definite, the matrix A(qy) for gy =
(u2 — \py, 42,2, 0,0) is also invertible. In the following, we condition on this good event happens.

From the expansion for v; in (34), we have

1007

Ep¥) =Eg. {ﬂ(ﬁ’lmﬁ)} - é)\d,l(a)zFf : [ﬂ(ﬁ’leeT)} = 2Ry (M

LRE; ) 1+ 0sta)

where we used the relation g1 = ju1/V/d x (1 + 0g4(1)) as in Eq. (66). Similarly, the second term is

i L)
- defAdl( o)F?-Te(ZM 'ox")
S ﬁmFﬁTr(Zﬁ_l@XT) x (1+ 0a(1)).

To compute V3, note we have
Egelyy'] = FY - (XXT)/d+ L.

This gives the expansion for W3
EgeWs = 5 %d 'Be Tr(ZM 'ZTyy")
= 2d 2 F2Te(ZM ' ZTXXT) + 9y 2d T (ZM ' Z) 72
2 1 2
Through the same algebraic manipulation above, we have

1 2007
Eg P, = E,ﬁFfTr (M y > x (14 04(1)),

Epo By = — \F? .Tr<zﬁ’2@XT) % (14 0q(1)),

2
D2
Epo®y = 5 2d 2 F2 - Tr(zﬁ’zzTXXT) n ¢;2d—172Tr<zM’QZT).

Next, we express the trace of matrices products as the derivative of the function G4(¢, q) (c.f. Definition 1). The derivatives
of G4 are (which can we well-defined at ¢ = qu = (12 — A1, p3, 12, 0, 0) with high probability by Assumption 4)

0,,Ga(0,0) = STH(A(0) "0.A@), 04,0, Gal0,0) = —TH(Ala) "0, Ala)A(a) 0, Ala). @)
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As an example, we consider evaluating 9,,G4(0, q) at ¢ = qu = (u2 — Mp1, p3,1,0,0). Using the formula for block
matrix inversion, we have

_ E—A I + 2 ZT -1 Ucf —1szi A -1
A — X1, p3, 12, 0,0) 12[(M w%N e wL| = ( (O Y1 M\Iy)

Then we have

d

Applying similar argument to compute other derivatives, we get

00, Gal0, qur) = =T ([M_l jjj} {ff SD — (M ' Q)/d.
1. (M '00T)/d? = (M 'Q)/d = 0,,Ga(0, qu).

2.y T(ZM O©XT)/d? = Te(M ' Z]Z)/d = —19,G4(0, qu)/2.

3. Te(ZM 'ZTXXT)/d? = Te(ZM ' ZTH)/d = ¢20,,G4(0, qu) — 2.

4. Te(ZM ' Z7)/d =930, Ga(0,qu) — 3 .

5. To(M Q) /d = —05,05,Ga(0, qu).

6. (2/dis) - Tr(ZTZM °) = 9,,0,Ga(0, qur).

7. To(M °ZTHZ)/(dy32) = —ds,0;,Ga(0, qu).

8. Te(M “Z7Z)/(d2) = —8,,,, Ga(0, qu).

Combining these equations concludes the proof. O

Proof of Lemma 2. We prove this lemma by assuming that 3 follows a different distribution: 3 ~ N(0, (|| F1]|3/d)14). The
case when 3 ~ Unif(S?~!(F})) can be treated similarly.

By directly calculating the variance, we can show that, there exists scalers (cgz)) ke[K;] With cz(.,? = 04(1), and matrices
(Air, Bir)reix,) € {In, Q, ZTHZ,Z" Z}, such that the variance of ¥;’s can be expressed in form

K’.
1 & -
Var, g(0;) = gE ADTr(M T Ay M By /d.
k=1

For example, by Lemma 8, we have
Vargxr(o,(r2 /a1 (Y1) = A1 (0)Varg_xvio, (2 jan) (BTOTM ' ©B) = 2X4(0) ' F{|©TM O[3, /d”
=" Te(M QM 'Q)/&,
where ¢\ = 242Xy 1 (0)*F# = O4(1). The variance of ¥, and W3 can be calculated similarly.
Note that each T‘r(ﬁflAikﬁleik) /d can be expressed as an entry of V2G4(0; q) (c.f. Eq. (47)), and by Proposition 4,

they are of order Oy p(1). This gives
Vare g(V;) = 048(1).

Similarly, for the same set of scalers (ng))ke[ &,] and matrices (A;x, Bir)re[x,]> We have

1 & 2 2

Varsﬁ((I)i) = E CikTI"(Mi AikMi sz)/d
k=1

Note that for two semidefinite matrices A, B, we have Tr(AB) < | A||,Tr(B). Moreover, note we have | M||o, =
Oaqp(1) (by Assumption 4). This gives

Vara,g(q)i) = Od’]}»(l).
This concludes the proof. O
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D.6. Auxiliary Lemmas

The following lemma (Lemma 5) is a reformulation of Proposition 3 in (Ghorbani et al., 2019). We present it in a stronger
form, but it can be easily derived from the proof of Proposition 3 in (Ghorbani et al., 2019). This lemma was first proved in
(El Karoui, 2010) in the Gaussian case. (Notice that the second estimate —on Q;(® X T)— follows by applying the first
one whereby © is replaced by W = [©@T| X T]T

Lemma 5. Let © = (61,...,0y)" € RYN* with (6,),e(n) ~iia Unif(S*1(Vd)) and X = (z1,...,x,)" € R4
with (X;)ie[n] ~iid Unif(S*1(V/d)). Assume 1/c < n/d, N/d < c for some constant ¢ € (0,00). Then

E[sup |Q(©OT) ~ Ly 2, | = 0u(1). (48)
E>2

E[ sup | Qu(©XT)2,] = 0a(1): 49)
k>2

Notice that the second estimate —on Q(® X T )— follows by applying the first one —Eq. (48)— whereby © is replaced
by W = [07|X]", and we use [Qx(OXT)|lop < [Qu(WWT) — Iyt lop.

The following lemma (Lemma 6) can be easily derived from Lemma 5. Again, this lemma was first proved in (El Karoui,
2010) in the Gaussian case.

Lemma 6. Let © = (0y,...,0n)" € RN with (04).en] ~iid Unif(S*1(V/d)). Let activation function o satisfies
Assumption 2. Assume 1/c < N/d < ¢ for some constant ¢ € (0, 00). Denote

U = (Eqitoo v [o(0a @) VDo (O0,2)VA)) e RV,

a,be[N]

Then we can rewrite the matrix U to be
U = Xa0(0)’1n1) + 17Q + p3(In + A),
with @ = ©OT /d and E[| A||2,] = 0a(1).

In the following, we show that, under sufficient regularity condition of o, we have Ag(c) = O(1/d).

Lemma 7. Let o € C?(R) with |0’ (z)|, |0” ()| < coet®! for some co, 1 € R. Assume that Egon0,)[0(G)] = 0. Then
we have

Aa0(0) = By unirsi-1(vaylo(@1)] = O(1/d).

Proof of Lemma 7. Let « ~ Unif(S?~'(1/d)) and v ~ x(d)/V/d independently. Then we have v ~ A (0,1,), so that by
the assumption, we have E[o(yz1)] = 0.

As a consequence, by the second order Taylor expansion, and by the independence of v and &, we have (for (z1) € [y, 1])
Aao(@)| = [Elo(e)]] < [Elo(e1)] - Elo(ya1)]| < [El0’(@1)a1Bly - 11| + | (1/2)El0” (€(1)1) (v — 1))

< ‘E[U’(xl)xl]’ . ’E['y — 1]‘ + (1/2)E[ sup U/I(U$1)2:| 1/2E[('y — 1)z

u€[y,1]

By the assumption that |0’ ()], |0 ()| < coe®|?! for some ¢, c; € R, there exists constant K that only depends on o and

c1 such that
1/2
’ <K

sup ‘E[O’l((ﬂl)l'l]‘ <K, sup ‘(1/2)]E{ sup 0”(um1)2]
d d u€ly,1]

Moreover, by property of the y distribution, we have
Ely -1l=0d™"), Elly-1"?=0(d")

This concludes the proof. O
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The following lemma is a simple variance calculation and can be found as Lemma C.5 in (Mei & Montanari, 2019). We
restate here for completeness.

Lemma 8. Let A € R"*Y and B € R™". Let g = (g1,--.,9n)" With g; ~iia Py, Eglg] = 0, and E4[¢%] = 1. Let
h = (hi,...,hn)T with h; ~iiq P, Ep[h] = 0, and Ej,[h?] = 1. Further we assume that h is independent of g. Then we

have
Var(g" Ah) = || Al|%,

Var(g" Bg) = ZB )+ | B||% + Tr(B?).

E. Proof of Theorem 1

Here we give the whole proof for U. The proof for T is the same.

For fixed A% € Ty = {Ay (A, 11,%2) : A € Ay}, we denote
A(A2) = irif{)\ s Ay 1, ) = A?}.

By the definition of ', the set {\ : Ay (A, 11,92) = A%} is non-empty and lower bounded, so that A, (A?) can be
well-defined. Moreover, we have )\*(AQ) € Ay. Itis also easy to see that we have

A (A?) € argmin [ (A Y1, 92) + )\Aﬂ (50)
A>0
E.1. Upper bound
Note we have R
UAN,n,d) =  sup (R(a) - Rn(a))

(N/d)|la|3<A?

<inf s (R(@)~ Rula) ~i(lal} - 471 42))
A (N/d)|a]3<A

< inf [ (AN, n d)+AA2}
< U(M(A?),N,n,d) + A\ (A?) A2,
Note that )\, (A42) € Ay, so by Lemma 5, in the limit of Assumption 3, we have
U(A,N,n,d) <UN(A%),11,02) + A (AP A + 0q.p(1) = U(A, 1, 2) + 0gp(1),
where the last equality is by Eq. (50). This proves the upper bound.

E.2. Lower bound
For any A2 > 0, we define a random variable \(A2) (which depend on X, ©, 3, €) by

A(A?) = inf {)\ : A € argmin |U(X\, N, n,d) + )\AQ] }
A>0

By Proposition 1, the set is should always be non-empty, so that 5\(A2) can always be well-defined.

Moreover, since A\, (A?) € Ay, by Assumption 4, as we have shown in the proof in Proposition 2, we can uniquely define
ay (A (A2%)) with high probability, where

@y (M (4%) = argmax [R(a) - R (@) — w0, (4%)al3].
As a consequence, for a small € > 0, the following event &£ 4 can be well-defined with high probability
£ = {wrllas (L ()3 > 4 — e} 0 {AA +2) < A (47)]
= {42 e <wrlla (A3 < 4% ¢},
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Now, by Proposition 2, in the limit of Assumption 3, we have

lim Px.op.(Ea) =1, (51)
and we have B
UM (A?),1h1,902) = UN(A?), b1, 92) + 0ap(1). (52)

By the strong duality as in Proposition 1, for any A? € I'y;, we have
U(A,N,n,d) = UNA?),N,n,d) + A\(A?) A%,
Consequently, for small € > 0, when the event £, 4 happens, we have
U((A?+¢)'/2,N,n,d)
= sup (R(a) ~ Ru(a) i M4 +2) - (Jlaff — v (47 +9)) )

> R(@y (A (A7) = Ra(@ (A (4%))) = i A(A° +¢) - (Jau A (A7) - o7 (A% +¢))
> R(@u (A (A7) = Ra(@ (M (4%))) = v A(A° +¢) - (Jau A (A7) - o7 ' (A* —€))
> R(@y(M(A%))) = Ba(@r(M(4%)) = 410 (A°) - ([@u (A (A2)]5 = vy (A% =€)

= U(A(A%), N, n,d) + A (A%) - (A% — ).
As a consequence, by Eq. (51) and (52), we have
U((A% 4+ )%, N,n,d) > UA(A?), 91, 90) + A (A?) - (A% — ) — 0ap(1) = U(A, 1, 12) — eA(A) — 04 p(1).

where the last equality is by the definition of / as in Definition 2, and by the fact that A, (A?) € arg min, U, 1, 92) +
AAZ). Taking ¢ sufficiently small proves the lower bound. This concludes the proof of Theorem 1.

F. Technical background

In this section we introduce additional technical background useful for the proofs. In particular, we will use decompositions
in (hyper-)spherical harmonics on the Sd_l(\/a) and in Hermite polynomials on the real line. We refer the readers to
(Efthimiou & Frye, 2014; Szego, Gabor, 1939; Chihara, 2011; Ghorbani et al., 2019; Mei & Montanari, 2019) for further
information on these topics.

F.1. Functional spaces over the sphere

Ford > 1, we let S=1(r) = {x € R?: ||z||2 = r} denote the sphere with radius  in R?. We will mostly work with the
sphere of radius v/d, S41 (\/E) and will denote by v, the uniform probability measure on S%~* (\/E) All functions in the
following are assumed to be elements of L?(S*~*(v/d),v4), with scalar product and norm denoted as (-, - )2 and || - ||z2:

(f 02 = / f(2) () va(dz) (53)
gd—l(\/a)

For £ € Z>¢, let de ¢ be the space of homogeneous harmonic polynomials of degree £ on R? (i.e. homogeneous polynomials
q(z) satisfying Ag(z) = 0), and denote by V;; o the linear space of functions obtained by restricting the polynomials in Vy; ¢
to S4~1(+/d). With these definitions, we have the following orthogonal decomposition

LA™ (Vd), ya) = @ Vae - (54)

£=0

The dimension of each subspace is given by

dim(vd,g) = B(d, E) = (55)

204+d—-2(0+d—-3
l -1 '
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For each £ € Z>, the spherical harmonics {Yé(jd) }<j<B(a,r) form an orthonormal basis of Vg ¢
(VD YD) 2 = 6,50k

Note that our convention is different from the more standard one, that defines the spherical harmonics as functions on
S4=1(1). It is immediate to pass from one convention to the other by a simple scaling. We will drop the superscript d and

write Y, ; = Ye(?) whenever clear from the context.

We denote by Pj, the orthogonal projections to V5 in L?(S*'(v/d),4). This can be written in terms of spherical
harmonics as

B(d.k
Puf(x) = Z (f Vi) 12 Yia (). (56)
Then for a function f € L?(S?~'(v/d)), we have
oo oo B(d,k)
z) =Y Pif(w) = > Vi) e Yi(@).
k=0 k=0 i=1

F.2. Gegenbauer polynomials

The ¢-th Gegenbauer polynomial Qéd) is a polynomial of degree ¢. Consistently with our convention for spherical harmonics,
we view di) as a function Qéd) : [=d,d] — R. The set {di)} ¢>0 forms an orthogonal basis on L?([—d, d], 74) (where 74
is the distribution of (1, @) when a1, o ~; ;.4 Unif(S?~! (\/&))) satisfying the normalization condition:

() () _ 1
(@, Q; >L2(%d)—m5jk- (57)

In particular, these polynomials are normalized so that Q(d)( d) = 1. As above, we will omit the superscript d when clear
from the context (write it as (), for notation simplicity).

Gegenbauer polynomials are directly related to spherical harmonics as follows. Fix v € S?~1(v/d) and consider the
subspace of V; formed by all functions that are invariant under rotations in R? that keep v unchanged. It is not hard to see

that this subspace has dimension one, and coincides with the span of the function Qéd) (v, ).

We will use the following properties of Gegenbauer polynomials

1. For x,y € S*(Vd)
1

(@7 (@) QP (W D saor ) = Frg @ (@w)- (58)
2. Forx,y € S*1(/d)
1 B(d,k)
QP @y = gy 2 Y @Y W) (59)
’ =1

Note in particular that property 2 implies that —up to a constant— Q,(Cd) ({(x,y)) is a representation of the projector onto the
subspace of degree-k spherical harmonics

Pe@) =Bk [ QL e w) Sw) ) (60)
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For a function o € L?([—+/d,/d], 74) (where 7, is the distribution of (x;, x2)//d when 1, 22 ~j;q Unif(S?1(V/d))),
denoting its spherical harmonics coefficients Ag (o) to be

A k(0) = / o(2)Q}" (Vdz)14(z), 61)
[7\/37\/3]
then we have the following equation holds in L?([—+/d, v/d], 74) sense

o(z) = > Aar(0)B(d, B)QL (V). (62)
k=0

F.3. Hermite polynomials

The Hermite polynomials {Hey }>o form an orthogonal basis of L*(R, ug), where pg(dz) = e’””Q/de/\/ 27 is the
standard Gaussian measure, and Hey, has degree k. We will follow the classical normalization (here and below, expectation
is with respect to G ~ N(0, 1)):

]E{HGJ(G) Hek(G)} = k! 5]k . (63)

As a consequence, for any function o € L?(R, u¢), we have the decomposition

o(r)=>_ “’“k(," ) Hep(z), k(o) = E{o(G)Her(G)}. (64)
k=1 ’

The Hermite polynomials can be obtained as high-dimensional limits of the Gegenbauer polynomials introduced in the
previous section. Indeed, the Gegenbauer polynomials (up to a v/d scaling in domain) are constructed by Gram-Schmidt
orthogonalization of the monomials {z*} k>0 with respect to the measure 74, while Hermite polynomial are obtained by
Gram-Schmidt orthogonalization with respect to u. Since 74 = u (here = denotes weak convergence), it is immediate
to show that, for any fixed integer &,

lim Coeff{Q\" (Vdx) B(d, k)"/*} = Coeff {(kl)lm Hek(x)} . (65)

Here and below, for P a polynomial, Coeft{ P(z)} is the vector of the coefficients of P. As a consequence, for any fixed
integer k, we have

pi(0) = lim Aq k(o) (B(d, k)k!)Y2, (66)

where 11, (0) and Ay (o) are given in Eq. (64) and (61).



