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Abstract
Recent work showed that there could be a large
gap between the classical uniform convergence
bound and the actual test error of zero-training-
error predictors (interpolators) such as deep neural
networks. To better understand this gap, we study
the uniform convergence in the nonlinear random
feature model and perform a precise theoretical
analysis on how uniform convergence depends
on the sample size and the number of parameters.
We derive and prove analytical expressions for
three quantities in this model: 1) classical uni-
form convergence over norm balls, 2) uniform
convergence over interpolators in the norm ball
(recently proposed by Zhou et al. (2020)), and
3) the risk of minimum norm interpolator. We
show that, in the setting where the classical uni-
form convergence bound is vacuous (diverges to
∞), uniform convergence over the interpolators
still gives a non-trivial bound of the test error
of interpolating solutions. We also showcase a
different setting where classical uniform conver-
gence bound is non-vacuous, but uniform con-
vergence over interpolators can give an improved
sample complexity guarantee. Our result provides
a first exact comparison between the test errors
and uniform convergence bounds for interpolators
beyond simple linear models.

1. Introduction
Uniform convergence—the supremum difference between
the training and test errors over a certain function class—is
a powerful tool in statistical learning theory for under-
standing the generalization performance of predictors.
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Bounds on uniform convergence usually take the form of√
complexity/n (Vapnik, 1995), where the numerator rep-

resents the complexity of the function class, and n is the
sample size. If such a bound is tight, then the predictor is
not going to generalize well whenever the function class
complexity is too large.

However, it is shown in recent theoretical and empiri-
cal work that overparametized models such as deep neu-
ral networks could generalize well, even in the interpo-
lating regime in which the model exactly memorizes the
data (Zhang et al., 2016; Belkin et al., 2019a). As interpo-
lation (especially for noisy training data) usually requires
the predictor to be within a function class with high com-
plexity, this challenges the classical methodology of using
uniform convergence to bound generalization. For example,
Belkin et al. (2018c) showed that interpolating noisy data
with kernel machines requires exponentially large norm
in fixed dimensions. The large norm would effectively
make the uniform convergence bound

√
complexity/n vac-

uous. Nagarajan & Kolter (2019a) empirically measured the
spectral-norm bound in Bartlett et al. (2017) and find that
for interpolators, the bound increases with n, and is thus
vacuous at large sample size. Towards a more fine-grained
understanding, we ask the following

Question: How large is the gap between uniform
convergence and the actual generalization errors
for interpolators?

In this paper, we study this gap in the random features model
from Rahimi & Recht (2007). This model can be inter-
preted as a linearized version of two-layer neural networks
(Jacot et al., 2018) and exhibit some similar properties to
deep neural networks such as double descent (Belkin et al.,
2019a). We consider two types of uniform convergence in
this model:

• U : The classical uniform convergence over a norm
ball of radius

√
A.

• T : The modified uniform convergence over the same
norm ball of size

√
A but only include the interpolators,

proposed in Zhou et al. (2020).
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(a) Noiseless response (τ2 = 0)
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(b) Noisy response (τ2 = 0.1)
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(c) Minimum norm A∞(ψ2)

Figure 1. Random feature regression with activation function σ(x) = max(0, x) − 1/
√
2π, target function fd(x) = 〈β,x〉 with

‖β‖22 = 1, and ψ1 = ∞. The horizontal axes are the number of samples ψ2 = limd→∞ n/d. The solid lines are the the algebraic
expressions derived in the main theorem (Theorem 1). The dashed lines are the function ψp

2 in the log scale. Figure 1(a) and 1(b):
Comparison of the classical uniform convergence in the norm ball of size level α = 1.5 (Eq. (17), blue curve), the uniform convergence
over interpolators in the same norm ball (Eq. (18), red curve), the risk of minimum norm interpolator (Eq. (13), yellow curve). Figure
1(c): Minimum norm required to interpolate the training data (Eq. (12)).

Our main theoretical result is the exact asymptotic expres-
sions of two versions of uniform convergence U and T in
terms of the number of features, sample size, as well as
other relevant parameters in the random feature model. Un-
der some assumptions, we prove that the actual uniform
convergence concentrates to these asymptotic counterparts.
To further compare these uniform convergence bounds with
the actual generalization error of interpolators, we adopt

• R : the generalization error (test error) of the minimum
norm interpolator.

from Mei & Montanari (2019). To make U , T , R compa-
rable with each other, we choose the radius of the norm
ball
√
A to be slightly larger than the norm of the minimum

norm interpolator. Our limiting U , T (with norm ball of size√
A as chosen above), andR depend on two main variables:

ψ1 = limd→∞N/d representing the number of parameters,
and ψ2 = limd→∞ n/d representing the sample size. Our
formulae for U , T andR yield three major observations.

1. Sample Complexity in the Noisy Regime: When the
training data contains label noise (with variance τ2),
we find that the norm required to interpolate the noisy
training set grows linearly with the number of samples
ψ2 (green curve in Figure 1(c)). As a result, the stan-
dard uniform convergence bound U grows with ψ2 at
the rate U ∼ ψ1/2

2 , leading to a vacuous bound on the
generalization error (Figure 1(b)).

In contrast, in the same setting, we show the uniform
convergence over interpolators T ∼ 1 is a constant
for large ψ2, and is only order one larger than the
actual generalization errorR ∼ 1. Further, the excess
versions scale as T − τ2 ∼ 1 andR− τ2 ∼ ψ−12 .

2. Sample Complexity in the Noiseless Regime: When
the training set does not contain label noise, the gen-
eralization error R decays faster: R ∼ ψ−22 . In this
setting, we find that the classical uniform convergence
U ∼ ψ

−1/2
2 and the uniform convergence over inter-

polators T ∼ ψ−12 . This shows that, even when the
classical uniform convergence already gives a non-
vacuous bound, there still exists a sample complexity
separation among the classical uniform convergence
U , the uniform convergence over interpolators T , and
the actual generalization errorR.

3. Dependence on Number of Parameters: In addition
to the results on ψ2, we find that U , T andR decay to
its limiting value at the same rate 1/ψ1. This shows
that both U and T correctly predict that as the number
of features ψ1 grows, the riskR would decrease.

These results provide a more precise understanding of uni-
form convergence versus the actual generalization errors,
under a natural model that captures a lot of essences of
nonlinear overparametrized learning.

1.1. Related work

Classical theory of uniform convergence. Uniform con-
vergence dates back to the empirical process theory of
Glivenko (1933) and Cantelli (1933). Application of
uniform convergence to the framework of empirical risk
minimization usually proceeds through Gaussian and
Rademacher complexities (Bartlett & Mendelson, 2003;
Bartlett et al., 2005) or VC and fat shattering dimensions
(Vapnik, 1995; Bartlett, 1998).

Modern take on uniform convergence. A large volume
of recent works showed that overparametrized interpola-
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tors could generalize well (Zhang et al., 2016; Belkin et al.,
2018b; Neyshabur et al., 2015a; Advani et al., 2020; Bartlett
et al., 2020; Belkin et al., 2018a; 2019b; Nakkiran et al.,
2020; Yang et al., 2020; Belkin et al., 2019a; Mei & Mon-
tanari, 2019; Spigler et al., 2019), suggesting that the clas-
sical uniform convergence theory may not be able to ex-
plain generalization in these settings (Zhang et al., 2016).
Numerous efforts have been made to remedy the original
uniform convergence theory using the Rademacher com-
plexity (Neyshabur et al., 2015b; Golowich et al., 2018;
Neyshabur et al., 2019; Zhu et al., 2009; Cao & Gu, 2019),
the compression approach (Arora et al., 2018), covering
numbers (Bartlett et al., 2017), derandomization (Negrea
et al., 2020) and PAC-Bayes methods (Dziugaite & Roy,
2017; Neyshabur et al., 2018; Nagarajan & Kolter, 2019b).
Despite the progress along this line, Nagarajan & Kolter
(2019a); Bartlett & Long (2020) showed that in certain set-
tings “any uniform convergence” bounds cannot explain
generalization. Among the pessimistic results, Zhou et al.
(2020) proposes that uniform convergence over interpo-
lating norm ball could explain generalization in an over-
parametrized linear setting. Our results show that in the
nonlinear random feature model, there is a sample complex-
ity gap between the excess risk and uniform convergence
over interpolators proposed in Zhou et al. (2020).

Random features model and kernel machines. A num-
ber of papers studied the generalization error of kernel ma-
chines (Caponnetto & De Vito, 2007; Jacot et al., 2020b;
Wainwright, 2019) and random features models (Rahimi
& Recht, 2009; Rudi & Rosasco, 2017; Bach, 2015; Ma
et al., 2020) in the non-asymptotic settings, in which the
generalization error bound depends on the RKHS norm.
However, these bounds cannot characterize the generaliza-
tion error for interpolating solutions. In the last three years,
a few papers (Belkin et al., 2018c; Liang et al., 2020; 2019)
showed that interpolating solutions of kernel ridge regres-
sion can also generalize well in high dimensions. Recently,
a few papers studied the generalization error of random fea-
tures model in the proportional asymptotic limit in various
settings (Hastie et al., 2019; Louart et al., 2018; Mei & Mon-
tanari, 2019; Montanari et al., 2019; Gerace et al., 2020;
d’Ascoli et al., 2020; Yang et al., 2020; Adlam & Penning-
ton, 2020; Dhifallah & Lu, 2020; Hu & Lu, 2020), where
they precisely characterized the asymptotic generalization
error of interpolating solutions, and showed that double-
descent phenomenon (Belkin et al., 2019a; Advani et al.,
2020) exists in these models. A few other papers studied
the generalization error of random features models in the
polynomial scaling limits (Ghorbani et al., 2019; 2020; Mei
et al., 2021), where other interesting behaviors were shown.

Precise asymptotics for the Rademacher complexity of some
underparameterized learning models was calculated using

statistical physics heuristics in Abbaras et al. (2020). In
our work, we instead focus on the uniform convergence of
overparameterized random features model.

2. Problem formulation
In this section, we present the background needed to under-
stand the insights from our main result. In Section 2.1 we
define the random feature regression task that this paper fo-
cuses on. In Section 2.2, we informally present the limiting
regime our theory covers.

2.1. Model setup

Consider a dataset (xi, yi)i∈[n] with n samples. Assume
that the covariates follow xi ∼iid Unif(Sd−1(

√
d)), and

responses satisfy yi = fd(xi)+εi, with the noises satisfying
εi ∼iid N (0, τ2) which are independent of (xi)i∈[n]. We
will consider both the noisy (τ2 > 0) and noiseless (τ2 = 0)
settings.

We fit the dataset using the random features model. Let
(θj)j∈[N ] ∼iid Unif(Sd−1(

√
d)) be the random feature vec-

tors. Given an activation function σ : R→ R, we define the
random features function class FRF(Θ) by

FRF(Θ) ≡
{
f(x) =

N∑
j=1

ajσ
(
〈x,θj〉/

√
d
)

: a ∈ RN
}
.

Generalization error of the minimum norm interpola-
tor. Denote the population risk and the empirical risk of a
predictor a ∈ RN by

R(a) = Ex,y
(
y −

N∑
j=1

ajσ(〈x,θj〉/
√
d)
)2
, (1)

R̂n(a) =
1

n

n∑
i=1

(
yi −

N∑
j=1

ajσ(〈xi,θj〉/
√
d)
)2
, (2)

and the regularized empirical risk minimizer with vanishing
regularization by

amin = lim
λ→0+

arg min
a

[
R̂n(a) + λ‖a‖22

]
.

In the overparameterized regime (N > n), under mild con-
ditions, we have mina R̂n(a) = R̂n(amin) = 0. In this
regime, amin can be interpreted as the minimum `2 norm
interpolator.

A quantity of interest is the generalization error of this
predictor, which gives (with a slight abuse of notation)

R(N,n, d) ≡ R(amin). (3)
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Uniform convergence bounds. We denote the uniform
convergence bound over a norm ball and the uniform con-
vergence over interpolators in the norm ball by

U(A,N, n, d) ≡ sup
(N/d)‖a‖22≤A

(
R(a)− R̂n(a)

)
, (4)

T (A,N, n, d) ≡ sup
(N/d)‖a‖22≤A,R̂n(a)=0

R(a). (5)

Here the scaling factor N/d of the norm ball is such that the
norm ball converges to a non-trivial RKHS norm ball with
size
√
A as ψ1 → ∞ (limit taken after N/d → ψ1). Note

that in order for the maximization problem in (5) to have
a non-empty feasible region, we need R̂n(amin) = 0 and
need to take A ≥ (N/d)‖amin‖22: we will show that in the
region N > n with sufficiently large A, this happens with
high probability.

By construction, for any A ≥ (N/d)‖amin‖22, we have
U(A) ≥ T (A) ≥ R(amin) (see Figuire 2). So a natural
problem is to quantify the gap among U(A), T (A), and
R(amin), which is our goal in this paper.
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Figure 2. Illustration of uniform convergence U (c.f. eq. (4)),
uniform convergence over interpolators T (c.f. eq. (5)), and
minimum norm interpolator R(amin). We take yi = 〈xi,β〉 for
some ‖β‖22 = 1, and take the ReLU activation function σ(x) =
max{x, 0}. Solid lines are our theoretical predictions U and T
(cf. (6) & (7)). Points with error bars are obtained from simulations
with the number of features N = 500, number of samples n =
300, and covariate dimension d = 200. The error bar reports
1/
√
20×standard deviation over 20 instances. See Appendix B

for details.

2.2. High dimensional regime

We approach this problem in the limit d → ∞ with
N/d→ ψ1 and n/d→ ψ2 (c.f. Assumption 3). We further
assume the setting of a linear target function fd and a non-
linear activation function σ (c.f. Assumptions 1 and 2). In
this regime, our main result Theorem 1 will show that, the
uniform convergence U and the uniform convergence over
interpolators T will converge to deterministic functions, i.e.,

writing here informally,

U(A,N, n, d)
d→∞→ U(A,ψ1, ψ2), (6)

T (A,N, n, d)
d→∞→ T (A,ψ1, ψ2), (7)

where U and T will be defined in Definition 2 (which de-
pends on the definition of some other quantities that are
defined in Appendix A and heuristically presented in Re-
mark 1). In addition to U and T , Theorem 1 of Mei &
Montanari (2019) implies the following convergence

(N/d)‖amin‖22
d→∞→ A(ψ1, ψ2), (8)

R(amin)
d→∞→ R(ψ1, ψ2). (9)

The precise algebraic expression of equation (8) and (9) was
given in Definition 1 of Mei & Montanari (2019), and we in-
clude in Appendix A for completeness. We will sometimes
refer to U , T ,A,R without explicitly mark their depen-
dence on A,ψ1, ψ2 for notational simplicity.

Kernel regime. Rahimi & Recht (2007) have shown that,
as N →∞, the random feature space FRF(Θ) (equipped
with proper inner product) converges to the RKHS (Repro-
ducing Kernel Hilbert Space) induced by the kernel

H(x,x′) = Ew∼Unif(Sd−1)[σ(〈x,w〉)σ(〈x′,w)〉].

We expect that, if we take limit ψ1 →∞ afterN, d, n→∞,
the formula of U and T will coincide with the corresponding
asymptotic limit of U and T for kernel ridge regression with
the kernel H . This intuition has been mentioned in a few
papers (Mei & Montanari, 2019; d’Ascoli et al., 2020; Jacot
et al., 2020a). In this spirit, we denote

U∞(A,ψ2) ≡ lim
ψ1→∞

U(A,ψ1, ψ2), (10)

T∞(A,ψ2) ≡ lim
ψ1→∞

T (A,ψ1, ψ2), (11)

A∞(ψ2) ≡ lim
ψ1→∞

A(ψ1, ψ2), (12)

R∞(ψ2) ≡ lim
ψ1→∞

R(ψ1, ψ2). (13)

We will refer to the quantities {U∞, T∞,A∞,R∞} as the
{uniform convergence in norm ball, uniform convergence
over interpolators in norm ball, minimum `2 norm of inter-
polators, and generalization error of interpolators} of kernel
ridge regression.

Low norm uniform convergence bounds. There is a
question of which norm A to choose in U and T to compare
with R. In order for U and T to serve as proper bounds
for R(amin), we need to take at least A ≥ ψ1‖amin‖22.
Therefore, we will choose

A = αψ1‖amin‖22, (14)
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for some α > 1 (e.g., α = 1.1). Note ψ1‖amin‖22 →
A(ψ1, ψ2) as d → ∞. So for a fixed α > 1, we further
define

U (α)(ψ1, ψ2) ≡ U(αA(ψ1, ψ2), ψ1, ψ2), (15)

T (α)(ψ1, ψ2) ≡ T (αA(ψ1, ψ2), ψ1, ψ2), (16)

and their kernel version,

U (α)
∞ (ψ2) ≡ lim

ψ1→∞
U (α)(ψ1, ψ2), (17)

T (α)
∞ (ψ2) ≡ lim

ψ1→∞
T (α)(ψ1, ψ2). (18)

This definition ensures that R(ψ1, ψ2) ≤ T (α)(ψ1, ψ2) ≤
U (α)(ψ1, ψ2) andR∞(ψ2) ≤ T (α)

∞ (ψ2) ≤ U (α)
∞ (ψ2).

3. Asymptotic power laws and separations
In this section, we evaluate the algebraic expressions derived
in our main result (Theorem 1) as well as the quantities U (α),
T (α), A, and R, before formally presenting the theorem.
We examine their dependence with respect to the noise level
τ2, the number of features ψ1 = limd→∞N/d, and the
sample size ψ2 = limd→∞ n/d, and we further infer their
asymptotic power laws for large ψ1 and ψ2.

3.1. Norm of the minimum norm interpolator

Since we are considering uniform convergence bounds over
the norm ball of size α timesA∞(ψ2) (the norm of the min-
norm interpolator), let’s first examine how A∞(ψ2) scale
with ψ2. As we shall see, A∞(ψ2) behaves differently in
the noiseless (τ2 = 0) and noisy (τ2 > 0) settings, so here
we explicitly mark the dependence on τ2, i.e. A∞(ψ2; τ2).

The inferred asymptotic power law gives (c.f. Figure 1(c))

A∞(ψ2; τ2 > 0) ∼ ψ2,

A∞(ψ2; τ2 = 0) ∼ 1,

where X1(ψ) ∼ X2(ψ) for large ψ means that

lim
ψ→∞

log(X1(ψ))/ log(X2(ψ)) = 1.

In words, when there is no label noise (τ2 = 0), we can
interpolate infinite data even with a finite norm. When the
responses are noisy (τ2 > 0), interpolation requires a large
norm that is proportional to the number of samples.

On a high level, our statement echoes the finding of Belkin
et al. (2018c), where they study a binary classification prob-
lem using the kernel machine, and prove that an interpolat-
ing classifier requires RKHS norm to grow at least expo-
nentially with n1/d for fixed dimension d. Here instead we
consider the high dimensional setting and we show a linear
grow in ψ2 = limd→∞ n/d.

3.2. Kernel regime with noiseless data

We first look at the noiseless setting (τ2 = 0) and present
the asymptotic power law for the uniform convergence U (α)

∞
over the low-norm ball, the uniform convergence over inter-
polators T (α)

∞ in the low norm ball, and the minimum norm
riskR∞ from (17) (18) (13), respectively.

In this setting, the inferred asymptotic power law of
U (α)
∞ (ψ2), T (α)

∞ (ψ2), andR∞(ψ2) gives (c.f. Figure 1(a))

U (α)
∞ (ψ2; τ2 = 0) ∼ ψ−1/22 ,

T (α)
∞ (ψ2; τ2 = 0) ∼ ψ−12 ,

R(α)
∞ (ψ2; τ2 = 0) ∼ ψ−22 .

As we can see, all the three quantities converge to 0 in the
large sample limit, which indicates that uniform conver-
gence is able to explain generalization in this setting. yet
uniform convergence bounds do not correctly capture the
convergence rate (in terms of ψ2) of the generalization error.

3.3. Kernel regime with noisy data

In the noisy setting (fix τ2 > 0), the Bayes risk (minimal
possible risk) is τ2. We study the excess risk and the excess
version of uniform convergence bounds by subtracting the
Bayes risk τ2. The inferred asymptotic power law gives (c.f.
Figure 1(b))

U (α)
∞ (ψ2; τ2)− τ2 ∼ ψ1/2

2 ,

T (α)
∞ (ψ2; τ2)− τ2 ∼ 1,

R∞(ψ2; τ2)− τ2 ∼ ψ−12 .

In the presence of label noise, the excess risk R∞ − τ2

vanishes in the large sample limit. In contrast, the classical
uniform convergence U∞ becomes vacuous, whereas the
uniform convergence over interpolators T∞ converges to a
constant, which gives a non-vacuous bound ofR∞.

The decay of the excess risk of minimum norm interpolators
even in the presence of label noise is no longer a surprising
phenomenon in high dimensions (Liang et al., 2019; Ghor-
bani et al., 2019; Bartlett et al., 2020). A simple explanation
of this phenomenon is that the nonlinear part of the activa-
tion function σ has an implicit regularization effect (Mei &
Montanari, 2019).

The divergence of U (α)
∞ in the presence of response noise is

partly due to that A∞(ψ2) blows up linearly in ψ2 (c.f.
Section 3.1). In fact, we can develop a heuristic intu-
ition that U∞(A,ψ2; τ2) ∼ A/ψ

1/2
2 . Then the scaling

U (α)
∞ (ψ2; τ2 > 0) ∼ A∞(ψ2; τ2 > 0)/ψ

1/2
2 ∼ ψ

1/2
2 can

be explained away by the power law of A∞(ψ2; τ2 > 0) ∼
ψ2. In other words, the complexity of the function space
of interpolators grows faster than the sample size n, which
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leads to the failure of uniform convergence in explaining
generalization. This echoes the findings in Nagarajan &
Kolter (2019a).

To illustrate the scaling U∞(A,ψ2) ∼ A/ψ
1/2
2 . We fix

all other parameters (µ1, µ?, τ, F1), and examine the de-
pendence of U∞ on A and ψ2. We choose A = A(ψ2)
according to different power laws A(ψ2) ∼ ψp2 for p =
0, 0.25, 0.5, 0.75, 1. The inferred asymptotic power law
gives U∞(A(ψ2), ψ2) ∼ ψp−0.52 (c.f. Figure 3). This pro-
vides an evidence for the relation U∞(A,ψ2) ∼ A/ψ

1/2
2 .
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Figure 3. Uniform convergence U∞(A(ψ2), ψ2) over the norm
ball in the kernel regime ψ1 → ∞. The size of the norm ball
A = A(ψ2) is chosen according to different power laws as shown
in the legend.

3.4. Finite-width regime

Here we shift attention to the dependence of U , T , and
R on the number of features ψ1. We fix the number of
training samples ψ2, noise level τ2 > 0, and norm level
α > 1 similar as before. Since Uα → Uα∞, T α → T α∞
and R → R∞ as ψ1 → ∞, we look at the dependence of
Uα−Uα∞, T α−T α∞ andRα−Rα∞ with respect to ψ1. The
inferred asymptotic law gives (c.f. Figure 4)

U (α)(ψ1, ψ2)− U (α)
∞ (ψ2) ∼ ψ−11 ,

T (α)(ψ1, ψ2)− T (α)
∞ (ψ2) ∼ ψ−11 ,

R(ψ1, ψ2)−R∞(ψ2) ∼ ψ−11 ,

A(ψ1, ψ2)−A∞(ψ2) ∼ ψ−11 .

Note that large ψ1 should be interpreted as the model be-
ing heavily overparametrized (a large width network). This
asymptotic power law implies that, both uniform conver-
gence bounds correctly predict the decay of the test error
with the increase of the number of features.

Remark on power laws. For the derivation of the power
laws in this section, instead of working with the analytical
formula, we adopt an empirical approach: we perform linear
fits with the inferred slopes, upon the numerical evaluations

(of these expressions defined in Definition 2) in the log-
log scale. However, these linear fits are for the analytical
formulae and do not involve randomness, and thus reliably
indicate the true decay rates.

4. Main theorem
In this section, we state the main theorem that presents the
asymptotic expressions for the uniform convergence bounds.
We will start by stating a few assumptions, which fall into
two categories: Assumption 1, 2, and 3, which specify the
setup for the learning task; Assumption 4 and 5, which are
technical in nature.

4.1. Modeling assumptions

The three assumptions in this subsection specify the target
function, the activation function, and the limiting regime.

Assumption 1 (Linear target function). We assume that
fd ∈ L2(Sd−1(

√
d)) with fd(x) = 〈β(d),x〉, where β(d) ∈

Rd and
lim
d→∞

‖β(d)‖22 = F 2
1 .

We remark here that, if we are satisfied with heuristic for-
mulae instead of rigorous results, we are able to deal with
non-linear target functions, where the additional nonlinear
part is effectively increasing the noise level τ2. This intu-
ition was first developed in (Mei & Montanari, 2019).

Assumption 2 (Activation function). Let σ ∈ C2(R)
with |σ(u)|, |σ′(u)|, |σ′′(u)| ≤ c0e

c1|u| for some constant
c0, c1 <∞. Define

µ0 ≡ E[σ(G)], µ1 ≡ E[Gσ(G)], µ2
? ≡ E[σ(G)2]−µ2

0−µ2
1,

where expectation is with respect to G ∼ N (0, 1). Assume
µ0 = 0, 0 < µ2

1, µ
2
? <∞.

The assumption that µ0 = 0 is not essential and can be
relaxed with a certain amount of additional technical work.

Assumption 3 (Proportional limit). Let N = N(d) and
n = n(d) be sequences indexed by d. We assume that the
following limits exist in (0,∞):

lim
d→∞

N(d)/d = ψ1, lim
d→∞

n(d)/d = ψ2.

4.2. Technical assumptions

We will make some assumptions upon the properties of
some random matrices that appear in the proof. These as-
sumptions are technical and we believe they can be proved
under more natural assumptions. However, proving them
requires substantial technical work, and we defer them to
future work. We note here that these assumptions are often
implicitly required in papers that present intuitions using
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Figure 4. Random feature regression with the number of sample ψ2 = 1.5, activation function σ(x) = max(0, x) − 1/
√
2π, target

function fd(x) = 〈β,x〉 with ‖β‖22 = 1, and noise level τ2 = 0.1. The horizontal axes are the number of features ψ1. The solid
lines are the the algebraic expressions derived in the main theorem (Theorem 1). The dashed lines are the function ψp

1 in the log scale.
Figure 4(a): Comparison of the classical uniform convergence in the norm ball of size level α = 1.5 (Eq. (15), blue curve), the uniform
convergence over interpolators in the same norm ball (Eq. (16), red curve), the risk of minimum norm interpolator (Eq. (9), yellow curve).
Figure 4(b): Minimum norm required to interpolate the training data (Eq. (8)).

heuristic derivations. Instead, we ensure the mathematical
rigor by listing them. See Section 5 for more discussions
upon these assumptions.

We begin by defining some random matrices which are the
key quantities that are used in the proof of our main results.

Definition 1 (Block matrix and log-determinant). LetX =
(x1, . . . ,xn)T ∈ Rn×d and Θ = (θ1, . . . ,θN )T ∈ RN×d,
where xi,θa ∼iid Unif(Sd−1(

√
d)), as mentioned in Sec-

tion 2.1. Define

Z =
1√
d
σ

(
XΘT

√
d

)
, Z1 =

µ1

d
XΘT,

Q =
ΘΘT

d
, H =

XXT

d
, (19)

and for q = (s1, s2, t1, t2, q) ∈ R5, we define

A(q) ≡
[
s1IN + s2Q ZT + pZT

1

Z + pZ1 t1In + t2H

]
.

Finally, we define the log-deteminant ofA(q) by

Gd(ξ; q) ≡ 1

d

N+n∑
i=1

Logλi

(
A(q)− ξIn+N

)
.

Here Log is the complex logarithm with branch cut on the
negative real axis and {λi(A)}i∈[n+N ] is the set of eigen-
values ofA.

The following assumption states that for properly chosen λ,
some specific random matrices are well-conditioned. As we
will see in the next section, this ensures that the dual prob-
lems in Eq. (20) and (21) are bounded with high probability.

Assumption 4 (Invertability). Consider the asymptotic limit
as specified in Assumption 3 the activation function as in
Assumption 2. We assume the following.

• Denote U(λ) = µ2
1Q + (µ2

? − ψ1λ)IN − ψ−12 ZTZ.
There exists ε > 0 and λU = λU (ψ1, ψ2, µ

2
1, µ

2
?), such

that for any fixed λ ∈ (λU ,∞) ≡ ΛU , with high
probability, we have

U(λ) � −εIN .

• Denote T (λ) = Pnull[µ
2
1Q + (µ2

? − ψ1λ)IN ]Pnull

where Pnull = IN − Z†Z. There exists ε > 0
and λT = λT (ψ1, ψ2, µ

2
1, µ

2
?), such that for any fixed

λ ∈ (λT ,∞) ≡ ΛT , with high probability we have

T (λ) � −εPnull,

and Z has full row rank with σmin(Z) ≥ ε (which
requires ψ1 > ψ2).

The following assumption states that the order of limits and
derivatives regarding Gd can be exchanged.
Assumption 5 (Exchangeability of limits). We denote

SU = {(µ2
? − λψ1, µ

2
1, ψ2, 0, 0;ψ1, ψ2) : λ ∈ (λU ,∞)},

ST = {(µ2
? − λψ1, µ

2
1, 0, 0, 0;ψ1, ψ2) : λ ∈ (λT ,∞)},

where λU and λT are given in Assumption 4 and de-
pend on (ψ1, ψ2, µ

2
1, µ

2
?). For any fixed (q;ψ) =

(s1, s2, t1, t2, p;ψ1, ψ2) ∈ SU ∪ ST , in the asymptotic limit
as in Assumption 3, for k = 1, 2, we have

lim
u→0+

lim
d→∞

E[∇kqGd(iu; q)] =

lim
u→0+

∇kq
(

lim
d→∞

E[Gd(iu; q)]
)
,

and∥∥∥∇kqGd(0; q)− lim
u→0+

lim
d→∞

E[∇kqGd(iu; q)]
∥∥∥ = od,P(1),

where od,P(1) stands for convergence to 0 in probability.
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4.3. From constrained forms to Lagrangian forms

Before we give the asymptotics of U and T as defined in
Eq. (4) and (5), we first consider their dual forms which are
more amenable in analysis. These are given by

U(λ,N, n, d) ≡ sup
a

[
R(a)− R̂n(a)− ψ1λ‖a‖22

]
,

(20)

T (λ,N, n, d) ≡ sup
a

inf
µ

[
R(a)− λψ1‖a‖22 (21)

+ 2〈µ,Za− y/
√
d 〉
]
.

The proposition below shows that the strong duality holds
upon the constrained forms and their dual forms.

Proposition 1 (Strong Duality). For any A > 0, we have

U(A,N, n, d) = inf
λ≥0

[
U(λ,N, n, d) + λA

]
.

Moreover, for any A > ψ1‖amin‖22, we have

T (A,N, n, d) = inf
λ≥0

[
T (λ,N, n, d) + λA

]
.

The proof of Proposition 1 is based on a classical result
which states that strongly duality holds for quadratic pro-
grams with single quadratic constraint (Appendix B.1 in
Boyd & Vandenberghe (2004)).

4.4. Expressions of U and T

Proposition 1 transforms our task from computing the
asymptotics of U and T to that of U and T . The latter
is given by the following proposition.

Proposition 2. Let the target function fd satisfy Assump-
tion 1, the activation function σ satisfy Assumption 2, and
(N,n, d) satisfy Assumption 3. In addition, let Assumption
4 and 5 hold. Then for λ ∈ ΛU , with high probability the
maximizer in Eq. (20) can be achieved at a unique point
aU (λ), and we have

U(λ,N, n, d) = U(λ, ψ1, ψ2) + od,P(1),

ψ1‖aU (λ)‖22 = AU (λ, ψ1, ψ2) + od,P(1).

Moreover, for any λ ∈ ΛT , with high probability the maxi-
mizer in Eq. (21) can be achieved at a unique point aT (λ),
and we have

T (λ,N, n, d) = T (λ, ψ1, ψ2) + od,P(1),

ψ1‖aT (λ)‖22 = AT (λ, ψ1, ψ2) + od,P(1).

The functions U , T ,AU ,AT are given in Definition 5 in
Appendix A.

Remark 1. Here we present the heuristic formulae of
U , T ,AU ,AT , and defer their rigorous definition to the
appendix. Define a function g0(q;ψ) by

g0(q;ψ) ≡ extz1,z2

[
log
(
(s2z1 + 1)(t2z2 + 1)

− µ2
1(1 + p)2z1z2

)
− µ2

?z1z2 + s1z1 + t1z2

− ψ1 log(z1/ψ1)− ψ2 log(z2/ψ2)− ψ1 − ψ2

]
,

(22)

where ext stands for setting z1 and z2 to be stationery
(which is a common symbol in statistical physics heuristics).
We then take

U(λ,ψ) = F 2
1 (1− µ2

1γs2 − γp − γt2) + τ2(1− γt1),

where γa ≡ ∂ag0(q;ψ)|q=(µ2
?−λψ1,µ2

1,ψ2,0,0) for the sym-
bol a ∈ {s1, s2, t1, t2, p}, and

T (λ,ψ) = F 2
1 (1− µ2

1νs2 − νp − νt2) + τ2(1− νt1),

where we define νa ≡ ∂ag0(q;ψ)|q=(µ2
?−λψ1,µ2

1,0,0,0)

for symbols a ∈ {s1, s2, t1, t2, p}. Finally AU =
−∂λU , AT = −∂λT . By a further simplification,
we can express these formulae to be rational functions
of (µ2

1, µ
2
?, λ, ψ1, ψ2,m1,m2) where (m1,m2) is the sta-

tionery point of the variational problem in Eq. (22) (c.f.
Remark 2).

We next define U and T to be dual forms of U and T .

Definition 2 (Formula for uniform convergence bounds).
For A ∈ ΓU ≡ {AU (λ, ψ1, ψ2) : λ ∈ ΛU}, define

U(A,ψ1, ψ2) ≡ inf
λ≥0

[
U(λ, ψ1, ψ2) + λA

]
.

For A ∈ ΓT ≡ {AT (λ, ψ1, ψ2) : λ ∈ ΛT }, define

T (A,ψ1, ψ2) ≡ inf
λ≥0

[
T (λ, ψ1, ψ2) + λA

]
.

Finally, we are ready to present the main theorem of this
paper, which states that the uniform convergence bounds
U(A,N, n, d) and T (A,N, n, d) converge to the formula
presented in the definition above.

Theorem 1. Let the same assumptions in Proposition 2
hold. For any A ∈ ΓU , we have

U(A,N, n, d) = U(A,ψ1, ψ2) + od,P(1), (23)

and for A ∈ ΓT we have

T (A,N, n, d) = T (A,ψ1, ψ2) + od,P(1), (24)

where functions U and T are given in Definition 2.

The proof of this theorem is contained in Section E.
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5. Discussions
In this paper, we calculated the uniform convergence bounds
for random features models in the proportional scaling
regime. Our results exhibit a setting in which standard
uniform convergence bound is vacuous while uniform con-
vergence over interpolators gives a non-trivial bound of the
actual generalization error.

Modeling assumptions and technical assumptions. We
made a few assumptions to prove the main result Theorem
1. Some of these assumptions can be relaxed. Indeed, if we
assume a non-linear target function fd instead of a linear
one as in Assumption 1, the non-linear part will behave like
additional noises in the proportional scaling limit. However,
proving this rigorously requires substantial technical work.
Similar issue exists in Mei & Montanari (2019). Moreover,
it is not essential to assume vanishing µ2

0 in Assumption 2.

Assumption 4 and 5 involve some properties of specific
random matrices. We believe these assumptions can be
proved under more natural assumptions on the activation
function σ. However, proving these assumptions requires
developing some sophisticated random matrix theory results,
which could be of independent interest.

Relationship with non-asymptotic results. We hold the
same opinion as in Abbaras et al. (2020): the exact formulae
in the asymptotic limit can provide a complementary view
to the classical theories of generalization. On the one hand,
asymptotic formulae can be used to quantify the tightness of
non-asymptotic bounds; on the other hand, the asymptotic
formulae in many cases are comparable to non-asymptotic
bounds. For example, Lemma 22 in Bartlett & Mendelson
(2003) coupled with the bound of Lipschitz constant of the
square loss in proper regime implies that U∞(A,ψ2) have a
non-asymptotic bound that scales linearly in A and inverse
proportional to ψ1/2

2 (c.f. Proposition 6 of E et al. (2020)).
This coincides with the intuitions in Section 3.3.

Uniform convergence in other settings. A natural ques-
tion is whether the power law derived in Section 3 holds for
models in more general settings. One can perform a sim-
ilar analysis to calculate the uniform convergence bounds
in a few other settings (Montanari et al., 2019; Dhifallah
& Lu, 2020; Hu & Lu, 2020). We believe the power law
may be different, but the qualitative properties of uniform
convergence bounds will share some similar features.

Relationship with Zhou et al. (2020). The separation of
uniform convergence bounds (U and T ) is first pointed out
by Zhou et al. (2020), where the authors worked with the
linear regression model in the “junk features” setting. We
believe random features model are more natural models to il-
lustrate the separation: in Zhou et al. (2020), there are some
unnatural parameters λn, dJ that are hard to make connec-
tions to deep learning models, while the random features
model is closely related to two-layer neural networks.
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