
Learning Optimal Auctions with Correlated Valuations from Samples

A. Assumptions on Degree of Correlation
We introduce a parameterized condition called α-strong
correlation in this paper. Note that Albert et al. (2017a) also
provides a condition in their paper, known as γ-separation,
to measure the degree of correlation between the valuation
types and external signals. However, α-strong correlation
and γ-separation are distinct notions.
Example. Let π1 and π2 be the joint distributions with ma-
trices Γ1 and Γ2 respectively, where Γ1 and Γ2 are defined
as follows:

Γ1 =

[
3/4 1/4
1/4 3/4

]
Γ2 =

[
1/2 0 1/2 0
0 1/2 0 1/2

]
.

We denote by α(·) and γ(·) the degree of correlation mea-
sured by α-strong correlation and γ-separation, respectively.
For these two distributions π1 and π2, α(π1) = α(π2) = 1

2 ,
however, γ(π1) =

√
2

2 < 1 = γ(π2).

B. Missing Proofs in Section 3
We provide proofs of Lemma 3, Lemma 5 and Lemma 6.

B.1. Proof of Lemma 3

Fix any θ ∈ Θ and denote by m(θ) the number of samples
containing type θ. Apply Lemma 1 with X = m(θ), t = 1

2 ,
n = m and p = η ≤ π(θ). By our assumption that

m ≥ 90Kη−3α−2ε−2 max{5 ln(6Kδ−1), 8K}
≥ 8η−1 ln(2Kδ−1),

for the fixed θ, we have

Pr
[
m(θ) <

ηm

2

]
≤ δ

2K
.

For any Ω′ ⊆ Ω, let q = Pr[ω /∈ Ω′|θ] denote the prob-
ability that an ω which does not belong to the subset Ω′

occurs conditioned on that the bidder’s valuation type is θ,
and denote by q̂ the estimation of q with m(θ) samples. If
m(θ) ≥ ηm

2 , apply Lemma 2 with n = m(θ) and t = ζ , we

have that K+1
m(θ) ≤

ζ2

20 , and the following bound∑
ω∈Ω′

|π̂(ω|θ)− π(ω|θ)|+ |q̂ − q| ≤ ζ

fails with probability at most δ
2K .

Therefore, for a fixed θ, the probability that∑
ω∈Ω′

|π̂(ω|θ)− π(ω|θ)| ≤ ζ

fails is upper bounded by δ
2K + (1− δ

2K ) δ
2K ≤

δ
K . Taking

union bound over all θ ∈ Θ, we obtain that this difference
bound holds for all θ ∈ Θ with probability at least 1− δ.

B.2. Proof of Lemma 5

By our assumption that the prior distribution π is α-strongly
correlated, there exists a subset Ω′ of Ω with size K, such
that the submatrix Γ′ defined on it is nonsingular and with
singular values at least α. We would like to show that when
ζ is small enough, the matrix Γ̂′ determined by the same
subset Ω′ is nonsingular as well. Moreover, the singular
values of this Γ̂′ are all greater than 2

3α.

We denote by δΓ′ the difference matrix Γ̂′−Γ′. Since Eq. 5
holds for all θ ∈ Θ by Lemma 3, we have ‖δΓ′‖ ≤

√
Kζ.

With
∥∥(Γ′)−1

∥∥ ≤ α−1 by assumption, we can bound the
norm of the matrix (Γ

′
)−1(δΓ′) by∥∥(Γ′)−1(δΓ′)

∥∥ ≤ ∥∥(Γ′)−1
∥∥ · ‖δΓ′‖ ≤ √Kζ

α
.

With the assumption on the size of m, we have
√
Kζ
α < 1

3 .
By Lemma 4, the matrix I + (Γ′)−1(δΓ′) is invertible, and
its inverse is the series

∑∞
k=0[−(Γ′)−1(δΓ′)]k. Thus we

have∥∥∥[I + (Γ′)−1(δΓ′)
]−1
∥∥∥ ≤ ∞∑

k=0

∥∥(Γ′)−1(δΓ′)
∥∥k < 3

2
.

This implies σK(I + (Γ′)−1(δΓ′)) > 2
3 , where σK(·) rep-

resents the minimum (K-th) singular value.

As a result, the matrix Γ̂′ = Γ′(I + (Γ′)−1(δΓ′)) is non-
singular, and its minimum singular value σK(Γ̂′) is lower
bounded by

σK(Γ̂′) ≥ σK(Γ′)σK(I + (Γ′)−1(δΓ′)) >
2

3
α.

B.3. Proof of Lemma 6

Suppose now we have found Γ̂′ at Step 2 of Algorithm 1.
We claim that the matrix Γ′, whose entries are indexed by
the same way as Γ̂′ but constituted by the true probabilities,
is nonsingular. Otherwise, with the assumption on the size
of m, we have

σK(Γ̂′) ≤ σK(Γ′) + ‖δΓ′‖ ≤
√
Kζ <

α

3
,

which contradicts with how we find Γ̂′ in Algorithm 1.

Denote by v′ the vector (v′(1), v′(2), . . . , v′(K)). Let p
be the vector (Γ′)−1v′, and p̂ be the vector (Γ̂′)−1v′.Then
left-multiply the equation Γ̂′p̂ = v′ by (Γ′)−1 and obtain[

I + (Γ′)−1(δΓ′)
]
p̂ = p.

In the proof of Lemma 5, the norm of
[
I + (Γ′)−1(δΓ′)

]−1

is bounded by 3
2 . Therefore, we have

‖p̂‖ ≤
∥∥∥[I + (Γ′)−1(δΓ′)

]−1
∥∥∥ ‖p‖ ≤ 3

2
‖p‖ .
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By the definition of p̂, we have

Γ′p̂− v′ = Γ′p̂− Γ̂′p̂ = −(δΓ′)p̂.

Hence the norm of Γ′p̂− v′ can be bounded by

‖Γ′p̂− v′‖≤ ‖δΓ′‖ ‖p̂‖ ≤ 3
√
K ‖p‖ ζ

2
≤ 3
√
K ‖v‖ ζ
2α

,

where we use ‖p‖ ≤
∥∥(Γ′)−1

∥∥ ‖v′‖ ≤ ‖v‖ /α.

Therefore, for any θ ∈ Θ,

v′(θ)− 3
√
K ‖v‖ ζ
2α

≤
∑
ω∈Ω′

π(ω|θ)p̂(ω) ≤ v(θ),

which indicates that the auction returned by Algorithm 2 is
interim IR.

C. Missing Proofs in Section 4
In this appendix, we provide the proofs that we omitted from
Section 4, and show the validness of our hard instances.

C.1. Proof of Lemma 7

For an ε that is small enough, the allocation rule follows
directly from interim IR and that the auction extracts revenue
at least 1− ε social surplus as revenue.

As for the payment rule, by the definition of ex-post IC, for
all θ, θ′ ∈ Θ and ω ∈ Ω:

v(θ)− p(θ, ω) ≥ v(θ)− p(θ′, ω).

Hence for all θ, θ′ ∈ Θ and ω ∈ Ω,

p(θ, ω) = p(θ′, ω) = p∗(ω).

C.2. Validity of Hard Instances

It suffices to show that the minimum singular value of the
following matrix Γ



1+
√
Kα

2 0 ... 0 1−
√
Kα

2

0 1+
√
Kα

2 ... 0 1−
√
Kα

2
...
0 0 ... 1+

√
Kα

2
1−
√
Kα

2

0 0 ... 1−
√
Kα

2
1+
√
Kα

2


is at least α.

We factorize Γ into a symmetric matrix Φ and an upper

triangular matrix Λ as below:

Γ =



1+
√
Kα

2 0 ... 0 0

0 1+
√
Kα

2 ... 0 0
...
0 0 ... 1+

√
Kα

2
1−
√
Kα

2

0 0 ... 1−
√
Kα

2
1+
√
Kα

2



·


1 0 ... 0 1−

√
Kα

1+
√
Kα

0 1 ... 0 1−
√
Kα

1+
√
Kα

...
0 0 ... 1 0
0 0 ... 0 1

 , Φ · Λ.

Let β be 1−
√
Kα

1+
√
Kα

(β < 1). From straightforward calcula-
tions, we get

λK(Λ>Λ) =
2

Kβ2 +
√
K2β4 − 4

>
1

K
,

where λK(·) means the minimum (K-th) eigenvalue of the
matrix. This implies σK(Λ) > 1√

K
. Moreover, it is clear

that σK(Φ) =
√
Kα. Therefore, we have

σK(Γ) ≥ σK(Φ)σK(Λ) >
√
Kα · 1√

K
= α.

C.3. Proof of Lemma 10

Suppose M is an auction in M1 whose payment rule is p.
Then M is also in M, so we have

v(K)− 1−
√
Kα

2
p(ωK−1)− 1 +

√
Kα

2
p(ωK) ≤ ε

η
.

(10)
On the other hand, by interim IR of auction M , we have

v(K − 1)− 1 +
√
Kα

2
p(ωK−1)− 1−

√
Kα

2
p(ωK) ≥ 0.

(11)
We can get the following inequality by subtracting Eq. 10
from Eq. 11:

p(ωK)−p(ωK−1) ≥
v(K)− v(K − 1)− ε

η√
Kα

>
1

5
√
Kαη

.

Similar to the steps above, we have ∆M,π1(i) ≥ 0 due to
interim IR and ∆M,π1(K − 1) ≤ ε

1−(K−1)η by definition
of M. Putting these two inequalities together gives

p(ωK−1)− p(ωi) ≥ 0,

which is directly followed by

p(ωK)− p(ωi) ≥ p(ωK)− p(ωK−1) >
1

5
√
Kαη

.
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Adding ε′ · [p(wK)− p(wi)] to the equation ∆M,π1(i) ≥ 0,
we have

v(i)−
(1 +

√
Kα

2
+ ε′

)
p(ωi)−

(1−
√
Kα

2
− ε′

)
p(ωK)

>
125αε√
K
· 1

5
√
Kαη

=
25ε

ηK
,

which indicates that M is not in M2.

C.4. Proof of Lemma 11

Consider the following algorithm for distinguishing the two
distributions π1 and π2. Given an unknown distribution
π ∈ {π1, π2}, run algorithm A with m samples from π.
If A(π) is in M1, the algorithm will return π1; if A(π) is
in M\M1, the algorithm will return π2; otherwise, return
unknown.

By our assumption that the algorithm A takes less than
m < c ·DSKL(π1, π2)−1 samples, it cannot distinguish the
two distributions correctly. That is, either

Pr[A(π1) ∈M1] <
2

3
,

or

Pr[A(π2) ∈M\M1] <
2

3
,

or both holds. Then we have at least one of the following
inequalities:

Pr[A(π1) ∈M\M1]

= Pr[A(π1) ∈M]− Pr[A(π1) ∈M1] >
3

10
,

Pr[A(π2) ∈M\M2] ≥ Pr[A(π2) ∈M1]

= Pr[A(π2) ∈M]− Pr[A(π2) ∈M\M1] >
3

10
.

And the lemma naturally follows.

C.5. Proof of Lemma 12

We first show that when a distribution π is drawn uniformly
at random from H, for any 1 ≤ i ≤ K − 2, we must have
Pr[i ∈ Bπ] ≥ 1

2 .

Note that Lemma 11 holds for any π1 and π2. Enu-
merating over every 1 ≤ i ≤ K − 2 and all possible
S′ ⊆ {1, . . . ,K − 2}\{i}, π1 = πS′ and π2 = πS′∪{i}
together covers all distributions in H. We get that at least
half of the distributions π ∈ H satisfy that i ∈ Bπ .

Then through a simple counting argument, we know that
there must exist some distribution π∗ ∈ H, such that
|Bπ∗ | ≥ K

2 − 1.

C.6. Proof of Lemma 13

Let q = Pr[|B∗A(π∗)| ≥ K
25 ] denote the probability that the

conclusion of the lemma holds.

On the one hand, each i ∈ Bπ∗ is in B∗A(π∗) with probabil-
ity at least 3

10 by definition. The expected size of B∗A(π∗)

is therefore lower bounded by

EA(π∗)

[
|B∗A(π∗)|

]
≥ 3

10
·
(
K

2
− 1

)
=

3(K − 2)

20
≥ K

20
.

On the other hand, we have:

EA(π∗)[|B∗A(π∗)|]

≤K
25
· Pr

[
|B∗A(π∗)| <

K

25

]
+K · Pr

[
|B∗A(π∗)| ≥

K

25

]
≤K

25
(1− q) +K · q ≤ K

25
+K · q .

Putting these two inequalities together gives q ≥ 0.01.

D. Missing Proofs in Section 5
In this appendix, we provide the proofs of Lemma 14 and
Theorem 3 and show the validness of our hard instances in
2-bidder case.

D.1. Proof of Lemma 14

This proof is similar to the proof of Lemma 3.

Fixing any bidder i and any θi ∈ Θ, we denote by m(θi)
the number of samples containing type θi. Apply Lemma
1 with X = m(θi), t = 1

2 , n = m and p = η ≤ π(θi). By
our assumption that

m ≥ 250n2K2η−3α−2ε−2 max{5 ln(12nKδ−1), 8K}
≥ 8η−1 ln(4nKδ−1),

for the fixed θi, we have

Pr
[
m(θi) <

ηm

2

]
≤ δ

4nK
.

For the fixed θi, there are at most θi possible values of
v(θi)x

∗
i (θi,θ−i) − p∗i (θi,θ−i). They are v(θi) − v(1),

v(θi) − v(2), . . . , v(θi) − v(θi − 1) and 0. We divide
the external signal set Θ−i into θi subsets Ω1, Ω2, . . . ,
Ωθi corresponding to the highest valuation by others from
v(1) to no less than v(θi). For each j ∈ {1, 2, . . . , θi}, let
qj = Pr[θ−i ∈ Ωj |θi] denote the conditional probability
that θ−i falls into Ωj .

If m(θi) ≥ ηm
2 , apply Lemma 2 with n = m(θi) and t = ζ ,

we have K
m(θi)

≤ ζ2

20 , and the bound∑
j∈[θi]

|q̂j − qj | ≤ ζ (12)
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fails with probability at most δ
4nK . Therefore, for the fixed

θ, the probability that Eq. 12 fails is upper bounded by

δ

4nK
+ (1− δ

4nK
)
δ

4nK
≤ δ

2nK
.

Taking union bound over all bidder i and all θi ∈ Θ, we ob-
tain that the difference bound Eq. 12 holds with probability
at least 1− δ

2 .

Hence we can bound the mis-estimation by

|ui(θi)− ûi(θi)| ≤ v(K) ·
∑
j∈[θi]

|qj − q̂j | ≤ v(K)ζ,

which holds for all bidder i and all θi ∈ Θ with probability
at least 1− δ

2 .

D.2. Proof of Theorem 3

In Algorithm 3, there are two sources of error which may
lead to the additional payments of the bidders failing to fully
extract the expected utilities. The first is the the inaccurate
estimation of the conditional probabilities π(θ−i|θ) (θ−i ∈
Θ′−i). The revenue loss of bidder i caused by the inaccurate
estimation is denoted as

∆1
i (π) =

∑
θi∈Θ

πi(θi) ·
[
ûi(θi)−

∑
θ−i∈Θ−i

π(θ−i|θi)p̂i(θ−i)
]
.

By Lemma 6, we have that∣∣∣û′i(θi)− ∑
θ−i∈Θ−i

π(θ−i|θi)p̂i(θ−i)
∣∣∣ ≤ 3Kv(K)ζ

2α

holds for all bidder i and all θi ∈ Θ with probability at least
1− δ

2 . As we set

û′i(θi) = max
{

0, ûi(θi)−
5Kv(K)ζ

2α

}
,

we can bound ∆1
i (π) by 4Kv(K)ζ

α .

The other source of revenue loss is the mis-estimation of
the expected utilities ui(θi). We denote the expected mis-
estimation as ∆2

i (π). By Lemma 14, for all bidder i ∈ [n],
∆2
i (π) is bounded by

∆2
i (π) =

∑
θi∈Θ

πi(θi) · [ui(θi)− ûi(θi)] ≤ v(K)ζ

with probability at least 1− δ
2 .

Therefore, when the number of samples m satisfies Eq. 8,
with probability at least 1− δ, for all bidder i ∈ [n] and all
θi ∈ Θ, we have∑

θ−i∈Θ−i

π(θ−i|θi)p̂i(θ−i) ≤ û′i(θi) +
3Kv(K)ζ

2α

≤ûi(θi)−
Kv(K)ζ

α
≤ ui(θi).

This shows the auction returned by Algorithm 3 satisfies
interim IR.

Finally, we show the near-optimal revenue guarantee of the
auction. When the number of samples m satisfies Eq. 8,
with probability at least 1− δ, we have

∆(π)

OPT(π)
≤
∑
i∈[n]

(
∆1
i (π) + ∆2

i (π)
)

v(K)η
≤ 5nKζ

αη
≤ ε.

This completes the proof of Theorem 3.

D.3. Validity of Hard Instances in the 2-Bidder Case

By letting the external signals of bidder 1 be the valuation
types of bidder 2, we rewrite the hard instances we construct
in Section 4 as a family of 2-bidder joint distributions. What
we need to verify is that the smallest marginal probability
of bidder 2 is Ω(η) and the minimum singular value of Γ2

is Ω(α).

The marginal probabilities of any distribution π in the set
H are at least ( 1+

√
Kα

2 )η ≥ η
2 . Then it suffices to show the

minimum singular value of the following matrix

Γ2 =



1 0 ... 0 0 0
0 1 ... 0 0 0
...

...
0 0 ... 1 0 0
0 0 ... 0 γ1 γ2

β β ... β γ3 γ4


is at least α, where β and γi (i = 1, 2, 3, 4) are

β =
(1−

√
Kα)η

1−
√
Kα(1− 2η)

,

γ1 =
(1 +

√
Kα)[1− (K − 1)η]

1 +
√
Kα− η[K

3
2α+ (K − 2)]

,

γ2 =
(1−

√
Kα)η

1 +
√
Kα− η[K

3
2α+ (K − 2)]

,

γ3 =
(1−

√
Kα)[1− (K − 1)η]

1−
√
Kα(1− 2η)

and

γ4 =
(1 +

√
Kα)η

1−
√
Kα(1− 2η)

,

respectively. We factorize Γ2 into a lower triangular matrix
Λ and a matrix Φ as below:

Γ2 =


1 0 ... 0 0 0
0 1 ... 0 0 0
...
0 0 ... 0 1 0
β β ... β 0 1

·


1 0 ... 0 0
0 1 ... 0 0
...
0 0 ... γ1 γ2

0 0 ... γ3 γ4


, Λ · Φ.
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From straightforward calculations, we get

λK(Λ>Λ) =
2

Kβ2 +
√
K2β4 − 4

>
1

Kβ2
,

where λK(·) means the minimum (K-th) eigenvalue of the
matrix. This implies

σK(Λ) >
1√
Kβ

=
1−
√
Kα(1− 2η)√

K(1−
√
Kα)η

≥ 1√
Kη

.

Moreover, we have

λK(Φ>Φ) ≥ (γ1γ4 − γ2γ3)2

γ2
1 + γ2

2 + γ2
3 + γ2

4

,

which is followed by

σK(Φ) ≥ γ1γ4 − γ2γ3

γ1 + γ2 + γ3 + γ4
≥
√
Kαη.

Therefore, we have

σK(Γ2) ≥ σK(Φ)σK(Λ) ≥
√
Kαη · 1√

Kη
= α.


