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Abstract
In single-item auction design, it is well known due
to Crémer and McLean that when bidders’ valu-
ations are drawn from a correlated prior distribu-
tion, the auctioneer can extract full social surplus
as revenue. However, in most real-world applica-
tions, the prior is usually unknown and can only
be learned from historical data. In this work, we
investigate the robustness of the optimal auction
with correlated valuations via sample complexity
analysis. We prove upper and lower bounds on
the number of samples from the unknown prior
required to learn a (1− ε)-approximately optimal
auction. Our results reinforce the common be-
lief that optimal correlated auctions are sensitive
to the distribution parameters and hard to learn
unless the prior distribution is well-behaved.

1. Introduction
As a means to facilitate efficient resource allocation, auc-
tions are a fundamental tool in the modern economy and
play a pivotal role in mechanism design theory. The classi-
cal auction design problems in economics usually assume
a Bayesian setting (Myerson, 1981; Crémer & McLean,
1985), in which participants’ valuations (types) are drawn
from some prior probability distribution that is also common
knowledge known to the auction designer. This prior distri-
bution plays a vital role in the analysis of optimal auctions.

In the case of single-item auction design, Myerson (1981)
gives precise characterization of the revenue-maximizing
auction when bidders’ private types are drawn from inde-
pendent prior distributions. The Myerson auction assumes
that the prior distributions of all bidders are known to the
auctioneer. However, in most applications, the prior dis-
tributions are unknown and can only be learned from past
data. This raises an intriguing question of how much data is
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sufficient and necessary to guarantee near-optimal expected
revenue. Consequently, one active line of research applies
a principled approach of designing auctions as a function
of several samples drawn from an unknown distribution,
with the goal of obtaining high revenue with future reports
that are drawn from the same distribution. The number of
samples required to approximate the optimal auction with
regard to an unknown distribution is known as the sample
complexity of the problem. The sample complexity of the
Myerson auction was first studied by Cole & Roughgarden
(2014). With a long line of follow-up works (Gonczarowski
& Nisan, 2017; Syrgkanis, 2017; Huang et al., 2018), it was
recently settled by Guo et al. (2019) with matching upper
and lower bounds up to a poly-logarithmic factor.

There is another major limitation of the Myerson auction.
The assumption that bidders’ private values are drawn from
independent prior distributions, as Myerson himself points
out, is strong and does not hold in many real-world applica-
tions. For the general case of joint and possibly correlated
prior distributions, a much stronger result than Myerson’s
is possible. More specifically, Crémer & McLean (1985;
1988) show that the auctioneer can extract full social surplus
as revenue if the joint prior distribution satisfies a mild con-
dition. However, this Crémer-McLean result is considered
to be non-applicable in many practical settings, mainly due
to its strong dependence on the common prior assumption.
Therefore, it is important to understand how optimal auction
design is sensitive to the errors in the Bayesian beliefs and
to provide a robustness analysis for the single-item auction
design problem with correlated prior distributions.

1.1. Our Results

In this work, we investigate the sample complexity of
Crémer-McLean optimal auctions for bidders with corre-
lated distributions. Our goal is to understand how many
samples from a prior distribution are sufficient and neces-
sary to learn an auction with revenue at least (1− ε) of the
total social surplus. We provide upper and lower bounds for
this sample complexity problem, which are summarized in
Table 1.

Different from the Myerson auction, whose sample com-
plexity is only a function of the number of bidders n and
ε under the regularity assumption, we find that the sample
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Table 1. The sample complexity bounds of single-bidder Crémer-
McLean auction. (K, α, and η represent the size of the valuation
type set, the degree of correlation among bidders, and the smallest
marginal probability of any valuation type, respectively.)

UPPER BOUND Õ(K2η−3α−2ε−2)

LOWER BOUND Ω(Kη−1α−2ε−2)

complexity of Crémer-McLean also sensitively depends on
several other key characteristics of the joint valuation type
distribution. These factors include: (1) the size of valuation
type set; (2) the degree of correlation among the bidders;
and (3) the smallest marginal probability of any valuation
type. As a direct corollary, our result suggests that when
the level of correlation among the bidders is low, or there is
some valuation with very small marginal probability, learn-
ing a nearly optimal auction becomes impossible without a
lot of samples.

We prove the sample complexity upper bound by presenting
a computationally efficient learning algorithm that achieves
this sample complexity. The algorithm follows a rather
intuitive idea. We first construct from the samples an empir-
ical prior distribution. Then we shift down each valuation
slightly. This step is to ensure interim individual rationality
without losing too much revenue. Finally we simply apply
the Crémer-McLean auction with regard to the empirical
distribution and the down-shifted valuations.

For the lower bound, we follow the framework of Guo et al.
(2019) and construct a family of distributions, such that
any algorithm that achieves (1− ε) of the optimal revenue
must be able to distinguish between them. We construct
these distributions to be very close to each other in terms
of Kullback-Leibler divergence. It therefore requires many
samples to distinguish between them.

1.2. Related Work

Besides Myerson auction, sample complexity has also been
used to analyze the robustness of many other types of auc-
tions, such as t-level auctions (Morgenstern & Roughgarden,
2015), auctions with side information (Devanur et al., 2016),
second-price auctions with anonymous reserves (Jin et al.,
2019), multi-item auctions (Brustle et al., 2020), and non-
truthful auctions (Hartline & Taggart, 2019).

Sample complexity has been considered in the context of
correlated auctions before. Fu et al. (2014) showed that if
there is a finite set of distributions from which the true dis-
tribution can be drawn, then the sample complexity for the
Crémer-McLean auction is of the same order as the number
of possible distributions. Note that their result only applies
to the case of a finite set of distributions, while we do not

have such restrictions. In another work, Albert et al. (2017a)
studied the sample complexity of a Bayesian mechanism
design paradigm that guarantees an additive approximation
to full surplus revenue. The difference of our work from
theirs is that we follow the setting of Crémer & McLean
(1985) and require auctions to satisfy the constraint of ex-
post incentive compatibility instead of the Bayesian one. In
addition, we provide a lower bound of the sample complex-
ity in this paper, which is important for understanding full
surplus extraction.

The robustness of Crémer-McLean auction has also been
studied from other directions. The genericity of full surplus
extraction is discussed in (Heifetz & Neeman, 2006; Barelli,
2009; Chen & Xiong, 2013). Moreover, many works have
assessed how sensitive the Crémer-McLean auction is to the
relaxation of the technical assumptions, such as risk neu-
trality or unlimited liability (Robert, 1991), absence of co-
operation among buyers (Laffont & Martimort, 2000), lack
of competition among sellers (Peters, 2001), and unique-
ness of each valuation’s conditional distribution over the
signals (Albert et al., 2015).

2. Preliminaries
To understand Crémer-McLean auction, we usually consider
the case of a single bidder with an external signal, which
captures the most important aspects of an auction with cor-
related bidders. We show in Section 5 how to generalize the
single-bidder results to the case with multiple bidders.

We assume the bidder has a valuation type θ drawn from a
finite set of discrete types Θ = {1, 2, . . . ,K}withK = |Θ|
denoting the number of possible types. This valuation type
θ is the bidder’s private information. In addition, the bidder
has a valuation function v : Θ → R+ that maps types
to valuations of the indivisible item for sale. The types’
valuations are assumed to be increasing, i.e., v(1) < v(2) <
· · · < v(K). There is an external signal ω drawn from some
discrete signal set Ω, which is correlated with the bidder’s
valuation type. We assume |Ω| ≥ K in this paper. The
external signal ω is known to the auctioneer. The joint
distribution over the valuation types and external signals
is denoted as π(ω, θ), and the marginal distribution over
the bidder’s type θ is denoted as π(θ). This single bidder
and external signal setting has also been adopted in several
other works on correlated auctions (McAfee & Reny, 1992;
Albert et al., 2015; 2016; 2017a;b).

Auctions. In an auction, the bidder with private valuation
type θ reports a (possibly different) type θ′ ∈ Θ, and the
auctioneer receives θ′ and an external signal ω. An auction
M(x, p) consists of two functions x and p, both taking θ′

and ω as input. The allocation function x : Θ×Ω→ {0, 1}
decides whether the bidder wins the item. The payment
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function p : Θ × Ω → R specifies the amount of money
that the bidder needs to pay to the auctioneer. We assume
quasi-linear utility, that is, the bidder’s utility is given by

u(θ, θ′, ω) = v(θ)x(θ′, ω)− p(θ′, ω).

In this work, we are only interested in auctions that satisfy
the following two desirable properties.
Definition 1 (Ex-post Incentive Compatibility). An auction
is ex-post incentive compatible (IC) if for any realization
of the valuation type θ and external signal ω, the bidder’s
utility is maximized when she reports her true type. That is,

v(θ)x(θ, ω)−p(θ, ω) ≥ v(θ)x(θ′, ω)−p(θ′, ω) ∀θ′ ∈ Θ.

We focus on ex-post IC auctions following the setting of
Crémer & McLean (1985) and subsequent works (McAfee
& Reny, 1992; Fu et al., 2014). Note that this property is
relaxed to Bayesian IC in (Albert et al., 2016; 2017a;b). On
the one hand, ex-post IC ensures the bidder never regrets re-
porting her type truthfully, no matter what the realization of
the external signal is. Thus it makes the auction more robust
than that with Bayesian IC. On the other hand, Bayesian IC
auctions can extract full surplus as revenue for a larger set
of distributions.
Definition 2 (Interim Individual Rationality). An auction
is interim individual rational (IR) if for any realization of
the valuation type θ, the bidder’s expected utility is always
non-negative when she reports the truth. That is,

Eω∼π(θ)[v(θ)x(θ, ω)− p(θ, ω)] ≥ 0.

We focus on revenue maximization as our objective. That is,
the goal of the auction designer is to maximize the expected
revenue the auction derives. We denote by REV(M,π) the
expected revenue of auction M when ω, θ is drawn from
joint distribution π. The auction that maximizes REV(·, π)
is called the optimal auction, and its revenue is denoted by
OPT(π).

Crémer-McLean optimal auction. Crémer & McLean
(1985) characterizes the optimal auction for joint distribu-
tions that meet a mild condition:
Definition 3 (Crémer-McLean Condition). For a joint dis-
tribution π, let Γ be the following matrix whose rows are
indexed by the elements of Θ, and columns are indexed by
the elements of Ω:

Γ =


π(ω1|1) π(ω2|1) · · · π(ω|Ω||1)
π(ω1|2) π(ω2|2) · · · π(ω|Ω||2)

...
π(ω1|K) π(ω2|K) · · · π(ω|Ω||K)

. (1)

The distribution π is said to satisfy Crémer-McLean condi-
tion if Γ has rank K.

Under Crémer-McLean condition, there always exists p =
(p(ω))ω∈Ω such that for each θ ∈ Θ,

∑
ω∈Ω π(ω|θ)p(ω) =

v(θ). The Crémer-McLean optimal auction always allo-
cates the item to the bidder, and charges her a payment
of p(ω). This auction can extract the full social surplus∑
θ∈Θ π(θ)v(θ) as revenue, and satisfies ex-post IC and

interim IR.

The Crémer-McLean condition is sufficient for the exis-
tence of an ex-post IC full surplus extraction auction. For
Bayesian IC auctions, the condition for full surplus extrac-
tion can be further relaxed to what is known as the Albert-
Conitzer-Lopomo condition (2016).

Sample complexity. Assume that the joint distribution π
is unknown to us (the auctioneer), and we can access π only
in the form of i.i.d. samples drawn from it. The sample
complexity is defined as the asymptotically smallest number
m such that given m i.i.d. samples from a joint distribution
π, there exists an algorithm that can learn an auction M
achieving revenue REV(M,π) ≥ (1− ε)OPT(π) with high
probability.

Degree of correlation. Our upper and lower bounds on
the sample complexity both depend on the degree of corre-
lation between the valuation types and external signals. To
capture this notion quantitatively, we introduce the follow-
ing parameterized condition.
Definition 4 (α-strongly correlated distribution). The dis-
tribution π is said to be α-strongly correlated if the singular
values of any K ×K nonsingular submatrix of Γ defined in
Eq.1 are at least α.

α-strong correlation interpolates between independence and
full-correlation (i.e., determinism). On one end, if the ex-
ternal signal is independent of the bidder’s type, then any
K×K submatrix has singular value 0, and thus we consider
the joint distribution π as 0-strongly correlated. On the other
end, if in each row of Γ, one entry is 1 and the others are 0,
which means θ can decide ω, then the singular values of any
K ×K nonsingular submatrix of Γ are 1, which means π is
1-strongly correlated. In the following sections, we assume
the prior distribution is α-strongly correlated (0 < α ≤ 1).

Note that Albert et al. (2017a) also provides a parameterized
condition, known as γ-separation, to measure the degree of
correlation. However, α-strong correlation and γ-separation
are distinct notions (see an example in the Supplementary
Material for their distinction).

Regularity assumption. We take allowable distributions
in this paper to be the ones that satisfy π(θ) ≥ η for all
θ ∈ Θ, where η is a constant in (0, 1

K ].

This regularity assumption is necessary because otherwise,
if the marginal probabilities are allowed to be arbitrarily
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close to zero, a nearly full surplus extraction is impossible.
Here we give an informal example. For any algorithm that
uses m (m ≥ 2) samples, consider a type θ with marginal
probability π(θ) = 1

m . In addition, type θ has a very high
valuation such that π(θ)v(θ) accounts for a constant pro-
portion in social surplus. Note that with probability at least
1
4 , no sample of type θ will appear in the m samples. Due
to the lack of information on type θ, the algorithm cannot
return a nearly full surplus extraction with high probability.

3. The Upper Bound
We present in this section an algorithm and its analysis that
achieve the following sample complexity upper bound. The
algorithm works for all α-strongly correlated distributions
whose marginal probabilities are at least η.

Theorem 1. For any 0 < ε < 1 and any α-strongly cor-
related distribution π whose marginal probabilities are at
least η, Algorithm 2 returns an auction with expected rev-
enue at least (1− ε) of the full surplus with probability at
least 1− δ, if the number of samples m satisfies

m ≥ 90 ·Kη−3α−2ε−2 ·max{5 ln(6Kδ−1), 8K}. (2)

Algorithm 2 is not complicated. We first construct from
the samples an empirical prior distribution π̂. Then we
decrease each valuation by a small value. This step is to
ensure interim IR without losing too much revenue. Finally,
we apply the Crémer-McLean auction with regard to the
empirical distribution and the down-shifted valuations. We
call Algorithm 2 the empirical Crémer-McLean auction1.

The remaining of this section is dedicated to the proof of
Theorem 1. Intuitively, we will show the following in order:

1. with enough samples, the empirical matrix Γ̂′ defined
in Eq. 3 will be very close to Γ′, where Γ′ represents
the matrix whose entries are indexed by the same way
as Γ̂′ but constituted by the true probabilities;

2. the feasibility of finding a subset Ω′ at Step 2 of Algo-
rithm 1;

3. with high probability, Algorithm 2 returns an auction
that is ex-post IC and interim IR and can generate
nearly optimal revenue.

3.1. Algorithm Analysis

Our algorithm relies on constructing from the samples an
empirical matrix Γ̂′ and a shift-down valuation v′, which

1Formally speaking, this algorithm is a slight modification of
the empirical Crémer-McLean auction because of the down-shifted
valuations. In this work, we will still call it the empirical Crémer-
McLean auction for notation convenience.

Algorithm 1 Learning the bidder’s payment in an empirical
Crémer-McLean auction

Input: the empirical joint distribution π̂ and the down-
shifted valuations v′(θ)
Output: the bidder’s payment function p̂(ω)
Step 1. Obtain the empirical matrix Γ̂ defined in Eq. 1 by
letting π̂(ω|θ) = π̂(ω, θ)/

∑
ω̄∈Ω π̂(ω̄, θ).

Step 2. Find a subset Ω′ of Ω with size K, such that the
minimum singular value of the K ×K matrix Γ̂′

π̂(ω′1|1) π̂(ω′2|1) · · · π̂(ω′K |1)
π̂(ω′1|2) π̂(ω′2|2) · · · π̂(ω′K |2)

...
π̂(ω′1|K) π̂(ω′2|K) · · · π̂(ω′K |K)

 (3)

is greater than 2α/3.
Step 3. Solve the following system of equations for p̂(ω)
(ω ∈ Ω′) ∑

ω∈Ω′

π̂(ω|θ)p̂(ω) = v′(θ) ∀θ ∈ Θ (4)

and let p̂(ω) = 0 for all ω not in Ω′.
Step 4. Return the bidder’s payment function p̂(ω).

Algorithm 2 Empirical Crémer-McLean Auction
Input: m i.i.d. samples from the distribution π
Output: an auction that decides the allocation and pay-
ment
Step 1. Let π̂ be the empirical joint distribution, i.e., the
uniform distribution over the samples.
Step 2. Let

v′(θ) = max
{

0, v(θ)− 3
√
K ‖v‖ ζ
2α

}
,

where ‖v‖ is the Euclidean norm of the vector v =
(v(1), v(2), . . . , v(K)) and

ζ =

√
10

ηm
max

{√
5 ln(6Kδ−1),

√
8K
}
.

Step 3. Run Algorithm 1 with the empirical distribution
π and down-shifted valuations v′(θ) as input to get the
payment function p̂(ω).
Step 4. Return an auction that always allocates the item
to the bidder and charges her p̂(ω).

are close to the true matrix Γ′ and true valuation v. To
upper bound their differences, we first need the following
two concentration inequalities.

Lemma 1 (e.g., see (Mitzenmacher & Upfal, 2017)). Let
X be a binomial (n, p) random variable. For all t ∈ (0, 1),
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we have

Pr[X < (1− t)np] ≤ exp

(
−npt

2

2

)
.

Lemma 2 (e.g., see (Devroye et al., 1983)). Let
(X1, · · · , Xk) be a multinomial (n, p1, · · · , pk) random
vector. For all t ∈ (0, 1) and all k satisfying k

n ≤
t2

20 ,
we have

Pr

[
k∑
i=1

|Xi − E(Xi)| > nt

]
≤ 3 exp

(
−nt

2

25

)
.

The above concentration inequalities allows us to formalize
the intuition that Γ̂′ is close to Γ′ with the following lemma.
Lemma 3. If the number of samples m satisfies Eq. 2, with
probability at least 1− δ, for any subset Ω′ of Ω with size
K and for all θ ∈ Θ, we have∑

ω∈Ω′

|π̂(ω|θ)− π(ω|θ)| ≤ ζ. (5)

The proof of Lemma 3, together with other omitted proofs,
can be found in the Supplementary Material.

Next we analyze the auction returned by Algorithm 2 under
the assumption that the conclusion of Lemma 3 holds.

Feasibility of Algorithm 1. We show that at Step 2 in
Algorithm 1, we can find such a feasible subset Ω′. Equiva-
lently, we only need to show that there exists a submatrix Γ̂′

of the empirical matrix Γ̂, whose singular values are greater
than 2α

3 . We will rely on Neumann series to prove this
claim.
Lemma 4 (Neumann Series e.g., see (Schechter, 1996)).
Suppose A is an n × n matrix. If ‖A‖ < 1, then I − A is
invertible and its inverse is the series

(I −A)−1 =

∞∑
k=0

Ak,

where I represents the identity matrix, and ‖·‖ stands for
the operator norm.
Lemma 5. At Step 2 of Algorithm 1, there exists a subset
Ω′ of Ω with size K, such that the minimum singular value
of the submatrix Γ̂′ defined in Eq. 3 is greater than 2

3α.

IC and IR of the auction. The ex-post IC of the auction
returned by Algorithm 2 is rather straightforward. In fact,
no matter what type the bidder reports, she will always get
the item, and the payment only depends on the external
signal but not on this bidder’s reported type. Thus ex-post
IC always holds deterministically for the returned auction.

To show the returned auction is interim IR, it suffices to show
that for any type θ ∈ Θ, the bidder’s expected payment is
no greater than her valuation.

Lemma 6. In the auction returned by Algorithm 2, for all
θ ∈ Θ, the expected payment of the bidder with type θ
satisfies

v′(θ)− 3
√
K ‖v‖ ζ
2α

≤
∑
ω∈Ω′

π(ω|θ)p̂(ω) ≤ v(θ).

Near-optimal revenue. Finally we show the near-optimal
revenue guarantee of our auction. Lemma 6 also shows that
the expected revenue loss ∆(π) of the auction returned
by Algorithm 2 is upper bounded by 3

√
K‖v‖ζ
α . Therefore,

when m satisfies Eq. 2, with probability at least 1 − δ we
have

∆(π)

OPT(π)
≤ ∆(π)

η ·
∑
θ∈Θ v(θ)

≤ 3
√
Kζ

αη
· ‖v‖∑

θ∈Θ v(θ)
≤ ε.

This completes the proof of Theorem 1.

Computational complexity. Algorithm 2 can be easily
implemented in time polynomial in the number of bidder
types, external signals and i.i.d. samples.

It is clear that in Algorithm 2, Step 1, 2 and 4 each takes
polynomial (linear) time. For Algorithm 1, at Step 2 we
can initialize Ω′ to be empty, then add one new ω column
at a time, and check whether the first |Ω| singular values of
{π̂(ω|·) : ω ∈ Ω′} are greater than 2α

3 via singular value de-
composition after each addition. We repeatedly add columns
until the size of Ω′ reaches K. These operations can be im-
plemented in O(K3|Ω|) time. At Step 3 of Algorithm 1, it
also takes at most O(K3) time to solve the linear system
(e.g., see (Barrodale & Stuart, 1981)) and compute p̂(ω).

4. The Lower Bound
In this section, we discuss the sample complexity lower
bound for any near-optimal auction. Our main result is a
lower bound that matches the upper bound in previous sec-
tion up to a factor of η−2 max{ln(Kδ−1),K}. We assume
K ≥ 3, α < 1√

K
, and ε < ηK

300 in the below theorem and its
analysis.

Theorem 2. Suppose an algorithmA, givenm independent
samples from an unknown α-strongly correlated distribution
with marginal probabilities at least η, returns an auction
with expected revenue at least (1− ε) of the social surplus
with probability at least 0.99. Then m must be at least
Ω(Kη−1α−2ε−2).

Remark. Albert et al. (2017b) proves that if the bidder’s
type and the external signal are approximately independent,
no algorithm can return a Bayesian IC and IR auction that
guarantees (1 − ε) of the optimal revenue with any finite
number of samples. The argument is proven for the more
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general Bayesian auctions, and therefore holds for the ex-
post case as well. For ex-post IC auctions, this result can be
directly implied by Theorem 2 when α is infinitely small.

Before further analysis, we first provide some discussion
on the format of a near-optimal auction and on distribution
classification, which will be useful for our proof of the lower
bound theorem.

Format of any near-optimal auction. We would like to
first clarify what nearly optimal auctions are like. The fol-
lowing lemma indicates that if the revenue of an auction is
very close to the optimal one, then the auction must take the
same form as Crémer-McLean auction.

Lemma 7. For any given (π, v,Ω) and a small enough ε,
suppose M(x, p) is an ex-post IC and interim IR auction
which can extract at least (1 − ε) of the social surplus as
revenue. Then (1) the allocation rule x must always allocate
the item to the single bidder, and (2) the payment rule p is a
function which only depends on the external signals.

In the following analysis, without loss of generality, we only
consider the auctions taking the form in Lemma 7.

Distribution classification. We say a classification al-
gorithm A : Sm → {ρ,ϕ} distinguishes ρ and ϕ
correctly with m samples, if for any π ∈ {ρ,ϕ},
A(s1, s2, . . . , sm) = π with probability at least 2

3 , where
s1, s2, . . . , sm are i.i.d. samples from π. We use the follow-
ing connection between Kullback-Leibler (KL) divergence
of two distributions and the number of samples needed to
distinguish them.

Lemma 8 (e.g., see (Huang et al., 2018)). Suppose there
is a classification algorithm that distinguishes ρ and ϕ
correctly with m samples. Then, the number of samples m
is at least:

Ω(DSKL(ρ,ϕ)−1),

where DSKL(ρ,ϕ) means the symmetric version of KL di-
vergence between ρ and ϕ, which is defined as the sum of
DKL(ρ‖ϕ) and DKL(ϕ‖ρ).

4.1. Construction of Hard Instances

To prove the lower bound theorem, we will construct a
class H of distributions. Our plan is to show that any algo-
rithm that has a good enough revenue approximation on all
distributions in H must take a lot of samples. Then what
properties do we need from distributions in H? Intuitively,
on the one hand, we would like these distributions to be very
similar, so that it would take many samples to distinguish
between them. On the other hand, they are supposed to
be different in the sense that they cannot share an auction
that gives an approximately optimal expected revenue with
high probability for all of them. This idea has also been

used in several other works on sample complexity lower
bounds (Cole & Roughgarden, 2014; Huang et al., 2018;
Guo et al., 2019).

Our construction is presented as follows. Let

H = {πS : S ⊆ {1, . . . ,K − 2}} ,

where πS is defined as

for i = 1, 2, . . . ,K − 2,

πS(ωi, i) =



(
1 +
√
Kα

2

)
η i /∈ S(

1 +
√
Kα

2
+ ε′

)
η i ∈ S

πS(ωK , i) =



(
1−
√
Kα

2

)
η i /∈ S(

1−
√
Kα

2
− ε′

)
η i ∈ S

πS(ωK−1,K − 1) =
(1 +

√
Kα)[1− (K − 1)η]

2
,

πS(ωK ,K − 1) =
(1−

√
Kα)[1− (K − 1)η]

2
,

πS(ωK−1,K) =
(1−

√
Kα)η

2
,

πS(ωK ,K) =
(1 +

√
Kα)η

2
.

in which we set ε′ = 125αε√
K

.

In other words, H contains 2K−2 distributions. The matrix
Γ for each distribution πS ∈ H is like

1+
√
Kα

2 (+ε′) 0 ... 0 1−
√
Kα

2 (−ε′)
0 1+

√
Kα

2 (+ε′) ... 0 1−
√
Kα

2 (−ε′)
...
0 0 ... 1+

√
Kα

2
1−
√
Kα

2

0 0 ... 1−
√
Kα

2
1+
√
Kα

2

.

The minimum singular value of the matrix above is at least
α (see the Supplementary Material for reason). Hence by
definition, the distributions in H are all α-strongly corre-
lated. Besides, the marginal probabilities are at least η for
all π ∈ H.

Next we set the valuation of each type. In order to make the
learning of optimal auction for this family of distributions
as difficult as possible, we set the valuation of type K to be
much larger than that of other types. Specifically, we set

v(i) =
25ε+ o(ε)

η(K − 2)
for i = 1, 2, . . . ,K − 2,

v(K − 1) =
ε

1− (K − 1)η
+ v(K − 2),

v(K) =
1−

∑
i∈[K−1] π(i)v(i)

η
.

(6)
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Then for all π ∈ H, the revenue of optimal auction is
OPT(π) =

∑
θ∈Θ π(θ)v(θ) = 1.

4.2. Analysis of Hard Instances

Fix any 1 ≤ i ≤ K − 2 and any S′ ⊆ {1, . . . ,K − 2}\{i},
let π1 = πS′ and π2 = πS′∪{i} be a pair of distributions in
H that are identical except for π(·|i). That is, we have

π1(ωi, i) = (1+
√
Kα)η
2 π1(ωK , i) = (1−

√
Kα)η
2

π2(ωi, i) = (1+
√
Kα

2 + ε′)η

π2(ωK , i) = (1−
√
Kα

2 − ε′)η.

In this part, our aim is to prove that to construct an auction
that generates an approximately optimal expected revenue
w.r.t. an unknown distribution in H, the algorithm must
be able to distinguish between π1 and π2. The sample
complexity of learning near-optimal auction thus boil down
to that of distribution classification, for which we have rather
mature tools and results.

We formalize our goal with the following lemma.

Lemma 9. Suppose an algorithm takes m samples from an
arbitrary distribution π ∈ H and returns, with probability
at least 0.99, an auction whose expected revenue is at least
(1− ε)OPT(π). Then the number of samples m is at least
Ω(DSKL(π1, π2)−1).

Proof sketch. To prove this lemma, we first suppose by con-
tradiction that the algorithm, denoted as A, takes m <
c ·DSKL(π1, π2)−1 samples from an unknown distribution
π, for some sufficiently small constant c, and output an auc-
tion A(π). That means this algorithm cannot distinguish π1

and π2. We will then show that there exists a distribution in
H such that the expected revenue loss due to the mistakes
made on distribution classification is at least ε. In particular,
we show the following in order.

• For each 1 ≤ i ≤ K − 2, when the bidder’s type is
i, there is a constant fraction of the distributions in H

with which the expected revenue loss of auction A(π)
is Ω(ε/(ηK)).

• By a counting argument, we can find some distribution
π∗ in H, such that there are Ω(K) bidder’s types with
which auction A(π∗) suffers from an expected revenue
loss of Ω(ε/(ηK)).

• The expected revenue loss of auction A(π∗) with dis-
tribution π∗ is then∑

θ∈Θ

π∗(θ) · (revenue loss when bidder’s type is θ)

≥η · Ω(K) · Ω
(

ε

ηK

)
= Ω(ε).

• Finally we convert the above claim on the expected
revenue loss to a with-high-probability claim. That is,
we prove that with constant probability (at least 0.01),
the expected revenue loss of auction A(π∗) will still
be Ω(ε).

In the remaining of this section, we formalize this proof.
Let

∆M,π(θ) = v(θ)−
∑
ω∈Ω

π(ω|θ)p(ω)

denote the expected revenue loss of auction M conditioned
on that the bidder’s type is θ. We define M as the following
set of auctions:

M =
{
M : For all π ∈ H, ∆M,π(K) ≤ ε

η
and

∆M,π(K − 1) ≤ ε

1− (K − 1)η

}
.

The auction returned by A, denoted as A(π), belongs to M

with probability at least 0.99, as a (1− ε) revenue approx-
imation must be in M. Next, we define two subsets of M:
for j ∈ {1, 2},

Mj =
{
M ∈M : ∆M,πj (i) ≤

25ε

ηK
and

M is interim IR for πj
}
.

Actually these two subsets of M have no intersection, which
means that there is no auction that can extract almost full
surplus for both π1 and π2 when the bidder has type i.

Lemma 10. We have M1 ∩M2 = ∅.

With Lemma 10, we can now formalize the intuition that A
takes too few samples to make different decisions on π1 and
π2, and therefore must have a large revenue loss on at least
one of them.

Lemma 11. For either j = 1 or j = 2 (or both), we have

Pr
A(πj)

[
∆A(πj),πj (i) >

25ε

ηK

]
>

3

10
. (7)

Next we argue that there must exist many bidder types
with which the auction will suffer a large revenue loss.
For any distribution π ∈ H, let Bπ denote the set of
i ∈ {1, 2, . . . ,K − 2} for which algorithm A performs
badly in the sense that the auction A(π) suffers from an
expected revenue loss more than 25ε

ηK , conditioned on that
the bidder’s valuation type is i, with probability at least 3

10 :

Bπ =

{
i : Pr

A(π)

[
∆A(π),π(i) >

25ε

ηK

]
>

3

10

}
.
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Lemma 12. There exists π∗ ∈ H such that:

|Bπ∗ | ≥
K

2
− 1.

In the rest of the analysis, we will focus on the distribution
π∗ ∈ H for which the conclusion of the above lemma holds.
The above lemma is already good enough for proving a
weaker claim that the expected revenue loss is Ω(ε). How-
ever, Lemma 9 claims a stronger statement that the Ω(ε)
expected revenue loss must happen with a constant probabil-
ity. To prove this, we need to further discuss the number of
i ∈ {1, 2, . . . ,K − 2} for which the realized auction A(π∗)
performs poorly.

For any realization of the auctionA(π∗), let B∗A(π∗) denote
the set of i ∈ {1, 2, . . . ,K − 2} for which the returned
auction A(π∗) performs poorly in the sense that it suffers
from a revenue loss more than 25ε

ηK conditioned on that the
bidder’s valuation type is i:

B∗A(π∗) =

{
i : ∆A(π∗),π∗(i) >

25ε

ηK

}
.

Lemma 13. For the distribution π∗ ∈ H in Lemma 12, with
probability at least 0.01, we have:∣∣B∗A(π∗)

∣∣ ≥ K

25
.

Finally, we complete the proof of the Lemma 9 by arguing
that the algorithm A must suffer from revenue loss at least ε
on the distribution π∗. More specifically, when the conclu-
sion of Lemma 13 is true, which happens with probability at
least 0.01, we have the following sequence of inequalities:

OPT(π∗)− REV(A(π∗), π∗) =
∑
θ∈Θ

∆A(π∗),π∗(θ) · π(θ)

≥ η
∑

i∈B∗
A(π∗)

∆A(π∗),π∗(i) >
25ε

K
· |B∗A(π∗)| ≥ ε.

And with Lemma 9 we can now prove Theorem 2.

Proof of Theorem 2. With Lemma 9, Theorem 2 follows
from straightforward calculations. We can upper bound
DSKL(π1, π2) (for any choice of i and S′ ⊆ {1, . . . ,K −
2}/{i}) by

DSKL(π1, π2)

=η ·

(∑
ω∈Ω

π1(ω|i) ln
π1(ω|i)
π2(ω|i)

+
∑
ω∈Ω

π2(ω|i) ln
π2(ω|i)
π1(ω|i)

)
=O(K−1ηα2ε2),

which is exactly the inverse of the lower bound we claim in
the theorem.

5. Generalization to the Multi-Bidder Case
In this section, we show how our sample complexity results
can be generalized to the multi-bidder case.

Let there be n bidders. Without loss of generality, we as-
sume that all bidders share a common valuation type set
Θ = {1, 2, . . . ,K}. Otherwise, we can take Θ as the union
of each bidder’s type set. For each bidder i ∈ [n], let the
external signal of the bidder be the joint types of other bid-
ders θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn). We denote by αi
the degree of correlation between bidder i and other bidders
and let α = mini∈[n] αi.

5.1. Crémer-McLean Auction in n-Bidder Case

Consider the following Vickrey auction (x∗, p∗). For each
bidder i, if she has the highest valuation among all bidders,
x∗i (θ) = 1 and p∗i (θ) is the second-highest valuation. Oth-
erwise, x∗i (θ) and p∗i (θ) are both zero. We denote by ui(θi)
the expected utility of bidder i in a Vickrey auction. That is,

ui(θi)=
∑

θ−i∈Θ−i

π(θ−i|θi) [v(θi)x
∗
i (θi,θ−i)− p∗i (θi,θ−i)] .

For each bidder i, under the Crémer-McLean condition,
there exists a vector pi = (pi(θ−i))θ−i∈Θ−i

such that for
each θi ∈ Θ,∑

θ−i∈Θ−i

π(θ−i|θi)pi(θ−i) = ui(θi).

Then Crémer-McLean auction (x∗, pCM) allocates the item
to the bidder with highest valuation and charges each bidder
a payment of pCM

i (θi,θ−i) = p∗i (θi,θ−i) + pi(θ−i).

In short, Crémer-McLean auction in the multi-bidder case
is equivalent to a Vickrey auction with additional payments.
The additional payments fully extract the bidders’ expected
utilities in a Vickrey auction.

5.2. The Upper Bound

We present Algorithm 3 to learn a near-optimal n-bidder
Crémer-McLean auction. The algorithm achieves the sam-
ple complexity bound as shown below.

Theorem 3. For any 0 < ε < 1 and any α-strongly cor-
related distribution π with marginal probabilities at least
η, Algorithm 3 returns an n-bidder auction with expected
revenue at least (1− ε) of the full surplus with probability
at least 1− δ, if the number of samples m satisfies

m ≥ 250n2K2η−3α−2ε−2 max{5 ln(12nKδ−1), 8K}.
(8)

The main idea of Algorithm 3 is to reduce the problem of
learning an n-bidder Crémer-McLean auction to n problem
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Algorithm 3 Multi-Bidder Empirical Crémer-McLean Auc-
tion

Input: m i.i.d. samples from the joint distribution π
Output: an auction that decides the allocation and pay-
ment
Step 1. Let π̂ be the empirical joint distribution.
Step 2. For each bidder i and every θi ∈ Θ, let

ûi(θi)=
∑

θ−i∈Ωi

π̂(θ−i|θi)[v(θi)x
∗
i (θi,θ−i)−p∗i (θi,θ−i)] ,

where π̂(θ−i|θ) represents π̂(θ)/
∑
θ−i∈Θ−i

π̂(θ−i, θ).
Step 3. Let

û′i(θi) = max

{
0, ûi(θi)−

5Kv(K)ζ

2α

}
, (9)

where ‖ûi‖ is the Euclidean norm of the vector ûi =
(ûi(1), ûi(2), . . . , ûi(K)) and

ζ =

√
10

ηm
max

{√
5 ln(12nKδ−1),

√
8K
}
.

Step 4. For each bidder i, run Algorithm 1 with the
empirical distribution π̂ and deflated expected utilities
û′i(θi) as input to get the addition payment p̂i(θ−i).
Step 5. Run a Vicrey auction and charge each bidder an
additional payment of p̂i(θ−i).

instances of learning bidder i’s additional payment pi(θ−i).
We apply Algorithm 1 to learn pi(θ−i) of each bidder i by
simply replacing the down-shifted valuation v′(θ) with the
deflated expected utility û′i(θi).

In Algorithm 3, there are two sources of errors which may
lead to the additional payments of the bidders failing to
fully extract the expected utilities. The first is the inaccurate
estimation of the conditional probabilities π(θ−i|θ) (θ−i ∈
Θ′−i) on the left-hand side of Eq. 4, which we have analyzed
in Section 3. The second source of revenue loss comes from
the inaccurate estimation of the expected utilities ui(θi) on
the right-hand side of Eq. 4. We bound this error with the
following lemma.

Lemma 14. If the number of samples m satisfies Eq. 8, we
have that

|ui(θi)− ûi(θi)| ≤ v(K)ζ

holds for all bidder i and all θi ∈ Θ with probability at
least 1− δ

2 .

As the errors from both sources are bounded, we can prove
interim IR and (1−ε) approximation of the auction returned
by Algorithm 3, and thus complete the proof of Theorem 3.

Looking at Theorem 3, what might be surprising is that
the sample complexity of Crémer-McLean auction does not

depend on the joint type space of size Kn. This is because
it is possible to learn a near-optimal auction even when we
do not know each joint type’s probability precisely. Take the
estimation of ui(θi) for an example. For bidder i with type
θi, there are only θi possible values of v(θi)x

∗
i (θi,θ−i)−

p∗i (θi,θ−i). We divide the external signal set Θ−i into θi
subsets Ω1, . . . , Ωθi corresponding to the highest valuation
by others from v(1) to no less than v(θi). To estimate ui(θi),
we only need to learn at most K conditional probabilities
Pr[θ−i ∈ Ωj | θi] (j ∈ {1, 2, . . . , θi}), which takes much
fewer samples than what is needed for estimating all of
|Θ−i| conditional probabilities π(θ−i|θi) precisely.

On the other hand, the computational complexity of Algo-
rithm 3 is polynomial in the size of the joint type space Kn.
Note that this is inevitable due to the exponentially large
representation of the joint distribution.

5.3. The Lower Bound

Our hard instances constructed in Section 4 can be easily
rewritten as a family of 2-bidder joint distributions by letting
the external signal of a bidder be the other bidder’s type. We
set the valuation function of bidder 1 to be the same as in
Eq. 6 and let the valuations of bidder 2’s types be o(ε). The
smallest marginal probability of any distribution in the set
H is Ω(η), and the singular values of the matrices Γ1 and Γ2

defined in Eq. 1 are at least α (see the Supplementary Mate-
rial for reason). Then our lower bound of Ω(Kη−1α−2ε−2)
and its analysis in Section 4 naturally hold.

6. Conclusion
In this work we investigate the sample complexity of the
optimal Crémer-McLean auction with correlated prior distri-
butions. We present upper and lower bounds on the number
of samples required to learn a auction that can extract a
near-optimal revenue. These results provide us new insights
on what could be the key factors of the prior distributions
that decide the learnability of a near-optimal auction. In
particular, it suggests that learning a near-optimal auction
with correlated prior distributions is hard when there are
many valuation types, or the level of correlation is low, or
there is some valuation type with very small marginal prob-
ability. Conceptually, these results provide new evidence
to the common belief that the Crémer-McLean auction is
usually “too good to be true”.

There are many directions in which this work could be ex-
tended. The first question is to close the gap between our
upper and lower bounds. In addition, it is also interesting to
consider the sample complexity of other families of auctions
with correlated distributions, such as the lookahead auc-
tion (Ronen, 2001) and the correlated-robust auction (Bei
et al., 2019).
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