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Abstract
As its width tends to infinity, a deep neural
network’s behavior under gradient descent can
become simplified and predictable (e.g. given
by the Neural Tangent Kernel (NTK)), if it
is parametrized appropriately (e.g. the NTK
parametrization). However, we show that the stan-
dard and NTK parametrizations of a neural net-
work do not admit infinite-width limits that can
learn features, which is crucial for pretraining and
transfer learning such as with BERT. We propose
simple modifications to the standard parametriza-
tion to allow for feature learning in the limit. Us-
ing the Tensor Programs technique, we derive
explicit formulas for such limits. On Word2Vec
and few-shot learning on Omniglot via MAML,
two canonical tasks that rely crucially on feature
learning, we compute these limits exactly. We
find that they outperform both NTK baselines and
finite-width networks, with the latter approaching
the infinite-width feature learning performance as
width increases. See arXiv:2011.14522 for the
full version of this paper.

1. Introduction
The study of infinite-width limits of neural networks, in
particular the Neural Tangent Kernel (NTK), has recently
solved many longstanding open problems on the optimiza-
tion and generalization of overparametrized neural networks
(Jacot et al., 2018). However, in the NTK limit, (last
layer) features learned during pretraining are essentially
the same as those from random initialization (Corollary 3.8
and Theorem N.12); this is verified empirically in Word2Vec
in Fig. 1. As feature learning lies at the core of deep learn-
ing’s far-ranging impact so far (Brown et al., 2020b; Devlin
et al., 2019; He et al., 2016) (e.g. without feature learning,
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Figure 1. PCA of Word2Vec embeddings of top US cities and
states, for NTK, width-64, and width-∞ feature learning networks
(Definition 4.1). NTK embeddings are essentially random (thus
trivializing any “transfer” learning), while cities and states get
naturally separated in embedding space as width increases in the
feature learning regime.

transfer learning via pretraining and finetuning, such as with
BERT, is meaningless, as we will discuss in Section 3), this
insight amounts to a fatal weakness of the NTK theory as a
model of neural networks in practice.

Our Contributions We seek to capture feature learn-
ing in overparametrized networks by considering other
parametrizations and their infinite-width limits. By slightly
modifying the standard parametrization (SP), in fact, we can
enable feature learning that is maximal in a natural sense.
We describe how to compute this limit exactly (and rig-
orously) via the Tensor Programs technique developed in
(Yang, 2019a;b; 2020a;b). We explicitly calculate this limit
for the tasks of Word2Vec (Mikolov et al., 2013a;b) and few-
shot learning on Omniglot via MAML (Finn et al., 2017),
two standard tasks relying crucially on feature learning. On
both tasks, our proposed feature learning limit outperforms
both NTK baselines and finite-width networks, with the
latter approaching the infinite-width feature learning perfor-
mance as width increases.

More generally, we classify a natural space of neural net-
work parametrizations that generalizes standard, NTK, and
Mean Field parametrizations. We show what we call the
Dynamical Dichotomy Theorem, which roughly says any
parametrization in this space either admits feature learning
or has an infinite-width training dynamics given by ker-
nel gradient descent, but not both. Furthermore, any such
infinite-width limit can be computed using the Tensor Pro-
grams technique.

In the main text, we describe relevent related works as
they arise, but see Appendix A for a more comprehensive
discussion of the surrounding literature.

https://arxiv.org/abs/2011.14522v1
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2. abc-Parametrizations
This paper studies a natural class of parametrizations, which
we call the abc-Parametrization and describe here. Con-
sider an L-hidden-layer perceptron: For weight matrices
W 1 ∈ Rn×d and W 2, . . . ,WL ∈ Rn×n, and nonlinearity
φ : R→ R, such a neural network on input ξ ∈ Rd is given
by h1(ξ) = W 1ξ ∈ Rn, and, for l = 1, . . . , L− 1,

xl(ξ) = φ(hl(ξ)), hl+1(ξ) = W l+1xl(ξ) ∈ Rn, (1)

and the network output (also called the logit(s)) is f(ξ) =
WL+1xL(ξ) for WL+1 ∈ R1×n. An abc-parametrization
is specified by a set of numbers {al, bl}l ∪ {c} such that

(a) We parametrize each weight as W l = n−alwl for
actual trainable parameter wl

(b) We initialize each wlαβ ∼ N (0, n−2bl), and

(c) The SGD learning rate is ηn−c for some width-
independent η.1 2

All major prior parametrization schemes, like NTK and
standard parametrizations, are of this type, as summarized in
Table 1. We can define abc-parametrization and generalize
our results to arbitrary neural architectures (Appendix K),
but we shall focus on MLPs in the main text.

3. Dynamical Dichotomy
Section Overview For any abc-parametrization, if c is too
small (i.e. learning rate too large), SGD can lead to blowup
of preactivation and/or logits; we say this parametrization
is unstable. In practice this translates to numerical issues.
If c is too large (i.e. learning rate too small), then the func-
tion computed by the network does not change in finite
time; we say this parametrization is trivial. In this section,
we prove what we call the Dynamical Dichotomy theorem
(Corollary 3.8):

Any nontrivial stable abc-parametrization yields a
(discrete-time) infinite-width limit. This limit either

1. allows the embedding xL(ξ) to evolve nontrivially
(Definition 3.4) or

2. is described by kernel gradient descent in function
space (Definition 3.6), but not both.

1Observe that by changing al, bl while holding al + bl fixed,
we effectively give layer l its own learning rate. As such, al and bl
cannot be absorbed into a single number.

2One can further include a set of constants in front of n−al and
n−bl , for example powers of input dimension d, but we shall keep
it simple here as we are only concerned with scaling behavior with
n.

We call the former kind a feature learning limit and the
latter a kernel limit. For 1-hidden-layer MLPs, the former is
exemplified by MFP, and the latter, NTP. We demonstrate
this via intuitive calculations in Appendix B. This dichotomy
implies that certain functional dynamics, such as higher
order generalizations of the NTK dynamics, are not valid
infinite-width limits (see Remark 3.11). In addition, the
neural network function f (defined in Eq. (1)) in any feature
learning limit must be identically 0 at initialization (see
Corollary 3.9).3 Finally, we discuss why pretraining and
finetuning are trivialized by any kernel limit such as NTK.

In the rest of this section, we formalize the claims above
rigorously, under Assumption I.1 (i.e. considering only tanh
and smooth relu nonlinearities).

Stable abc-Parametrizations We will only consider abc-
parametrizations such that, as n→∞, 1) the preactivations
{hl}l and activations {xl}l have Θ(1) coordinates at ini-
tialization, and 2) their coordinates and the logit f(ξ) all
stay O(1) throughout the course of SGD.4 Otherwise, they
tend to ∞ with n, eventually going out of floating point
range. Indeed, this is an acute and real problem common
in modern deep learning, where float16 is necessary to
train large models. We call any such parametrization stable
(see Definition N.4 for a formal definition). Thus unstable
parametrizations are of no practical interest.

It turns out stable abc-parametrizations can be characterized
by a set of inequalities on {al, bl}l ∪ {c} (so that the stable
ones form a polyhedron). To present these inequalities
succinctly, it’s useful to have

Definition 3.1. For any abc-parametrization, we define

r def
= min(bL+1, aL+1+c)+aL+1+c+

L
min
l=1

[2al − I(l 6= 1)] .

For example, in NTP, r = 1/2, while in MFP (when L = 1),
r = 0. Intuitively, r is the exponent such that ∆xLt (ξ) =
Θ(n−r) (see Table 1). Thus, to avoid activation blowup, we
want r ≥ 0; to perform feature learning, we want r = 0.

Theorem 3.2 (Stability Characterization, c.f. Theorem N.6).
An abc-parametrization is stable iff all of the following are
true (with intuitions in parentheses):

1. ((pre)activations xl0, h
l
0 at initialization are Θ(1) and

logits f0 are O(1))

a1 + b1 = 0; al + bl = 1/2, ∀l ∈ [2, L];

aL+1 + bL+1 ≥ 1/2.
(2)

3We stress this is in the n→∞ limit, so does not contradict
the feature learning seen in finite-width SP NN.

4but they may depend on training time and η; in particular, it’s
possible that they diverge with time.
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Table 1. SP (standard), NTP (Neural Tangent), MFP (Mean Field, for 1-hidden-layer nets), µP (Maximal Update, ours) as abc-
parametrizations. We show the minimal value of c such that the parametrization is stable (Definition N.4). We also list the quantities
r, 2aL+1 + c, aL+1 + bL+1 + r involved in stability, feature learning, and kernel regime properties of the parametrizations. Here we only
focus on scaling with n and ignore dependence on input dimension. Recall the MLP definition:

h1 = W 1ξ ∈ Rn, xl = φ(hl) ∈ Rn, hl+1 = W l+1xl ∈ Rn, f(ξ) = WL+1xL

Definition SP SP (w/ LR 1
n ) NTP MFP (L = 1) µP (ours)

al W l = n−alwl 0 0

{
0 l = 1
1/2 l ≥ 2

{
0 l = 1

1 l = 2


−1/2 l = 1

0 2 ≤ l ≤ L
1/2 l = L+ 1

bl wlαβ ∼ N (0, n−2bl)

{
0 l = 1
1/2 l ≥ 2

{
0 l = 1
1/2 l ≥ 2

0 0 1/2

c LR = ηn−c 0 1 0 −1 0
r Definition 3.1 0 1/2 1/2 0 0

2aL+1 + c 0 1 1 1 1
aL+1 + bL+1 + r 1/2 1 1 1 1
Nontrivial? 3 3 3 3 3
Stable? 7 3 3 3 3
Feature Learning? - 7 7 3 3
Kernel Regime? - 3 3 7 7

2. (features don’t blowup, i.e. ∆xlt = O(1) for all l)

r ≥ 0. (3)

3. (logits don’t blow up during training, i.e.
∆WL+1

t xLt ,W
L+1
0 ∆xLt = O(1))

2aL+1 + c ≥ 1; aL+1 + bL+1 + r ≥ 1. (4)

Nontrivial abc-Parametrizations Among stable abc-
parametrizations, there are also those where f does not
change throughout training in the infinite-width limit. We
say such parametrizations are trivial. Our dichotomy result
will only apply to nontrivial stable abc-parametrizations.5

Nontrivial abc-parametrizations can also be described by a
disjunction of equations on {al, bl}l ∪ {c} (geometrically,
they correspond to the union of two faces on the polyhedron
of stable abc-parametrizations).

Theorem 3.3. A stable abc-parametrization is nontrivial iff
aL+1 + bL+1 + r = 1 or 2aL+1 + c = 1.

Feature Learning Below, for brevity, we say training
routine to mean the package of learning rate ηn−c, training
sequence {(ξt, yt)}t≥0,6 and a loss function L(f(ξ), y) that
is continuously differentiable in the prediction of the model

5In particular, it’s possible for the function f to stay fixed with
time, but for the features to change.

6For simplicity, we only consider batch size 1; it’s straightfor-
ward to generalize to larger batch sizes.

f(ξ). As above, we use •t to denote the object • after t
steps of SGD.
Definition 3.4 (c.f. Definitions N.9 and N.10). We say an
abc-parametrization admits feature learning (resp. evolves
the feature kernel) if, as n→∞, ∆xLt (ξ) has Ω(1) coordi-
nates (resp. 1

n (xLt (ξ)>xLt (ζ)− xL0 (ξ)>xL0 (ζ)) = Ω(1)) for
some training routine, time t ≥ 1, and input ξ (resp. ξ, ζ).7

MFP, in the 1-hidden-layer case, is an example of feature
learning parametrization.

Intuitively, feature kernel evolution implies feature learning,
but a priori it seems possible that the latter can occur with-
out the former (akin to some kind of rotation of features). If
so, then, e.g. in terms of linear transfer learning (c.f. discus-
sion below Remark 3.11), the pretraining ultimately had no
benefit. But, in fact,
Theorem 3.5. A nontrivial stable abc-parametrization ad-
mits feature learning iff it evolves the feature kernel iff
r = 0.

Kernel Regime While feature learning here is defined by
looking at the embedding of an input ξ, we can also look
at the dynamics of the function represented by the neural
network.
Definition 3.6 (c.f. Definition N.11). We say an abc-

7For the sake of streamlining the main text presentation, we
defined feature learning and feature kernel evolution slightly dif-
ferently than in Definition N.9, but ultimately they are equivalent
as a result of our theorems.
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Figure 2. A Caricature of abc-Parametrizations. The nontriv-
ial stable parametrizations form a high dimensional polyhedron.
Those on a part of its boundary admit feature learning, while all
others are in kernel regime. µP is a vertex in the former, while NTP,
latter. See Fig. 7 for a more geometrically accurate depiction.

parametrization is in kernel regime if there exists a positive
semidefinite kernel K such that, for any training routine,
time t ≥ 0, and input ξ, in the n→∞ limit,

ft+1(ξ) = ft(ξ)−ηK(ξ, ξt)L′(ft(ξt), yt), ∀t ≥ 0. (5)

In other words, SGD reduces to kernel gradient descent in
the large n limit.

Theorem 3.7. A nontrivial stable abc-parametrization is in
kernel regime iff r > 0.

NTP is a typical example of this, where r = 1/2 and K is
given by the NTK.

Dynamical Dichotomy Since a stable abc-
parametrization has either r = 0 or r > 0 by Eq. (3):

Corollary 3.8. A nontrivial stable abc-parametrization ei-
ther admits feature learning or is in kernel regime, but not
both.

We note that we are under Assumption I.1. For example, if
φ is linear, then this dichotomy doesn’t hold, as a 1-hidden-
layer linear network where only the first layer is trained
would both admit feature learning and is in kernel regime.

An interesting consequence of Dynamical Dichotomy is

Corollary 3.9. Any nontrivial stable feature learning abc-
parametrization must have limn→∞ f0(ξ) = 0 for all ξ,
where the limit is almost sure.

Theorems 3.5 and 3.7 and Corollary 3.9 are consequences
of the more general classification theorem Theorem N.12,

which in addition shows: 1) feature learning in layer l would
imply the same for layers l, . . . , L; 2) in any feature learning
parametrization, ft in the large n limit becomes determinis-
tic, and thus is incompatible with any Bayesian perspective
(in contrast to the NNGP limit).

Dynamical Dichotomy in the shallow perceptron case is
illustrated by the NTK and MF limits, as presented in
Appendix B, which shows the NTK limit exemplifies
Theorem 3.7 while the MF limit exemplifies Theorem 3.5.
We present a simplified picture of abc-parametrizations in
Fig. 2, but see Fig. 7 for a more geometrically accurate
depiction.
Remark 3.10 (Function Space Picture). A kernel regime
limit resides solely in the function space picture, i.e. the evo-
lution of f at any time being solely determined by the func-
tion values {lim ft(ζ)}ζ themselves (as opposed to the in-
ternal activations of f as well) along with η, L, and (ξt, yt).
Intuitively, this cannot be true for the feature learning limit,
and therefore, at least informally, Dynamical Dichotomy is
also a dichotomy over the sufficiency of the function space
picture for determining the training evolution: We can con-
struct two settings where {lim ft(ζ)}ζ , η, L, and (ξt, yt)
are the same but ft+1 are different. 1) The first setting is at
t = 0, where lim ft(ζ) = 0 for all input ζ by Corollary 3.9.
Here a typical SGD will change f . 2) In the second setting,
suppose φ is relu. Design a sequence of inputs such that
training the MLP on them with very large learning rate will
make all relu neurons saturated in the 0 region. Then f is
everywhere 0, and an SGD step will not change that.
Remark 3.11 (Not All Dynamics are Infinite-Width Limits).
Accordingly, a nonlinear function space dynamics cannot
be a valid infinite-width limit of some abc-parametrization.
By nonlinear, we mean ft+1(ξ) − ft(ξ) is nonlinear in
L′(ft(ξt), yt). For example, any natural higher-order gener-
alization of Eq. (5) (perhaps derived from a Taylor expansion
at initialization) is not a valid limit.8

Pretraining and Transfer Learning By Corollary 3.8,
any kernel regime parametrization trivializes pretraining
and transfer learning in the infinite-width limit. For exam-
ple, consider linear transfer learning, the popular style of
transfer learning where one discards the pretrained linear
classifier layer and train a new one on top of the features,
which are fixed. Indeed, this is a linear problem and thus
only depends on the kernel of the features. If this kernel
is the same as the kernel at initialization, as is the case for

8It may seem that Neural Tangent Hierarchy (Huang & Yau,
2019), which allow some kind of higher order dynamics in the
function space, violates our observation. But their infinite-width
limit is identical to NTK in the constant time t = O(1) regime,
which is what Remark 3.11 (and this paper) concerns. Moreover,
here we are talking about functional dynamics that doesn’t depend
on n (because we are already at the n→∞ limit) whereas their
functional dynamics does.
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kernel regime limits (by Corollary 3.8 and Theorem 3.5),
then the pretraining phase has had no effect on the outcome
of this “transfer” learning.

In fact, a more sophisticated reasoning shows pretraining
in the NTK limit is no better than random initialization
for transfer learning even if finetuning is performed to the
whole network, not just the classifier layer. This remains
true if we replace the linear classifier layer by a new deep
neural network. See Remark N.15 and Theorem N.16. The
Word2Vec experiment we do in this paper is a linear transfer
task.

In some other settings, such as some settings of metalearn-
ing, like the few-shot learning task in this paper, the last
layer of the pretrained network is not discarded. This is
called adaptation. Then the NTK limit does not automati-
cally trivialize transfer learning. However, as will be seen in
our experiments, the NTK limit still vastly underperforms
the feature learning limit.

4. Maximal Update Parametrization
By calculating r for the standard parametrization (SP) (c.f.
Table 1), we easily see that it cannot admit feature learning
in the sense here without becoming unstable. Intuitively, this
is because of an imbalance of gradient and parameter sizes
in SP: The last layer weight matrix is too large at init and
gets too much gradient, so that the learning rate needs to be
small (O(1/n)) in order for SGD not to blow up – but then
the features of the network don’t change enough. We can fix
this by dividing the logits by

√
n and using Θ(1) learning

rate, so that f(ξ) = n−1/2wL+1xL(ξ) (where wL+1 has
N (0, 1/n) initialization, as usual). This suffices to enable
feature learning.

Another minor problem of SP is that the input layer gets
too little gradient compared to other layers. We can fix this
by multiplying the first layer preactivation by

√
n and use

fan-out initialization for w1, i.e. h1(ξ) =
√
nw1ξ where w1

has initialization N (0, 1/n).

We can summarize these modifications as follows:

Definition 4.1. The Maximal Update Parametrization (ab-
breviated MUP, or µP), in the context of an L-hidden-layer
MLP (Eq. (1)), is given by

c = 0, bl = 1/2 ∀l, al =


−1/2 l = 1

0 2 ≤ l ≤ L
1/2 l = L+ 1.

Readers who find the abc values too abstract are recom-
mended to see Appendices D and E for pedagogical exam-
ples working out why SP cannot do feature learning and
how µP fixes this problem.

How is µP Maximal? Recall ∆•t means •t − •0 for any
object •. Simple arithmetic shows the NN function changes
like ∆ft(ξ) = ∆WL+1

t xLt (ξ) + WL+1
0 ∆xLt (ξ) over the

course of SGD. µP turns out to be the unique stable abc-
parametrization where both contributions to ∆ft(ξ) are
Θ(1) and where every layer learns features (in the sense
that ∆W l

tx
l−1
t has Θ(1) coordinates for every l ∈ [L+ 1]).

See Appendix E.3 for a formalization of this statement.

MFP is a Special Case of µP Different abc values can
actually correspond to equivalent parametrizations, intu-
itively because adjusting al, bl values effectively gives W l

its own learning rate, so that the global learning rate c is alge-
braically redundant; this is made rigorous in Appendix C.1.
It turns out, in 1-hidden-layer networks, MFP is equivalent
to µP for this reason, which is reflected in Fig. 2.

5. Deriving Feature Learning Infinite-Width
Limit: Intuition and Examples

We propose the Tensor Programs technique for deriving
the infinite-width limit of any abc-parametrization. This
ultimately just requires the researcher to mechanically apply
a set of rules to the computation graph underlying SGD.
However, while operationally simple, this procedure would
seem “too magical” at first. In the main text, we seek to
build some intuition for what is being automated by this
procedure. Then, in Appendix G, we formally describe the
Tensor Programs framework.

Setup and Notation For pedagogical simplicity, we only
consider input dimension d = 1 and learning rate η = 1
here, but generalization to d > 1, η 6= 1 is straightforward.
We consider SGD with a singleton minibatch {(ξt, yt)} at
time t = 0, 1, 2, . . ., where ξt is the network input and yt is
the label. We write W l

t for the matrix W l after t steps of
such training. For any network input ξ ∈ R, we write xlt(ξ)
(resp. hlt(ξ), ft(ξ)) for the activation xl (resp. preactivation
hl, logits f ) of the network after t steps of SGD. We denote
the scaled gradient n∇xltft(ξ) (resp. n∇hltft(ξ)) by dxlt(ξ)
(resp. dhlt(ξ)). For brevity, we abuse notation and use xlt
(without being applied to ξ) to also denote the vector xlt(ξt)
(applied specifically to ξt); likewise for hlt, dh

l
t, dx

l
t, ft. We

will not use xlt on its own to denote the function ξ 7→ xlt(ξ)
so this should not cause confusion. The loss function is
denoted L and the loss derivative L′(logit, target) is in the
first argument. We write χt def

= L′(ft, yt).

5.1. 1-Hidden-Layer MLP

As mentioned above, for 1 hidden layer, the infinite-width
µP limit is the same as the mean field limit of (Chizat &
Bach, 2018; Mei et al., 2018; Rotskoff & Vanden-Eijnden,
2018; Sirignano & Spiliopoulos, 2018). Nevertheless, we
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present a slightly different derivation of this that is more
consistent with the philosophy of Tensor Programs. Such a
network on input ξ ∈ R is given by

f(ξ) = V x(ξ), x(ξ) = φ(h(ξ)), h(ξ) = Uξ, (6)

for U ∈ Rn×1, V ∈ R1×n parametrized like U =√
nu, V = 1√

n
v and with initialization uαβ , vαβ ∼

N (0, 1/n).9 Then U0 (the initial value of U ) has iidN (0, 1)
coordinates. It will turn out to be convenient to repre-
sent each such coordinate distribution as a random variable
ZU0 def

= N (0, 1). Likewise, let ZnV0 def
= N (0, 1), indepen-

dent from ZU0 , represent the coordinate distribution of nV0

(we do nV0 instead of V0 so that the Z random variable is
always independent of n). We derive the µP limits of the
first forward and backward passes manually before stating
the general case (Theorem 5.1). To lighten notation, we
suppress the t = 0 subscript (e.g. U = U0, h = h0, f = f0,
etc), as we will spend some time on the first SGD step.

First Forward Pass After randomly initialization, the pre-
activation h = h(ξ) (where ξ = ξ0 ∈ R is the first input)
has iid coordinates, each a sample from Zh def

= ξZU ∈ R.
Naturally, x = x(ξ) has iid coordinates as well, each
a sample from Zx def

= φ(Zh). Finally, f = V x =
1
n

∑n
α=1(nV )αxα → f̊ def

= EZnV Zx by Law of Large
Numbers as n→∞.10 In particular, f becomes determinis-
tically 0 in this limit because V and U are independent. For
a typical loss function L, the loss derivative χ def

= L′(f, y)

then also become deterministic, χ→ χ̊ def
= L′(f̊ , y).

First Backward Pass Similarly, dx = nV > (recall
dxt

def
= n∇xtft) has coordinates distributed like Zdx def

=
ZnV and dh = dx� φ′(h) has coordinates distributed like
Zdh def

= Zdxφ′(Zh) = ZnV φ′(Zh). Then SGD with learn-
ing rate 1 makes the following updates:

v1 = v − χx/
√
n =⇒ V1 = V − χx/n

u1 = u− χξ dh/
√
n =⇒ U1 = U − χξ dh.

Since χ converges to a deterministic limit χ̊, the coordinates
of these updates are roughly iid, corresponding to an update
of Z random variables:

ZnV1 = ZnV − χ̊Zx, ZU1 = ZU − χ̊ξZdh.

Second Forward Pass Thus V1 and U1 still have roughly
iid coordinates after 1 SGD step. Then, in the second for-
ward pass, h1 has coordinates

Zh1 def
= ξ1Z

U1 = ξ1Z
U−ξ1χ̊ξZdh = ξ1Z

U−ξ1χ̊ξZnV φ′(Zh),

9Again, more generally, we can insert constants in this
parametrization, like U =

√
n√
d
u, but we omit them here for sim-

plicity.
10All convergence in this section will be almost sure, but to

focus on the intuition here and less on the formalities, we do not
explicitly write this down.

x1 has coordinates Zx1 def
= φ(Zh1), and the output is

f1 =
1

n

n∑
α=1

(nV1)αxα

→ f̊1
def
= EZnV1Zx1 = E(ZnV − χ̊Zx)Zx1

(7)

as n → ∞. Then χ1
def
= L′(f1, y1) → χ̊1

def
= L′(f̊1, y1)

becomes deterministic. The gradient vectors have roughly
iid coordinates by a similar logic.

tth Iteration Repeating the above reasoning shows that
at any time t (independent of n), we obtain

Theorem 5.1. Consider a 1-hidden-layer MLP in µP
(Eq. (6)) and any training routine with learning rate 1. Sup-
pose φ′ is pseudo-Lipschitz.11 As n→∞, for every input ξ,
ft(ξ) converges almost surely to f̊t(ξ) defined as follows:

ft(ξ)
a.s.−−→ f̊t(ξ)

def
= EZnVtZxt(ξ),

Zxt(ξ) def
= φ(Zht(ξ)), Zht(ξ) def

= ξZUt ,
(8)

χ̊t
def
= L′(f̊t, yt), ZnVt+1 def

= ZnVt − χ̊tZxt ,

ZUt+1 def
= ZUt − χ̊tξtZnVtφ′(Zht),

(9)

with, as initial conditions, ZU0 and ZnV0 being independent
standard Gaussians, where in Eq. (9) we abbreviated f̊t =
f̊t(ξt), xt = xt(ξt), ht = ht(ξt).

As aforementioned, this is a discrete time, minibatched ver-
sion of the mean field limit of (Chizat & Bach, 2018; Mei
et al., 2018; Rotskoff & Vanden-Eijnden, 2018; Sirignano
& Spiliopoulos, 2018).12 When φ is identity, it’s easy to see
that ZnVt and ZUt are always (deterministic) linear combi-
nations of ZnV0 and ZU0 , say ZnVt = AtZ

nV0 + BtZ
U0

and ZUt = CtZ
nV0 + DtZ

U0 . Then the limit f̊t depends
solely on At, Bt, Ct, Dt. By tracking their evolution, we
get the following greatly simplified formula for an infinite-
width µP linear network.

Corollary 5.2. Consider a 1-hidden-layer linear MLP in
µP (Eq. (6)) and any training routine with learning rate 1.
As n→∞, for every input ξ, ft(ξ) converges almost surely

11This roughly means that φ′ has a polynomially bounded weak
derivative; see Definition L.3.

12(Chizat & Bach, 2018; Mei et al., 2018; Rotskoff & Vanden-
Eijnden, 2018; Sirignano & Spiliopoulos, 2018) present the equa-
tions in terms of the PDF of Z random variables. Formally, the
PDF limit can be obtained by taking the continous-time limit
of Eqs. (8) and (9) and then applying Focker-Planck. Note our
derivation, when formalized using the Tensor Programs frame-
work below, does not require smoothness and support assumptions
on the initialization of U, V in those works: The initialization
distribution here can be replaced with any image of Gaussians
under pseudo-Lipschitz functions, which includes nonsmooth and
singular distributions.
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to f̊t(ξ) defined as follows:

f̊t(ξ) = (AtCt +BtDt)ξ, χ̊t = L′(f̊t, yt),
(At+1, Bt+1) = (At, Bt)− χ̊tξt(Ct, Dt),

(Ct+1, Dt+1) = (Ct, Dt)− χ̊tξt(At, Bt),

with initial condition A0 = D0 = 1, B0 = C0 = 0.

This can be easily generalized to larger input and output di-
menions (see Appendix J.2). In a gist, such an infinite-width
µP linear network with input dimension d and output dimen-
sion do is equivalent to a width-(d+do) linear network with
the same input/output dimensions but a “diagonal”, instead
of random, initialization. Our Word2Vec and MAML exper-
iments will crucially rely on this simplifying observation.
We remark that, in contrast to our approach, such an obser-
vation would be obscured by the PDE perspective of prior
works (Chizat & Bach, 2018; Mei et al., 2018; Rotskoff &
Vanden-Eijnden, 2018; Sirignano & Spiliopoulos, 2018).

5.2. Deep MLP: A Summary

For more than 1 hidden layer, the mathematics of the µP
limit becomes significantly more complicated. For the lack
of space and because our main experiments only use the
1-hidden-layer limit, we will just summarize the key points
here for the deep case, but see Appendix F for pedagogical
examples that are worked out completely.

Compared to the shallow case, a deep MLP involves n× n
random Gaussian matrices corresponding to the initializa-
tion of middle layer weights. Such a matrix W has a unique
set of behaviors not seen in the weights of the shallow MLP,
where only one dimension tends to infinity. 1) (Gaussian
behavior) If x is roughly independent from W , then Wx
will be a Gaussian vector with roughly iid coordinates. This
intuition should be familiar to readers having seen NTK or
NNGP calculations. 2) (Correlation with W>) In a typical
NTK calculation, W> can be safely assumed to be inde-
pendent from W (i.e. Gradient Independence Assumption
(Yang, 2020a)). This turns out to be wrong if we unroll
SGD for more than 1 step, so one must take care to keep
track of the contributions from W and W> separately so as
to calculate their interactions that arise over the course of
SGD.

The Tensor Programs framework neatly and rigorously pack-
ages such complex calculations into a mechanical algorithm
generalizing the calculus of Z random variables in Sec-
tion 5.1; see Appendix F. This framework can calculate the
limit of any abc-parametrization; see Appendix N.

6. Experiments
We present our main experiments (Omniglot and Word2Vec)
in the main text, while we also empirically verified the

Figure 3. Our Omniglot Results

validity of our infinite-width theory in various toy settings
in Appendix J.1.

6.1. Few-Shot Learning on Omniglot via First Order
MAML

In few-shot learning, the model is given only a small number
of labeled examples before asking to make predictions on
unseen data. Therefore, this tests whether a model contains a
good prior that can adapt quickly to the small amount of data
at hand. We compare finite- and infinite-width models on
Omniglot (Lake et al., 2015), a standard few-shot learning
benchmark, via First Order MAML (Finn et al., 2017), a
standard few-shot learning algorithm using metalearning.
We will be concerned with the 1-shot, 5-way classification
task (i.e. there are 5 labels, and the training set consists of
1 example for each label). Readers needing a refresher on
few-shot learning and MAML can see Appendix J.2.

Models Our main model is the µP limit of a 1-hidden-
layer linear MLP. We compare against: 1) finite width ver-
sions of the same;13 2) the NNGP and NTK limits of the
same; 3) the NNGP and NTK limits of a 1-hidden-layer relu
MLP. Note 2) is equivalent to a 0-hidden-layer perceptron,
because the NNGP and NTK there are both linear kernels.
In addition, the infinite-width SP limit of a 1-hidden-layer
network is the same as the NNGP limit. Both 2) and 3) are
equivalent to linear models with fixed (not learned) features,
so MAML’s adaptation only applies to the linear weights.
On the other hand, the µP limit and the finite µP networks
will learn new representations of the data over time that can
quickly adapt to new tasks.14

The hyperparameters for our experiments can be found in
Appendix J.2.

13Because we will tune initialization variances, our results also
represent finite-width SP networks.

14Note that the transfer learning comment in Appendix B does
not apply directly to the few-shot setting here, because the readout
weights of the network carry over from the pretraining phase.
Nevertheless, we will see a large performance gap between the
kernel limits (2,3) and the µP limit.
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Table 2. Omniglot Meta-Test Accuracies after Pretraining with First Order MAML.

φ = relu φ = identity ; number = log2 width

GP NTK 1 3 5 7 9 11 13 µP GP/NTK

47.60 47.82 55.34 64.54 66.21 66.31 66.43 66.36 66.41 66.42 41.68
±.02 ±.04 ±1.24 ±0.70 ±.15 ±.16 ±.23 ±.22 ±.18 ±.19 ±.09

Findings Our results are summarized in the Fig. 3 and
Table 2, where curves indicate means and shades indicate
standard deviations. There are three key takeaways: 1)
The feature learning µP limit significantly outperforms the
kernel limits. 2) The benefit of feature learning dominates
the benefit of having nonlinearities. 3) As width increases,
the finite µP networks approach the performance of the µP
limit from below.

6.2. Word2Vec

Word2Vec (Mikolov et al., 2013a;b) is an early example
of large-scale pretraining and transfer learning in natural
language processing, where one learns an feature vector
(i.e. embedding) for every word based on the principle of
distributional semantics. Here we will focus on the Context
as a Bag-of-Words (CBOW) method of Word2Vec. During
pretraining, we seek to learn word embeddings such that
for a typical sentence (in the training corpus), a word’s
embedding should be close to the average of the embeddings
of those in its surrounding context. We evaluate the learned
embeddings on word analogy, which asks questions of the
kind “what to a queen is as a man to a woman?” To answer
such a question, we would calculate the linear combination
of embeddings man − woman + queen and return the
word whose embedding is closest to it. We pretrain our
models on two standard datasets, text8 and fil9. For a
more thorough review of Word2Vec and a description of the
datasets, see Appendix J.3.

Models Our main model is the µP limit of Word2Vec.15

We compare against the baselines of 1) finite-width versions
of the same, and 2) the NTK and GP limits. As shown
in Corollary 3.8, the features of the NTK limit are fixed at
initialization as n→∞ (and so are those of the GP limit, by
definition), so its answer to Eq. (37) is uniformly selected
from the whole vocabulary.16 Its accuracy is thus 1

|V|−3 ,
where |V| is the vocabulary size. Since |V| is 71,291 for
text8 and 142,276 for fil9, this number is practically
0. We compute the µP limit according to the generalized
version of Corollary 5.2, but we relate more implementation
details in Appendix J.3.

15More precisely, the µP limit of Eq. (35) in Appendix J.3.
16There is some nuance here because h(ξ)>h(ξ̄) is actually

Θ(
√
n) instead of Θ(n) because ξ, ξ̄ are one-hot, but the conclu-

sion is the same; see Appendix J.3.

Figure 4. Our Word2Vec Results. The accuracies of the GP/NTK
models are practically 0, so we omit them in these plots.

Table 3. Test Accuracies on Word Analogy after Pretraining
with CBOW Word2Vec.

number = log2 width

Dataset 6 8 10 µP GP/NTK

text8 33.35 41.58 42.56 43.31 0.0
fil9 44.39 54.24 55.69 56.45 0.0

Findings We show our results in Table 3 and Fig. 4. As
expected, the infinite-width and finite-width µP networks
significantly outperform the NTK limit. In addition, we
observe the finite width µP networks converge to the perfor-
mance of the µP limit from below, as width increases.

7. Conclusion
In this paper, we presented a framework, based on the no-
tion of abc-parametrizations and Tensor Programs tech-
nique, that unifies the Neural Tangent Kernel (NTK) and
Mean Field limits of large width neural networks (NNs). In
the Dynamical Dichotomy theorem, we classified the abc-
parametrizations into feature learning and kernel regimes.
We identified the lack of feature learning as a fatal weakness
of NTK as a model for real NN. In fact, we showed the
standard parametrization suffers from the same problem. As
a solution, we proposed the Maximal Update Parametriza-
tion (µP) and derived its infinite-width limit, which admits
feature learning. Through experiments on Word2Vec and
few-shot learning, we demonstrated that µP is a good model
for feature learning behavior in neural networks.
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