BASGD: Buffered Asynchronous SGD for Byzantine Learning

Yi-Rui Yang'! Wu-JunLi'

Abstract

Distributed learning has become a hot research
topic due to its wide application in cluster-based
large-scale learning, federated learning, edge com-
puting and so on. Most traditional distributed
learning methods typically assume no failure or
attack. However, many unexpected cases, such as
communication failure and even malicious attack,
may happen in real applications. Hence, Byzan-
tine learning (BL), which refers to distributed
learning with failure or attack, has recently at-
tracted much attention. Most existing BL meth-
ods are synchronous, which are impractical in
some applications due to heterogeneous or offline
workers. In these cases, asynchronous BL (ABL)
is usually preferred. In this paper, we propose
a novel method, called buffered asynchronous
stochastic gradient descent (BASGD), for ABL.
To the best of our knowledge, BASGD is the
first ABL method that can resist malicious attack
without storing any instances on server. Com-
pared with those methods which need to store
instances on server, BASGD has a wider scope of
application. BASGD is proved to be convergent,
and be able to resist failure or attack. Empirical
results show that BASGD significantly outper-
forms vanilla asynchronous stochastic gradient
descent (ASGD) and other ABL baselines when
there exists failure or attack on workers.

1. Introduction

Due to the wide application in cluster-based large-scale
learning, federated learning (Konevcny et al., 2016; Kairouz
et al., 2019), edge computing (Shi et al., 2016) and so on,
distributed learning has recently become a hot research
topic (Zinkevich et al., 2010; Yang, 2013; Jaggi et al., 2014;
Shamir et al., 2014; Zhang & Kwok, 2014; Ma et al., 2015;

'"National Key Laboratory for Novel Software Technology,
Department of Computer Science and Technology, Nanjing
University, China. Correspondence to: Wu-Jun Li <liwu-
jun@nju.edu.cn>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Lee et al., 2017; Lian et al., 2017; Zhao et al., 2017; Sun
et al., 2018; Wangni et al., 2018; Zhao et al., 2018; Zhou
et al., 2018; Yu et al., 2019a;b; Haddadpour et al., 2019).
Most traditional distributed learning methods are based on
stochastic gradient descent (SGD) and its variants (Bottou,
2010; Xiao, 2010; Duchi et al., 2011; Johnson & Zhang,
2013; Shalev-Shwartz & Zhang, 2013; Zhang et al., 2013;
Lin et al., 2014; Schmidt et al., 2017; Zheng et al., 2017;
Zhao et al., 2018), and typically assume no failure or attack.

However, in real distributed learning applications with mul-
tiple networked machines (nodes), different kinds of hard-
ware or software failure may happen. Representative failure
includes bit-flipping in the communication media and the
memory of some workers (Xie et al., 2019). In this case,
small failure on some machines (workers) might cause a
distributed learning method to fail. In addition, malicious
attack should not be neglected in an open network where
the manager (or server) generally has not much control on
the workers, such as the cases of edge computing and feder-
ated learning. Malicious workers may behave arbitrarily or
even adversarially. Hence, Byzantine learning (BL), which
refers to distributed learning with failure or attack, has at-
tracted much attention (Diakonikolas et al., 2017; Chen
et al., 2017; Blanchard et al., 2017; Damaskinos et al., 2018;
Baruch et al., 2019; Diakonikolas & Kane, 2019).

Existing BL methods can be divided into two main cate-
gories: synchronous BL (SBL) methods and asynchronous
BL (ABL) methods. In SBL methods, the learning infor-
mation, such as the gradient in SGD, of all workers will
be aggregated in a synchronous way. On the contrary, in
ABL methods the learning information of workers will be
aggregated in an asynchronous way. Existing SBL methods
mainly take two different ways to achieve resilience against
Byzantine workers which refer to those workers with failure
or attack. One way is to replace the simple averaging aggre-
gation operation with some more robust aggregation opera-
tions, such as median and trimmed-mean (Yin et al., 2018).
Krum (Blanchard et al., 2017) and ByzantinePGD (Yin
et al., 2019) take this way. The other way is to filter the sus-
picious learning information (gradients) before averaging.
Representative examples include ByzantineSGD (Alistarh
et al., 2018) and Zeno (Xie et al., 2019). The advantage
of SBL methods is that they are relatively simple and easy
to be implemented. But SBL methods will result in slow

BASGD: Buffered Asynchronous SGD for Byzantine Learning

convergence when there exist heterogeneous workers. Fur-
thermore, in some applications like federated learning and
edge computing, synchronization cannot even be performed
most of the time due to the offline workers (clients or edge
servers). Hence, ABL is preferred in these cases.

To the best of our knowledge, there exist only two
ABL methods: Kardam (Damaskinos et al., 2018) and
Zeno++ (Xie et al., 2020). Kardam introduces two filters to
drop out suspicious learning information (gradients), which
can still achieve good performance when the communication
delay is heavy. However, when in face of malicious attack,
some work (Xie et al., 2020) finds that Kardam also drops
out most correct gradients in order to filter all faulty (failure)
gradients. Hence, Kardam cannot resist malicious attack.
Zeno++ needs to store some training instances on server
for scoring. In some practical applications like federated
learning (Kairouz et al., 2019), storing data on server will
increase the risk of privacy leakage or even face legal risk.
Therefore, under the general setting where server has no
access to any training instances, there does not exist ABL
methods which can resist malicious attack.

In this paper, we propose a novel method, called buffered
asynchronous stochastic gradient descent (BASGD), for
ABL. The main contributions are listed as follows:

e To the best of our knowledge, BASGD is the first ABL
method that can resist malicious attack without storing
any instances on server. Compared with those methods
which need to store instances on server, BASGD has a
wider scope of application.

e BASGD is theoretically proved to be convergent, and
be able to resist failure or attack.

e Empirical results show that BASGD significantly out-
performs vanilla asynchronous stochastic gradient de-
scent (ASGD) and other ABL baselines when there
exist failure or malicious attack on workers. In particu-
lar, BASGD can still converge under malicious attack,
when ASGD and other ABL methods fail.

2. Preliminary

In this section, we present the preliminary of this paper,
including the distributed learning framework used in this
paper and the definition of Byzantine worker.

2.1. Distributed Learning Framework

Many machine learning models, such as logistic regression
and deep neural networks, can be formulated as the follow-
ing finite sum optimization problem:

weR?

1 n
min F(w) = - Zf(w;zi), (1
i=1

where w is the parameter to learn, d is the dimension of
parameter, n is the number of training instances, f(w; z;) is
the empirical loss on the instance z;. The goal of distributed
learning is to solve the problem in (1) by designing learning
algorithms based on multiple networked machines.

Although there have appeared many distributed learning
frameworks, in this paper we focus on the widely used
Parameter Server (PS) framework (Li et al., 2014). In a
PS framework, there are several workers and one or more
servers. Each worker can only communicate with server(s).
There may exist more than one server in a PS framework,
but for the problem of this paper servers can be logically con-
ceived as a unity. Without loss of generality, we will assume
there is only one server in this paper. Training instances are
disjointedly distributed across m workers. Let Dy, denote
the index set of training instances on worker_k, we have
Ur Dy ={1,2,...,n}and Dy N Dy = D if k # k. In
this paper, we assume that server has no access to any train-
ing instances. If two instances have the same value, they are
still deemed as two distinct instances. Namely, z; may equal
zy (i # 4'). One popular asynchronous method to solve
the problem in (1) under the PS framework is ASGD (Dean
etal., 2012) (see Appendix A of supplementary materials for
details). In this paper, we assume each worker samples one
instance for gradient computation each time. The analysis
of mini-batch case is similar.

In PS based ASGD, server is responsible for updating and
maintaining the latest parameter. The number of iterations
that server has already executed is used as the global logical
clock of server. At the beginning, iteration number ¢t = 0.
Each time a SGD step is executed, ¢ will increase by 1
immediately. The parameter after ¢ iterations is denoted
as w'. If server sends parameters to worker_k at iteration
t’, some SGD steps may have been excuted before server
receives gradient from worker_k next time at iteration ¢.
Thus, we define the delay of worker_k at iteration ¢ as 7'12 =
t — t'. Worker_k is heavily delayed at iteration ¢ if 7/ >
Tmaz» Where 7,4, 1s a pre-defined non-negative constant.

2.2. Byzantine Worker

For workers that have sent gradients (one or more) to server
at iteration ¢, we call worker_k loyal worker if it has finished
all the tasks without any fault and each sent gradient is
correctly received by the server. Otherwise, worker_k is
called Byzantine worker. If worker_k is a Byzantine worker,
it means the received gradient from worker_k is not credible,
which can be an arbitrary value. In ASGD, there is one
received gradient at a time. Formally, we denote the gradient
received from worker_k at iteration ¢ as gtk. Then, we have:

gl — {V f (wt/; z;), if worker_k is loyal at iteration ¢;
t =

*, if worker_k is Byzantine at iteration ¢,

BASGD: Buffered Asynchronous SGD for Byzantine Learning

Algorithm 1 Buffered Asynchronous SGD (BASGD)

Server:

Input: learning rate 7, reassignment interval A,
buffer number B, aggregation function: Aggr(-);
Initialization: initial parameter w®, learning rate 7;

Set buffer: hy, < 0, N} + 0;
Initialize mapping table 55 < s (s =0,1,...,m
Send initial w® to all workers;
Set t < 0, and start the timer;
repeat
Wait until receiving g from some worker_s;
Choose buffer: b + s mod B;
Let N} < N +1,and h;, %;
if N} > 0 for each b € [B] then
Aggregate: G' = Aggr(|hy,..., hg]);
Execute SGD step: wi™t + w! — - Gf;
Zero out buffers: hy, «— 0, Nf « 0 (b=1,...
Set t < t + 1, and restart the timer;
end if
if the timer has exceeded A seconds then
Zero out buffers: hy, +— 0, N/ <0 (b=1,...,B);
Modify the mapping table {3, }7 ;" for buffer reas-
signment, and restart the timer;
end if
Send back the latest parameters back to worker_s, no
matter whether a SGD step is executed or not.
until stop criterion is satisfied
Notify all workers to stop;

—1);

, B);

Worker_k:
repeat
Wait until receiving the latest parameter w from server;
Randomly sample an index ¢ from Dy;
Compute V f(w; z;);
Send V f(w; z;) to server;
until receive server’s notification to stop

(k=0,1,....,m—1)

where 0 < ¢’ < ¢, and ¢ is randomly sampled from Dy. ‘*’
represents an arbitrary value. Our definition of Byzantine
worker is consistent with most previous works (Blanchard
etal., 2017; Xie et al., 2019; 2020). Either accidental failure
or malicious attack will result in Byzantine workers.

3. Buffered Asynchronous SGD

In synchronous BL, gradients from all workers are received
at each iteration. We can compare the gradients with each
other, and then filter suspicious ones, or use more robust
aggregation rules such as median and trimmed-mean for
updating. However, in asynchronous BL, only one gradient
is received at a time. Without any training instances stored
on server, it is difficult for server to identify whether a

RN

Buffer 0 Buffer_1 Buffer 2 Buﬁer 3 Buﬁer 4 l Buffers on
the server

Figure 1. An example of buffers. Circle represents worker, and the
number is worker ID. There are 15 workers and 5 buffers. The
gradient received from worker_s is stored in buffer_{s mod 5}.

received gradient is credible or not.

In order to deal with this problem in asynchronous BL,
we propose a novel method called buffered asynchronous
SGD (BASGD). BASGD introduces B buffers (0 < B <
m) on server, and the gradient used for updating parameters
will be aggregated from these buffers. The detail of the
learning procedure of BASGD is presented in Algorithm 1.
In this section, we will introduce the three key components
of BASGD: buffer, aggregation function, and mapping table.

3.1. Buffer

In BASGD, the m workers do the same job as that in ASGD,
while the updating rule on server is modified. More specifi-
cally, there are B buffers (0 < B < m) on server. When a
gradient g from worker_s is received, it will be temporarily
stored in buffer b, where b = s mod B, as illustrated in
Figure 1. Only when each buffer has stored at least one gra-
dient, a new SGD step will be executed. Please note that no
matter whether a SGD step is executed or not, the server will
immediately send the latest parameters back to the worker
after receiving a gradient. Hence, BASGD introduces no
barrier, and is an asynchronous algorithm.

For each buffer b, more than one gradient may have been
received at iteration t. We will store the average of these
gradients (denoted by hy) in buffer b. Assume that there are
already (IV — 1) gradients g1, g2, .. . ,gN 1 which should
be stored in buffer b, and hy,iq) = N T Zz 1 gl When
the N-th gradient gy is received, the new average value is:

bnew :NZ

This is the updating rule for each buffer b when a gradient is
received. We use N/ to denote the total number of gradients
stored in buffer b at the ¢-th iteration. After the parameter w
is updated, all buffers will be zeroed out at once. With the
benefit of buffers, server has access to B candidate gradients

hb(ald) + = N "gN-

BASGD: Buffered Asynchronous SGD for Byzantine Learning

when updating parameter. Thus, a more reliable (robust)
gradient can be aggregated from the B gradients of buffers,
if a proper aggregation function Aggr(-) is chosen.

Please note that from the perspective of workers, BASGD
is fully asynchronous, since a worker will immediately re-
ceive the latest parameter from the server after sending a
gradient to the server, without waiting for other workers.
Meanwhile, from the perspective of server, BASGD is semi-
asynchronous because the server will not update the model
until all buffers are filled. However, it is a necessity to limit
the updating frequency in ABL when server has no instances.
If the server always updates the model when receiving a gra-
dient, it will be easily foiled when Byzantine workers send
gradients much more frequently than others. A similar con-
clusion has been proved in previous works (Damaskinos
etal., 2018).

3.2. Aggregation Function

When a SGD step is ready to be executed, there are B buffers
providing candidate gradients. An aggregation function is
needed to get the final gradient for updating. A naive way
is to take the mean of all candidate gradients. However,
mean value is sensitive to outliers which are common in BL.
For designing proper aggregation functions, we first define
the g-Byzantine Robust (¢-BR) condition to quantitatively
describe the Byzantine resilience ability of an aggregation
function.

Definition 1 (¢-Byzantine Robust). For an aggregation
Sunction Aggr(-): Aggr([hy,...,hpg|) = G, where G =
[Gl, ey Gd]T and hy, = [hbh ey hbd]T,Vb S [B], we
call Aggr(-) g-Byzantine Robust (¢ € Z,0 < g < B/2), if
it satisfies the following two properties:

(a). Aggr([hy+h',... hp+h']) = Aggr([hy,...
W, Vhy,...,hy € R% Vh' € R

(b) minsES{hsj} < Gj < maXsES{hsj}7 \V/j € [d],
VS C [B] with |S| = B — q.

,hp])+

Intuitively, property (a) in Definition 1 says that if all candi-
date gradients h; are added by a same vector h’, the aggre-
gated gradient will also be added by h’. Property (b) says
that for each coordinate j, the aggregated value G; will be
between the (¢ + 1)-th smallest value and the (¢ + 1)-th
largest value among the j-th coordinates of all candidate
gradients. Thus, the gradient aggregated by a ¢-BR func-
tion is insensitive to at least g outliers. We can find that
g-BR condition gets stronger when ¢ increases. Namely, if
Aggr(-) is ¢-BR, then for any 0 < ¢’ < ¢, Aggr(-) is also
q'-BR.

Remark 1. When B > 1, mean function is not q-Byzantine
Robust for any q > 0. We illustrate this by a one-dimension
example: hy,...,hg_1 € [0,1], and hg = 10 x B. Then
= Ele hy > B =10 ¢ [0,1]. Namely, the mean is

larger than any of the first B — 1 values.

The following two aggregation functions are both ¢g-BR.

Definition 2 (Coordinate-wise median (Yin et al., 2018)).
For candidate gradients hy,hy,....hg € RY h, =
[Po1, P2, - - - hpa)T, Wb = 1,2,..., B. Coordinate-wise
median is defined as:

Med([hy, ..., hg]) = [Med(h.1),..., Med(h.q)]",
where Med(h.;) is the scalar median of the j-th coordi-
nates, Vj = 1,2,...,d.

Definition 3 (Coordinate-wise g-trimmed-mean (Yin et al.,
2018)). For any positive interger ¢ < B/2 and candidate
gradients hi,hy,....hp € Rd, h, = [hbla hpa,s ..., hbd]T

s

Vb =1,2,...,B. Coordinate-wise ¢g-trimmed-mean is de-
fined as:

Trm([hy,...,hp]) = [Trm(h4),...,Trm(h.q)]*,
where Trm(h.;) = B%MZbeMj hy; is the scalar g-

trimmed-mean. M is the subset of {hy;}E_, obtained
by removing the q largest elements and q smallest elements.

In the following content, coordinate-wise median and
coordinate-wise ¢-trimmed-mean are also called median
and trmean, respectively. Proposition 1 shows the g-BR
property of these two functions.

Proposition 1. Coordinate-wise q-trmean is q-BR, and
coordinate-wise median is | 21 |-BR.

Here, || represents the maximum integer that is not larger
than z. According to Proposition 1, both median and trmean
are proper choices for aggregation function in BASGD. The
proof can be found in Appendix B of supplementary materi-
als. Now we define another class of aggregation functions,
which is also important in analysis in Section 4.

Definition 4 (Stable aggregation function). Aggregation
Sunction Aggr(-) is called stable provided thatVhy, ... hp,
hy,...,hpg € RY letting § = (X1, [[hy — hy|[2)2, we
have:

|Aggr(hy, ... hg) — Aggr(hy,..., hg)| <.

If Aggr(-) is a stable aggregation function, it means that
when there is a disturbance with Ly-norm § on buffers, the
disturbance of aggregated result will not be larger than §.

Definition 5 (Effective aggregation function). When there
are at most r Byzantine workers, stable aggregation func-
tion Aggr(-) is called an (Ay, As)-effective aggregation
function, provided that it satisfies the following two proper-
ties for all w* € R in cases without delay (T} = 0, Vt =
0,1,...., 7 —1):

BASGD: Buffered Asynchronous SGD for Byzantine Learning

(i) E[VE(W)T G, [w] > [[VF(W)|* — Ay
(ii). B[[|GEynl” | w'] < (A2)%

where A1, Ay € Ry are two non-negative constants, Ggyn

is the gradient aggregated by Aggr(-) at the t-th iteration
in cases without delay.

For different aggregation functions, constants A; and As
may differ. A; and A, are related to loss function F'(-), dis-
tribution of instances, buffer number B, maximum Byzan-
tine worker number r. Inequalities (i) and (ii) in Definition 5
are two important properties in convergence proof of syn-
chronous Byzantine learning methods. As revealed in (Yang
et al., 2020), there are many existing aggregation rules for
Byzantine learning. We find that most of them satisfy Defini-
tion 5. For example, Krum, median, and trimmed-mean have
already been proved to satisfy these two properties (Blan-
chard et al., 2017; Yin et al., 2018). SignSGD (Bernstein
et al., 2019) can be seen as a combination of 1-bit quanti-
zation and median aggregation, while median satisfies the
properties in Definition 5.

Compared to Definition 1, Definition 5 can be used to obtain
a tighter bound with respect to A; and A;. However, it
usually requires more effort to check the two properties in
Definition 5 than those in Definition 1.

Please note that too large B could lower the updating fre-
quency and damage the performance, while too small B
may harm the Byzantine-resilience. Thus, a moderate B is
usually preferred. In some practical applications, we could
estimate the maximum number of Byzantine workers 7, and
set B to make the aggregation function resilient to up to
r Byzantine workers. In particular, B is suggested to be
(2r 4 1) for median, since median is | 21 |-BR.

3.3. Mapping Table

At each iteration of BASGD, buffer_b needs at least one
gradient for aggregation. In the worst case, all the workers
corresponding to buffer_b may be unresponsive. In this case,
buffer_b will become the straggler, and slow down the whole
learning process. To deal with this problem, we introduce
the mapping table for buffer reassignment technique.

We call a worker active worker if it has responsed at the
current iteration. If SGD step has not been excuted for A
seconds, the server immediately zeroes out stored gradients
in all buffers, equally reassigns active workers to each buffer,
and then continues the learning procedure. Hyper-parameter
A is called reassignment interval. Figure 2 illustrates an
example of reassignment. The grey circles represents unre-
sponsive workers. After reassignment, there are at least one
active worker corresponding to each buffer.

Specifically, we introduce a mapping table {j3,}7" for
buffer reassignment. Initially, s = s (Vs =0,1,...,m —

| Buffer_0 | Buffer_1 ‘ Buffer_2 ‘ Buffer_3 Buffer_4 Buffers on

| e
.-

I }
| (o] |

Buffers on

Buffer.3 the server

Buffer_4

Buffer_0 ‘

Buffer_1]

Buffer_2 ‘

Figure 2. An example of buffer reassignment. White circle repre-
sents active worker, and grey circle represents unresponsive worker.
Before reassignment, buffer_0 is a straggler. After reassignment,
there are at least one active worker corresponding to each buffer.

1). When reassigning buffers, the server only needs to mod-
ify the mapping table {5 ;”:_01, and then stores worker_s’s
gradients in buffer_{3; mod B}, instead of buffer_{s mod
B} any more. Please note that the server only needs to
modify the mapping table for buffer reassignment, and there

is no need to notify workers.

Besides, a timer is used on the server for indicating when
to reassign buffers. The timer is started at the beginning
of BASGD, and is restarted immediately after each SGD
step or buffer reassignment. When the timer exceeds A sec-
onds, buffers will be zeroed out, and reassignment executed.
Hyper-parameter A should be set properly. If A is too
small, buffers will be zeroed out too frequently, which may
slow down the learning process. If A is too large, straggler
buffers could not be eliminated in time.

4. Convergence

In this section, we theoretically prove the convergence and
resilience of BASGD against failure or attack. There are
two main theorems. The first theorem presents a relatively
loose but general bound for all g-BR aggregation functions.
The second one presents a relatively tight bound for each
distinct (A1, Ay)-effective aggregation function. Since the
definition of (A1, Ay)-effective aggregation function is usu-
ally more difficult to verify than ¢-BR property, the general
bound is also useful. Here we only present the results.
Proof details are in Appendix B of supplementary materials.

BASGD: Buffered Asynchronous SGD for Byzantine Learning

We first make the following assumptions, which have been
widely used in stochastic optimization.

Assumption 1 (Lower bound). Global loss function F(w)
is bounded below: 3F* € R, F(w) > F* Vw € R%

Assumption 2 (Bounded bias). For any loyal worker; it can
use locally stored training instances to estimate global gra-
dient with bounded bias r: |E[V f(w;z;)] — VE(w)| <
K, Yw € R%,

Assumption 3 (Bounded gradient). VF(w) is bounded:
D € RY|[VF(w)|| < D, Yw € R4

Assumption 4 (Bounded variance). E[||Vf(w;z;) —
E[Vf(w;z) | w]||?| w] < o2, Vw € R%

Assumption 5 (L-smoothness). Global loss function F(w)
is differentiable and L-smooth: ||VF(w) — VF(w')|| <
L|lw — w'||, Vw,w’ € R%

Let N® be the (g + 1)-th smallest value in {N{},e(p).
where N/ is the number of gradients stored in buffer b at the
t-th iteration. We define the constant

(B-=r)vB—-r+1
VB—q-1g—r+1)

which will appear in Lemma 1 and Lemma 2.

Apgr=

Lemma 1. If Aggr(-) is ¢-BR, and there are at most r
Byzantine workers (r < q), we have:

E[||GY|? | w'] < Apg.d- (D* +0?/NW).

Lemma 2. If Aggr(-) is ¢-BR, and the total number of
heavily delayed workers and Byzantine workers is not larger
than r (r < q), we have:

[E[G' — VF(w') | w']||
b d(nasL - Mg d(D + 2 NOYE 4+ 1),
Theorem 1. Let D = % Z:Ol(DQ + 02/N(t))%. If
Aggr(-) is ¢-BR, B = O(r), and the total number of heav-

ily delayed workers and Byzantine workers is not larger
than r (r < q), with learning rate n = O(ﬁ), we have:

o <L[F(wj‘2 - F*])

S EVE(wY)|?)
T

IA

Lo 1 rdD 1 +O(rDdo 1)
Ti(g—r+1)2 (¢—r+1)2

N o(rDdr) Lo r2LDDA> 7,y
(qfrJrl)% (qfr+1)% .

Please note that the convergence rate of vanilla ASGD is
O(T~ 7). Hence, Theorem 1 indicates that BASGD has a
theoretical convergence rate as fast as vanilla ASGD, with

an extra constant variance. The term O(rDdo(q — r +
1)*%) is caused by the aggregation function, which can be
deemed as a sacrifice for Byzantine resilience. The term
O(rDdr(q — r 4+ 1)~2) is caused by the differences of
training instances among different workers. In independent
and identically distributed (i.i.d.) cases, x = 0 and the term
vanishes. The term O(T%LDDd%me(q —r+ 1)_%) is
caused by the delay, and related to parameter 7,,,,. The
term is also related to the buffer size. When NV, ,f increases,
N® may increase, and thus D will decrease. Namely, larger
buffer size will result in smallg:r D. Besides, the factor
(q—r+1)"2 or (¢ — r + 1)~ 7 decreases as ¢ increases,
and increases as 7 increases.

Although general, the bound presented in Theorem 1 is
relatively loose in high-dimensional cases, since d appears
in all the three extra terms. To obtain a tighter bound, we
introduce Theorem 2 for BASGD with (A4;, As)-effective
aggregation function (Definition 5).

Theorem 2. If the total number of heavily delayed workers
and Byzantine workers is not larger than v, B = O(r),
and Aggr(+) is an (A1, As)-effective aggregation function
. . . . o 1 .

in this case. With learning rate n = O(—\/ﬁ) in general
asynchronous cases we have:

o BIVEWIP _ (L%[ﬂw% - F*])

Theorem 2 indicates that if Aggr(-) makes a synchronous
BL method converge (i.e., satisfies Definition 5), BASGD
converges when using Aggr(-) as aggregation function.
Hence, BASGD can also be seen as a technique of asyn-
chronization. That is to say, new asynchronous meth-
ods can be obtained from synchronous ones when using
BASGD. The extra constant term A; is caused by gradi-
ent bias. When there is no Byzantine workers (r = 0),
and instances are i.i.d. across workers, letting B = 1 and
Aggr(hy,... ., hg) = Aggr(h;) = h;, BASGD degener-
ates to vanilla ASGD. In this case, there is no gradient bias
(A; = 0), and BASGD has a convergence rate of O(l/\/f)
which is the same as that of vanilla ASGD (Liu & Zhang,
2021).

Meanwhile, it remains uncertain whether the dependence
to the staleness parameter T,,q, is tight enough. Theo-
rem 2 illustrates that BASGD has a convergence rate of
O(Tmaz/T'?), while the convergence rate of vanilla ASGD
can reach O(Tyq./T"). To the best of our knowledge, there

BASGD: Buffered Asynchronous SGD for Byzantine Learning

exist few works revealing the tightness of 7,4, in asyn-
chronous BL, and we will leave this for future work.

In general cases, Theorem 2 guarantees BASGD to find
a point such that the squared Lo-norm of its gradient is
not larger than A; (but not necessarily around a stationary
point), in expectation. Please note that Assumption 3 already
guarantees that gradient’s squared Lo-norm is not larger
than D?. We introduce Proposition 2 to show that A; is
guaranteed to be smaller than D? under a mild condition.

Proposition 2. Aggr(-) is an (A1, As)-effective aggrega-
tion function, and G’;yn is aggregated by Aggr(-) in syn-
chronous setting. If E[|GL,,, — VF(w')|| | w'] < D,
Ywt € R?, then we have A, < D2

G, is the aggregated result of Aggr(:), and is a ro-
bust estimator of VF(w') used for updating. Since

IVF(wh)|| < D, VF(w?) locates in a ball with radius

D. E[|G,, — VF(w")|| | w'] < D means that the bias
of Giyn is not larger than the radius D, which is a mild

condition for Aggr(-).

As many existing works have shown (Assran et al., 2020;
Nokleby et al., 2020), speed-up is also an important aspect
of distributed learning methods. In BASGD, different work-
ers can compute gradients concurrently, make each buffer be
filled more quickly, and thus speed up the model updating.
However, we mainly focus on Byzantine-resilience in this
work. Speed-up will be thoroughly studied in future work.

5. Experiment

In this section, we empirically evaluate the performance of
BASGD and baselines in both image classification (IC) and
natural language processing (NLP) applications. Our exper-
iments are conducted on a distributed platform with dock-
ers. Each docker is bound to an NVIDIA Tesla V100 (32G)
GPU (in IC) or an NVIDIA Tesla K80 GPU (in NLP). Please
note that different GPU cards do not affect the reported met-
rics in the experiment. We choose 30 dockers as workers
in IC, and 8 dockers in NLP. An extra docker is chosen as
server. All algorithms are implemented with PyTorch 1.3.

5.1. Experimental Setting

We compare the performance of different methods under two
types of attack: negative gradient attack (NG-attack) and
random disturbance attack (RD-attack). Byzantine workers
with NG-attack send gnyo = —kqyi - g to server, where g is
the true gradient and k.5, € Ry is a parameter. Byzantine
workers with RD-attack send grp = g + g,nq to server,
where g,.,,q 1S a random vector sampled from normal distri-
bution N (0, ||oasrgl|? - I). Here, o4y is a parameter and I
is an identity matrix. NG-attack is a typical kind of mali-
cious attack, while RD-attack can be seen as an accidental

failure with expectation 0. Besides, each worker is manually
set to have a delay, which is k4e; times the computing time.
Training set is randomly and equally distributed to different
workers. We use the average top-1 test accuracy (in IC) or
average perplexity (in NLP) on all workers w.r.t. epochs as
final metrics. For BASGD, we use median and trimmed-
mean as aggregation function. Reassignment interval is set
to be 1 second. Top-1 test accuracy (in IC) w.r.t. wall-clock
time of BASGD with more aggregation functions is reported
in Appendix C of supplementary material.

Because BASGD is an ABL method, SBL methods can-
not be directly compared with BASGD. The ABL method
Zeno++ either cannot be directly compared with BASGD,
because Zeno++ needs to store some instances on server.
The number of instances stored on server will affect the
performance of Zeno++ (Xie et al., 2020). Hence, we com-
pare BASGD with ASGD and Kardam in our experiments.
We set dampening function A(7) = H% for Kardam as
suggested in (Damaskinos et al., 2018).

5.2. Image Classification Experiment

In IC experiment, algorithms are evaluated on CIFAR-
10 (Krizhevsky et al., 2009) with deep learning model
ResNet-20 (He et al., 2016). Cross-entropy is used as
the loss function. We set k., = 10 for NG-attack, and
oqtk = 0.2 for RD-attack. kg is randomly sampled from
truncated standard normal distribution within [0, +00). As
suggested in (He et al., 2016), learning rate 7 is set to 0.1
initially for each algorithm, and multiplied by 0.1 at the
80-th epoch and the 120-th epoch respectively. The weight
decay is set to 10~4. We run each algorithm for 160 epochs.
Batch size is set to 25.

Firstly, we compare the performance of different methods
when there are no Byzantine workers. Experimental results
with median and trmean aggregation functions are illustrated
in Figure 3(a) and Figure 3(d), respectively. ASGD achieves
the best performance. BASGD (B > 1) and Kardam have
similar convergence rate to ASGD, but both sacrifice a little
accuracy. Besides, the performance of BASGD gets worse
when the buffer number B increases, which is consistent
with the theoretical results. Please note that ASGD is a
degenerated case of BASGD when B = 1 and Aggr(h;) =
h;. Hence, BASGD can achieve the same performance as
ASGD when there is no failure or attack.

Then, for each type of attack, we conduct two experiments
in which there are 3 and 6 Byzantine workers, respectively.
We respectively set 10 and 15 buffers for BASGD in these
two experiments. For space saving, we only present average
top-1 test accuracy in Figure 3(b) and Figure 3(e) (3 Byzan-
tine workers), and Figure 3(c) and Figure 3(f) (6 Byzantine
workers). Results about training loss are in Appendix C. We
can find that BASGD significantly outperforms ASGD and

BASGD: Buffered Asynchronous SGD for Byzantine Learning

4
=]

3

3

ASGD
——BASGD with median (B=10)
—*—BASGD with trmean (B=10, q=3)
—A-Kardam (y=3) 10
—#—Kardam (y=6)

S

ASGD

——BASGD with median (B=15)
—*—BASGD with trmean (B=15, q=6)
—A-Kardam (y=6)

—#—Kardam (y=10)

Average Top-1 Accuracy
X 8 5 9 g

S

Epoch

(b) 3 Byzantine workers (RD-attack)

80 100 120 140 160 0 20 40 60 80 100 120 140 160
Epoch

(c) 6 Byzantine workers (RD-attack)

S
=

ASGD
—0—BASGD with median (B=10)
—+—=BASGD with trmean (B=10, q=3)
—+—Kardam (y=3)
—e—Kardam (v=8)
—#—Kardam (y=14)

3

ASGD

—0—BASGD with median (B=15)
—*—BASGD with trmean (B=15, q=6)
—+—Kardam (y=6)

—e—Kardam (y=10)

3

]

Average Top-1 Accuracy
N 8 8 g9 g

S

—%-Kardam (y=14)

90 80
85
3 37
g 80 g
37 goo
< <
- 70 e 50
& &
265 ASGD 2 a0
60 ——BASGD with median (B=5) o
£ —+—BASGD with median (B=10) g0
z% —»—BASGD with median (B=15) Z 0
50 —e—BASGD with median (B=30) R
5 ~#- Kardam (v=2) 10
7 ~#- Kardam (y=10)
40 = 0
0 20 40 60 80 100 120 140 160 0 20 40 60
Epoch
(a) no attack
95 90
90 80
85
> 70
g s g 60
< 70 < 50
& &
265 ASGD © 40
260 #—0—BASGD with trmean (B=5, q=1) 3
g ——BASGD with trmean (B=10, q=3) g0
z® —+—BASGD with trmean (B=15, g=5) Zx
50 4 —6—-BASGD with trmean (B=30, q=10)
-2 Kardam (y=2) 1 2
45 % Kardam (y=10) = S

e o~ o~ e O U S SR o

IS
3

)

0 20 40 60 80 100 120 140 160 0 20 40 60
Epoch

(d) no attack

Epoch

(e) 3 Byzantine workers (NG-attack)

80 100 120 140 160 0 20 40 60 80 100
Epoch

120 140 160

(f) 6 Byzantine workers (NG-attack)

Figure 3. Average top-1 test accuracy w.r.t. epochs when there are no Byzantine workers (left column), 3 Byzantine workers (middle
column) and 6 Byzantine workers (right column), respectively. Subfigures (b) and (c) are for RD-attack, while (e) and (f) for NG-attack.

Table 1. Filtered ratio of received gradients in Kardam under NG-attack in IC task (3 Byzantine workers)

TERM | BY FREQUENCY FILTER BY LiPSCHITZ FILTER IN TOTAL
LOYAL GRADS (v = 3) 10.15% (31202/307530) 40.97% (126000/307530) 51.12%
BYZANTINE GRADS (y = 3) 10.77% (3681/34170) 40.31% (13773/34170) 51.08%
LoYAL GRADS (v = 8) 28.28% (86957/307530) 28.26% (86893/307530) 56.53%
BYZANTINE GRADS (y =8) | 28.38% (9699/34170) 28.06% (9588/34170) 56.44%
LOYAL GRADS (y = 14) 85.13% (261789/307530) 3.94% (12117/307530) 89.07%
BYZANTINE GRADS (7 = 14) | 84.83% (28985/34170) 4.26% (1455/34170) 89.08%

Kardam under both RD-attack (accidental failure) and NG-
attack (malicious attack). Under the less harmful RD-attack,
although ASGD and Kardam still converge, they both suf-
fer a significant loss on accuracy. Under NG-attack, both
ASGD and Kardam cannot converge, even if we have tried
different values of assumed Byzantine worker number for
Kardam, which is denoted by a hyper-parameter + in this
paper. Hence, both ASGD and Kardam cannot resist mali-
cious attack. On the contrary, BASGD still has a relatively
good performance under both types of attack.

Moreover, we count the ratio of filtered gradients in Kardam,
which is shown in Table 1. We can find that in order to
filter Byzantine gradients, Kardam also filters approximately
equal ratio of loyal gradients. It explains why Kardam
performs poorly under malicious attack.

5.3. Natural Language Processing Experiment

In NLP experiment, the algorithms are evaluated on the
WikiText-2 dataset with LSTM (Hochreiter & Schmidhuber,
1997) networks. We only use the training set and test set,
while the validation set is not used in our experiment. For
LSTM, we adopt 2 layers with 100 units in each. Word
embedding size is set to 100, and sequence length is set to
35. Gradient clipping size is set to 0.25. Cross-entropy is
used as the loss function. For each algorithm, we run each
algorithm for 40 epochs. Initial learning rate 7 is chosen
from {1, 2,5, 10,20}, and is divided by 4 every 10 epochs.
The best test result is adopted as the final one.

The performance of ASGD under no attack is used as gold
standard. We set kg = 10 and 044 = 0.1. One of the
eight workers is Byzantine. k4¢; is randomly sampled from

BASGD: Buffered Asynchronous SGD for Byzantine Learning

Logarithm of Perplexity

50 ASGD (no attack)
—*—BASGD with median (B=4)
—*—Kardam (y=1)
-A-Kardam (y=3)
—*—ASGD

0 5 10 15 20 25 30 35 40
Epoch

(a) RD-attack

x10*

=
S

ASGD (no attack)
—%—BASGD with median (B=4)
—*—Kardam (y=1)
~A—Kardam (1=3)

—*—ASGD

Logarithm of Perplexity
ok v w s oo N ®

o

5 10 15 20 25 30 35 40
Epoch

(c) NG-attack

H
S
S
s

©
3
3

@
3
S

~
]
3

2
3
3

ASGD (no attack)
——BASGD with median (B=4)

Perplexity
P
8 g
8 8

@
8
3

N
S
3

e
S
3

0 5 10 15 20 25 30 35 40
Epoch

(b) RD-attack (magnified)

H
S
3
3

o
3
3

®
3
3

~
1=}
3

@
3
S

ASGD (no attack)
——BASGD with median (B=4)

Perplexity
g
8

s
38
3

w
8
3

N
S
3

"
S
S

o

0 5 10 15 20 25 30 35 40
Epoch

(d) NG-attack (magnified)

Figure 4. Average perplexity w.r.t. epochs with 1 Byzantine worker. Subfigures (a) and (b) are for RD-attack, while Subfigures (c) and
(d) for NG-attack. Due to the differences in magnitude of perplexity, y-axes of Subfigures (a) and (c) are in log-scale. In addition,
Subfigures (b) and (d) illustrate that BASGD converges with only a little loss in perplexity compared to the gold standard.

exponential distribution with parameter A = 1. Each experi-
ment is carried out for 3 times, and the average perplexity is
reported in Figure 4. We can find that BASGD converges
under each kind of attack, with only a little loss in perplexity
compared to the gold standard (ASGD without attack). On
the other hand, ASGD and Kardam both fail, even if we
have set the largest v (v = 3) for Kardam.

6. Conclusion

In this paper, we propose a novel method called BASGD for
asynchronous Byzantine learning. To the best of our knowl-
edge, BASGD is the first ABL method that can resist mali-
cious attack without storing any instances on server. Com-
pared with those methods which need to store instances on
server, BASGD has a wider scope of application. BASGD
is proved to be convergent, and be able to resist failure or
attack. Empirical results show that BASGD significantly
outperforms vanilla ASGD and other ABL baselines, when
there exists failure or attack on workers.

Acknowledgements

This work is supported by National Key R&D Program
of China (No. 2020YFA0713900), NSFC-NRF Joint Re-

search Project (No. 61861146001) and NSFC Project (No.
61921006).

References

Alistarh, D., Allen-Zhu, Z., and Li, J. Byzantine stochastic
gradient descent. In Advances in Neural Information
Processing Systems, pp. 4613-4623, 2018.

Assran, B. M., Aytekin, A., Feyzmahdavian, H. R., Johans-
son, M., and Rabbat, M. G. Advances in asynchronous
parallel and distributed optimization. Proceedings of the
IEEE, 108(11):2013-2031, 2020.

Baruch, G., Baruch, M., and Goldberg, Y. A little is enough:
Circumventing defenses for distributed learning. In Ad-

vances in Neural Information Processing Systems, pp.
8635-8645, 2019.

Bernstein, J., Zhao, J., Azizzadenesheli, K., and Anandku-
mar, A. signSGD with majority vote is communication
efficient and fault tolerant. In Proceedings of the Interna-
tional Conference on Learning Representations, 2019.

Blanchard, P., Guerraoui, R., Stainer, J., et al. Machine
learning with adversaries: Byzantine tolerant gradient

BASGD: Buffered Asynchronous SGD for Byzantine Learning

descent. In Advances in Neural Information Processing
Systems, pp. 119-129, 2017.

Bottou, L. Large-scale machine learning with stochastic
gradient descent. In Proceedings of the International
Conference on Computational Statistics, pp. 177-186.
Springer, 2010.

Chen, Y., Su, L., and Xu, J. Distributed statistical machine
learning in adversarial settings: Byzantine gradient de-
scent. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 1(2):1-25, 2017.

Damaskinos, G., Guerraoui, R., Patra, R., Taziki, M., et al.
Asynchronous Byzantine machine learning (the case of
SGD). In Proceedings of the International Conference
on Machine Learning, pp. 1145-1154, 2018.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao,
M., Ranzato, M., Senior, A., Tucker, P., Yang, K., et al.
Large scale distributed deep networks. In Advances in
Neural Information Processing Systems, pp. 1223-1231,
2012.

Diakonikolas, I. and Kane, D. M. Recent advances in algo-
rithmic high-dimensional robust statistics. arXiv preprint
arXiv:1911.05911, 2019.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra,
A., and Stewart, A. Being robust (in high dimensions)
can be practical. In Proceedings of the International
Conference on Machine Learning, pp. 999-1008, 2017.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121-
2159, 2011.

Haddadpour, F., Kamani, M. M., Mahdavi, M., and
Cadambe, V. Trading redundancy for communication:
Speeding up distributed SGD for non-convex optimiza-
tion. In Proceedings of the International Conference on
Machine Learning, pp. 2545-2554, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition,

pp. 770-778, 2016.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 9(8):1735-1780, 1997.

Jaggi, M., Smith, V., Takdc, M., Terhorst, J., Krishnan, S.,
Hofmann, T., and Jordan, M. I. Communication-efficient
distributed dual coordinate ascent. In Advances in Neural
Information Processing Systems, pp. 3068-3076, 2014.

Johnson, R. and Zhang, T. Accelerating stochastic gradient
descent using predictive variance reduction. In Advances
in Neural Information Processing Systems, pp. 315-323,
2013.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems in
federated learning. arXiv:1912.04977,2019.

Koneveny, J., McMahan, H. B., Yu, F. X., Richtarik,
P, Suresh, A. T., and Bacon, D. Federated learn-
ing: Strategies for improving communication efficiency.
arXiv:1610.05492, 2016.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. Technical report, 2009.

Lee, J. D, Lin, Q., Ma, T., and Yang, T. Distributed stochas-
tic variance reduced gradient methods by sampling extra
data with replacement. The Journal of Machine Learning
Research, 18(1):4404-4446, 2017.

Li, M., Andersen, D. G., Smola, A. J., and Yu, K. Com-
munication efficient distributed machine learning with
the parameter server. In Advances in Neural Information
Processing Systems, pp. 19-27, 2014.

Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., and
Liu, J. Can decentralized algorithms outperform central-
ized algorithms? a case study for decentralized parallel
stochastic gradient descent. In Advances in Neural Infor-
mation Processing Systems, pp. 5330-5340, 2017.

Lin, Q., Lu, Z., and Xiao, L. An accelerated proximal coordi-
nate gradient method. In Advances in Neural Information
Processing Systems, pp. 3059-3067, 2014.

Liu, J. and Zhang, C. Distributed learning systems with
first-order methods. arXiv preprint arXiv:2104.05245,
2021.

Ma, C., Smith, V., Jaggi, M., Jordan, M., Richtérik, P., and
Takac, M. Adding vs. averaging in distributed primal-
dual optimization. In Proceedings of the International
Conference on Machine Learning, pp. 1973-1982, 2015.

Nokleby, M., Raja, H., and Bajwa, W. U. Scaling-up dis-
tributed processing of data streams for machine learning.
arXiv preprint arXiv:2005.08854, 2020.

Schmidt, M., Le Roux, N., and Bach, F. Minimizing finite
sums with the stochastic average gradient. Mathematical
Programming, 162(1-2):83-112, 2017.

Shalev-Shwartz, S. and Zhang, T. Stochastic dual coordinate
ascent methods for regularized loss minimization. Jour-
nal of Machine Learning Research, 14(Feb):567-599,
2013.

BASGD: Buffered Asynchronous SGD for Byzantine Learning

Shamir, O., Srebro, N., and Zhang, T. Communication-
efficient distributed optimization using an approximate
newton-type method. In Proceedings of the International
Conference on Machine Learning, pp. 1000-1008, 2014.

Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. Edge com-
puting: Vision and challenges. IEEE Internet of Things
Journal, 3(5):637-646, 2016.

Sun, S., Chen, W., Bian, J., Liu, X., and Liu, T.-Y. Slim-
dp: a multi-agent system for communication-efficient
distributed deep learning. In Proceedings of the 17th In-
ternational Conference on Autonomous Agents and Mul-
tiAgent Systems, pp. 721-729, 2018.

Wangni, J., Wang, J., Liu, J., and Zhang, T. Gradient spar-
sification for communication-efficient distributed opti-
mization. In Advances in Neural Information Processing
Systems, pp. 1299-1309, 2018.

Xiao, L. Dual averaging methods for regularized stochastic
learning and online optimization. Journal of Machine
Learning Research, 11(Oct):2543-2596, 2010.

Xie, C., Koyejo, S., and Gupta, I. Zeno: Distributed stochas-
tic gradient descent with suspicion-based fault-tolerance.
In Proceedings of the International Conference on Ma-
chine Learning, pp. 6893-6901, 2019.

Xie, C., Koyejo, S., and Gupta, I. Zeno++: Robust fully
asynchronous SGD. In Proceedings of the International
Conference on Machine Learning, 2020.

Yang, T. Trading computation for communication: Dis-
tributed stochastic dual coordinate ascent. In Advances
in Neural Information Processing Systems, pp. 629—637,
2013.

Yang, Z., Gang, A., and Bajwa, W. U. Adversary-resilient
distributed and decentralized statistical inference and ma-
chine learning: An overview of recent advances under the
byzantine threat model. IEEE Signal Processing Maga-
zine, 37(3):146-159, 2020.

Yin, D., Chen, Y., Kannan, R., and Bartlett, P. Byzantine-
robust distributed learning: Towards optimal statistical

rates. In Proceedings of the International Conference on
Machine Learning, pp. 5650-5659, 2018.

Yin, D., Chen, Y., Kannan, R., and Bartlett, P. Defending
against saddle point attack in byzantine-robust distributed
learning. In Proceedings of the International Conference
on Machine Learning, pp. 7074-7084, 2019.

Yu, H., Jin, R., and Yang, S. On the linear speedup analy-
sis of communication efficient momentum SGD for dis-
tributed non-convex optimization. In Proceedings of the
International Conference on Machine Learning, pp. 7184—
7193, 2019a.

Yu, H., Yang, S., and Zhu, S. Parallel restarted SGD with
faster convergence and less communication: Demystify-
ing why model averaging works for deep learning. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pp. 5693-5700, 2019b.

Zhang, L., Mahdavi, M., and Jin, R. Linear convergence
with condition number independent access of full gra-
dients. In Advances in Neural Information Processing
Systems, pp. 980-988, 2013.

Zhang, R. and Kwok, J. Asynchronous distributed admm for
consensus optimization. In Proceedings of the Interna-
tional Conference on Machine Learning, pp. 1701-1709,
2014.

Zhao, S.-Y., Xiang, R., Shi, Y.-H., Gao, P., and Li, W.-J.
SCOPE: scalable composite optimization for learning
on spark. In Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 2928-2934. AAAI Press, 2017.

Zhao, S.-Y., Zhang, G.-D., Li, M.-W.,, and Li, W.-J. Proxi-
mal SCOPE for distributed sparse learning. In Advances
in Neural Information Processing Systems, pp. 6551—
6560, 2018.

Zheng, S., Meng, Q., Wang, T., Chen, W., Yu, N., Ma,
Z.-M., and Liu, T.-Y. Asynchronous stochastic gradient
descent with delay compensation. In Proceedings of

the International Conference on Machine Learning, pp.
4120-4129, 2017.

Zhou, Y., Liang, Y., Yu, Y., Dai, W., and Xing, E. P. Dis-
tributed proximal gradient algorithm for partially asyn-
chronous computer clusters. The Journal of Machine
Learning Research, 19(1):733-764, 2018.

Zinkevich, M., Weimer, M., Li, L., and Smola, A. J. Paral-
lelized stochastic gradient descent. In Advances in Neural
Information Processing Systems, pp. 2595-2603, 2010.

