
Architectural Universality of Neural Tangent Kernel Training Dynamics

Appendix organization The appendix is organized as follows:
In Appendix A we expands upon the examples given in Section 3, while adding some additional details.
In Appendix B we introduce the formal version of the NETSOR>,NETSOR>+ programs.
In Appendix C we introduce the graphical notation of NETSOR>+ and demonstrate other examples of architectures or
computations expressible in Tensor Programs.
In Appendix D we prove our main result.

Notations For the readers convenience we restate the notations described in Section 2, along with some additional
ones which will be used throughout the appendix. We will consider SGD with batch size 1 and learning rate of 1
(WLOG).We use ξt to denote the input and Lt to denote the loss function (absorbing the label) at step t. More generally,
subscript t on any symbol means time t. However, for brevity, we abuse notation and shorthand ft for ft(ξt), and, for
any (pre-)activation x, xt for xt(ξt). We will also write χt for the loss derivative L′t(ft). For any vector x(ξ) we define
δxt+1(ξ) def

=
√
n
(
xt+1(ξ) − xt(ξ)

)
and dx(ξ) def

=
√
n∂f(ξ)
∂x(ξ) . We will track the evolution of f on an arbitrary input ξ̃.22

Similar to above, we shorthand x̃t, f̃t for xt(ξ̃), ft(x̃). In general, omitting the time index t for any time dependent quantity
implies its value at initialization. (i.e x(ξ) = x0(ξ), f(ξ) = f0(ξ)). Finally, we use , to imply equality of symbols (i.e
W 1 ,W 2 iff W 1,W 2 represent the same variable, as opposed to equality in value).

A. Additional Examples
In this section we flesh out the examples given in Section 3 of the main text with the purpose of adding additional clarity,
while maintaining the intuitive arguments as presented in each example to perform these calculations. The rigorous
justification for these calculations will be given in the following section with the formal introduction of the Tensor Program
framework.

Recall that our objective is to derive Claim 3.1 by tracking the coordinate distribution of each (pre-)activations vector
x(ξ), dx(ξ) def

=
√
n∂f(ξ)
∂x(ξ) , δx(ξ) def

=
√
n
(
xt+1(ξ)− xt(ξ)

)
.

Claim 3.1. In the large width limit, f̃t = ft(ξ̃) changes by

lim
n→∞

f̃t+1 − f̃t = −χ̊tK̊(ξ̃, ξt) (3)

at step t, where K̊ is the limiting NTK of the architecture and χ̊t = L′t(limn ft) is the loss derivative.

In our calculations we will rely on the following rules relating to the coordinates of any Rn (pre-)activation vector x(ξ) in
the large width regime, which we will later formalize:

• xt+1(ξ)− xt(ξ) has Θ(1√
n

) coordinates.

• δxt+1(ξ) has Θ(1) coordinates.

• xt(ξ) = x(ξ) + o(1). Consequently Zxt(ξ) = Zx(ξ).

• If x(ξ) = φ
(
y(ξ)

)
for some vector y(ξ) ∈ Rn, then by Taylor approximation δxt+1(ξ) =

√
n
(
φ(yt(ξ) + δyt+1(ξ)√

n
)−

φ(yt(ξ))
)
≈ φ′

(
yt(ξ)

)
� δyt+1(ξ). Consequently Zδxt+1(ξ) = φ′(Zyt(ξ))Zδyt+1(ξ).

Remark A.1. We write Zx to denote the limit coordinate distribution of x ∈ Rn conditioned on the output function f
at initialization. Consequently we write EXxZy to express a conditional expectation given the output function f . See
Appendix B for the formal statement.

A.1. 1 hidden layer

Recall our model is of the form:

f = V >x, x = φ(h), h = Uξ

where ξ ∈ Rd, U = u√
d
∈ Rn×d, V = v√

n
∈ Rn×1, for trainable parameter tensor u, initialized iid from N (0, 1), and

d = 1.
22It might help to think of ξ̃ as some test sample, but it can also fall in the training set.

Architectural Universality of Neural Tangent Kernel Training Dynamics

Deriving The NTK The infinite width NTK of this architecture is given by:

K(ξ, ξ̃) = 〈∇uf(ξ),∇uf(ξ̃)〉 = ξ>ξ̃
dh(ξ)>dh(ξ̃)

n
(27)

dh(ξ) def
=
√
n
∂f(ξ)

∂h(ξ)
= φ′(h(ξ))� v. (28)

Therefore, by LLN it follows:23

K̊(ξ, ξ̃) = ξ>ξ̃ lim
n→∞

dh(ξ)>dh(ξ̃)

n
= ξ>ξ̃ Eφ′(Zh(ξ̃))φ′(Zh(ξ)). (29)

Getting Claim 3.1 To show that Claim 3.1 holds with the kernel in Eq. (29), we track the coordinate distribution Zδx̃t+1

at each step of SGD. At step t, the update to the weights ut+1 − ut is given by the gradient of the loss with respect to ut:

ut+1 − ut = −χt
dhtξ

>
t√
n

, dht = φ′(ht)� v (30)

Recall that δh̃t+1 =
√
n(h̃t+1 − h̃t) =

√
n(ut+1ξ̃ − utξ̃) and δx̃t+1 =

√
n(x̃t+1 − x̃t). It therefore follows:

δh̃t+1 = −χtξ>t ξ̃φ′(ht)� v, δx̃t+1 =
√
n
(
φ(h̃t +

δh̃t+1√
n

)− φ(h̃t)
)
. (31)

Since ht = Θ(1) and δh̃t+1 = Θ(1), for large n we may Taylor expand φ to first order around h̃t:

δx̃t+1 ≈
√
n
(
φ(h̃t) +

1√
n
φ′(h̃t)� δh̃t+1 − φ(h̃t)

)
(32)

= φ′(h̃t)� δh̃t+1 (33)

= −χtξ>t ξ̃φ′(h̃t)� φ′(ht)� v. (34)

Again since δht(ξ) = Θ(1), it follows that ht(ξ) = h(ξ) +
∑t
s=1

δhs(ξ)√
n

= h(ξ) + o(1). Hence, in the infinite width limit

the coordinate distribution of ht(ξ) is identical to the coordinate distribution of h(ξ) (i.e Zht(ξ) = Zh(ξ)). Using Eq. (34),
the coordinate distribution of δx̃t+1 is given by:

Zδx̃t+1 = −χ̊tξ>t ξ̃φ′(Z h̃t)φ′(Zht)Zv. (35)

In the large width limit, the change in the output is simply given by f̃t+1 − f̃t = v>δx̃t+1

n = EZδx̃t+1Zv. Using Eq. (35)
and the independence of Zv from the other random variables,24

EZδx̃t+1Zv = −E χ̊tξ>t ξ̃φ′(Z h̃t)φ′(Zht)(Zv)2 (36)

= −χ̊tξ>t ξ̃ Eφ′(Z h̃t)φ′(Zht) (37)

= −χ̊tK̊(ξt, ξ̃). (38)

A.2. 2 hidden layers

Recall our model is of the form:

f = V >x, x = φ(h), h = Wz

z = φ(g), g = Uξ

where U = u√
d
∈ Rn×d, W = w√

n
∈ Rn×n, V = v√

n
∈ Rn×1, for trainable parameters u,w, initialized iid from a normal

distribution. As before we assume the last layer is not trained, and d = 1.

23While in Remark A.1, we said E denotes expectation conditioned on lim f0, the NTK here does not actually depend on lim f0.
24Again, as in Footnote 10, the expectations in Appendices A.1 and A.2 should more rigorously be interpreted as expectation conditional

on the function values of lim f0.

Architectural Universality of Neural Tangent Kernel Training Dynamics

Deriving The NTK The infinite width NTK is given by:

K(ξ, ξ̃) = 〈∇uf(ξ),∇uf(ξ̃)〉+ 〈∇wf(ξ),∇wf(ξ̃)〉 (39)

= ξ>ξ̃
dg(ξ)>dg(ξ̃)

n
+
z(ξ)>z(ξ̃)

n

dh(ξ)>dh(ξ̃)

n
(40)

dh(ξ) def
=
√
n
∂f(ξ)

∂h(ξ)
= φ′

(
h(ξ)

)
� v (41)

dg(ξ) def
=
√
n
∂f(ξ)

∂g(ξ)
= φ′

(
g(ξ)

)
�
(
W>dh(ξ)

)
. (42)

Naively using LLN on Eq. (39) (and Zv being independent from everything else) should result in:

K(ξ, ξ̃) = ξ>ξ̃ E
[
Zdg(ξ)Zdg(ξ̃)

]
+ E

[
Zz(ξ)Zz(ξ̃)

]
E
[
φ′(Zh(ξ))φ′(Zh(ξ̃))

]
. (43)

Evaluating the term E
[
Zdg(ξ)Zdg(ξ̃)

]
however presents a challenge since dh(ξ) depends on both W and W>. As it turns

out, at initialization we may naively assume that W>,W are independent (formally known in the literature as gradient
independence assumption, or GIA) 25, we arrive using simple LLN arguments to:

E
[
Zdg(ξ)Zdg(ξ̃)

]
= E[φ′(Zg(ξ))φ′(Zg(ξ̃))]E[φ′(Zh(ξ))φ′(Zh(ξ̃))]. (44)

Plugging Eq. (44) into Eq. (43) we arrive at the correct expression for the infinite width NTK.

Getting Claim 3.1 To show that Claim 3.1 holds at any step t (where we may not assume that GIA holds), we track the
distributions of the vectors g(ξ), z(ξ), h(ξ), x(ξ) throughout training.

At any step t the weights are updated according to:

ut+1 − ut = −χt
dgtξ

>
t√
n
, wt+1 − wt = −χt

dhtz
>
t

n
. (45)

The update δg̃t+1
def
=
√
n(g̃t+1 − g̃t), δz̃t+1

def
=
√
n(z̃t+1 − z̃t) are given by:

δg̃t+1 = −χtdgtξ>t ξ̃, δz̃t+1 =
√
n
(
φ(g̃t +

δg̃t+1√
n

)− φ(g̃t))
)
. (46)

As before, with large n we have that •t+1(ξ) − •t(ξ) ∼ Θ(1√
n

) and δ •t+1 (ξ) ∼ Θ(1) coordinates for • replaced by

{g, z, h, x}. And so after Taylor expanding φ(g̃t + δg̃t+1√
n

) around g̃t:

δz̃t+1 ≈ φ′(g̃t)� δg̃t+1. (47)

In a similar fashion, using Eqs. (41) and (46) the updates δz̃t+1, δx̃t+1, δx̃t+1 take the form:

δz̃t+1 ≈ φ′(gt)� δg̃t+1 = −χtξ>t ξ̃φ′(gt)� φ′(g̃t)�
(
W>dht

)
(48)

δh̃t+1 ≈Wδz̃t+1 − χt
z>t z̃t
n

φ′(ht)� v −
1√
n

t∑
s=0

χs
z>s δz̃t+1

n
φ′(hs)� v (49)

δx̃t+1 ≈ φ′(h̃t)� δh̃t+1. (50)

where we used Eq. (45) and

δh̃t+1 = Wt+1δz̃t+1 +
√
n(Wt+1 −Wt)z̃t (51)

= Wδz̃t+1 +

t∑
s=0

(Ws+1 −Ws)δz̃t+1 +
√
n(Wt+1 −Wt)z̃t (52)

25For a rigorous justification of the GIA assumption see (Yang, 2020a)

Architectural Universality of Neural Tangent Kernel Training Dynamics

to get Eq. (49). Based on Eqs. (41) and (48) to (50), the corresponding coordinate distributions take the form:

Zdht = φ′(Zht)Zv (53)

Zδz̃t+1 = −χ̊tξ>t ξ̃φ′(Zgt)φ′(Z g̃t)ZW
>dht (54)

Zδh̃t+1 = ZWδz̃t+1 − χ̊t E[ZztZ z̃]φ′(Zht)Zv (55)

Zδx̃t+1 = φ′(Z h̃t)Zδh̃t+1 . (56)

As before, the functional update is given by limn→∞ f̃t+1 − f̃t = limn→∞
v>δx̃t+1

n = EZvZδx̃t+1 . Plugging Eqs. (55)
and (56):

EZvZδx̃t+1 = −χ̊t E
[
ZztZ z̃

]
E
[
φ′(Zht)φ′(Z h̃t)

]
− E

[
φ′(Zht)ZWδz̃t+1Zv

]
. (57)

To compute the second term of the RHS of Eq. (57), we use Claim 3.2, reproduced below.
Claim 3.2. Based on the above discussion and some easy calculations, δz̃t+1 can be written as Φ(W>dht) for some
Φ : R→ R applied coordinatewise (which will depend on other vectors not of the form W>•). Then it turns out25

ZWδz̃t+1 = G+ Zdht E
∂Zδz̃t+1

∂ZW>dht
, (17)

where G is some Gaussian variable independent from Zv , and ∂Zδz̃t+1

∂ZW
>dht

def
= Φ′(ZW

>dht).

Applying Claim 3.2 to get the expression for ZWδz̃t+1 :

ZWδz̃t+1 = G+ Zdht E
∂Zδz̃t+1

∂ZW>dht
(58)

= G− φ′(Zht)Zvχ̊tξ>t ξ̃ E
[
φ′(Zgt)φ′(Z g̃t)

]
(59)

As before, for h ∈ {g, z, h, x} it holds that ht(ξ) = h(ξ) +
∑t
s=1

δhs(ξ)√
n

= h(ξ) + o(1), and Zht(ξ) = Zh(ξ). Plugging
Eq. (58) into Eq. (57) yields Claim 3.1.

B. Tensor Programs: the Formal Version
We briefly review the formal definition of Tensor Programs below, but readers needing more explanation and intuition should
see (Yang, 2020b). We will directly describe NETSOR>+ programs, which generalizes NETSOR>.
Definition B.1. A NETSOR>+ program is a sequence of Rn-vectors and R-scalars inductively generated via one of the
following ways from an initial set C of random scalars, V of random Rn vectors, and a setW of random Rn×n matrices
(which will be sampled with iid Gaussian entries in Setup B.2)

MATMUL same as MATMUL in Definition 4.1.

NONLIN+ Given φ : Rk × Rl → R, previous scalars θ1, . . . , θl ∈ R and vectors x1, . . . , xk ∈ Rn, we can generate a new
vector

ψ(x1, . . . , xk; θ1, . . . , θl) ∈ Rn (60)

where ψ(−; θ1, . . . , θl) applies coordinatewise to each “α-slice” (x1
α, . . . , x

k
α).

MOMENT Given same setup as above, we can also generate a new scalar

1

n

n∑
α=1

ψ(x1
α, . . . , x

k
α; θ1, . . . , θl) ∈ R. (61)

A NETSOR> program is just a NETSOR>+ program without scalars, without the usage of MOMENT, and without parameters
θ1, . . . , θl in NONLIN+.

We will typically randomly sample the initial matrices, vectors, and scalars of the program as follows.

Architectural Universality of Neural Tangent Kernel Training Dynamics

Setup B.2. 1) For each initial W ∈ W , we sample iid Wαβ ∼ N (0, σ2
W /n) for some variance σ2

W associated to W ,
independent of other W ′ ∈ W; 2) for some multivariate Gaussian ZV =

{
Zh : h ∈ V

}
∈ RV , we sample the initial set

of vectors V like {hα : h ∈ V} ∼ ZV iid for each α ∈ [n]. 3) For each initial scalar θ ∈ C, we require θ a.s.−−→ θ̊ for some
deterministic θ̊ ∈ R.

The following constructs a random variable Zh for every vector h and a deterministic scalar θ̊ for every scalar θ in the
program. The interpretation is that h will have iid coordinates distributed like Zh, and θ will converge to θ̊ as n→∞.

Definition B.3 (Zh and θ̊). Given a NETSOR>+ program, we recursively define Zh for each vector h and θ̊ for each scalar
θ as follows.

ZINIT If h ∈ V , then Zh is defined as in Setup B.2. We also set Ẑh def
= Zh and Żh def

= 0.

ZNONLIN+ Given ψ : Rk × Rl → R, previous scalars θ1, . . . , θl ∈ R and vectors x1, . . . , xk ∈ Rn, we have

Zψ(x1,...,xk;θ1,...,θl) def
= ψ(Zx

1

, . . . , Zx
k

; θ̊1, . . . , θ̊l). (62)

ZMOMENT Given same setup as above and scalar θ = 1
n

∑n
α=1 ψ(x1

α, . . . , x
k
α; θ1, . . . , θl), then

θ̊ def
= Eψ(Zx

1

, . . . , Zx
k

; θ̊1, . . . , θ̊l). (63)

Here θ̊1, . . . , θ̊l are deterministic, so the expectation is taken over Zx
1

, . . . , Zx
k

.

ZMATMUL ZWx def
= ẐWx + ŻWx for every matrix W (with N (0, σ2

W /n) entries) and vector x, where

ZHAT ẐWx is a Gaussian variable with zero mean. Let VW denote the set of all vectors in the program of the form
Wy for some y. Then {ẐWy : Wy ∈ VW } is defined to be jointly Gaussian with zero mean and covariance

Cov
(
ẐWx, ẐWy

)
def
= σ2

W EZxZy, for any Wx,Wy ∈ VW . (64)

Furthermore, {ẐWy : Wy ∈ VW } is mutually independent from {Ẑv : v ∈ V ∪
⋃
W̄ 6=W VW̄ }, where W̄ ranges

overW ∪ {A> : A ∈ W}.
ZDOT We can always unwind Zx = Φ(· · ·), for some arguments (· · ·) = ({ẐW>yi}ki=1, {Ẑz

i}ji=1; {θ̊i}li=1), zi 6∈
VW> (where VW> is defined in ZHAT), and deterministic function Φ : Rk+j+l → R. Define ∂Zx/∂ẐW

>yi def
=

∂iΦ(· · ·). Then we set

ŻWx def
= σ2

W

k∑
i=1

Zy
i

E
∂Zx

∂ẐW>yi
, (65)

There is some nuance in this definition, so see Remark B.5 and B.6.

The following theorem ties the symbolic nature of the Zs to the analytic nature of a Tensor Program.

Theorem B.4 (NETSOR>+ Master Theorem, c.f. Theorem E.15 of (Yang, 2020b)). Fix a Tensor Program initialized
accordingly to Setup B.2. Adopt Assumption B.8. Then

1. For any fixed k and any pseudo-Lipschitz ψ : Rk → R, as n→∞,

1

n

n∑
α=1

ψ(h1
α, . . . , h

k
α)

a.s.−−→ Eψ(Zh
1

, . . . , Zh
k

), (66)

for any vectors h1, . . . , hk in the program, where Zh
i

are as defined in Definition B.3.

2. Any scalar θ in the program tends to θ̊ almost surely, where θ̊ is as defined in Definition B.3.

Architectural Universality of Neural Tangent Kernel Training Dynamics

Remark B.5 (Partial derivative). The partial derivative in ZDOT should be interpreted as follows. By a simple inductive
argument, Zx for every vector x in the program is defined uniquely as a deterministic function ϕ(Ẑx

1

, . . . , Ẑx
k

) of some
x1, . . . , xk in V or introduced by MATMUL (notationally, we are suppressing the possible dependence on limit scalars
θ̊1, . . . , θ̊l). For instance, if in a program we have A ∈ W, v ∈ V , y = Av, x = A>y, then Zx = Ẑx + Ẑv , so ϕ is given by
ϕ(a, b) = a+ b. Then

∂Zx/∂Ẑx
i def

= ∂iϕ(Ẑx
1

, . . . , Ẑx
k

), and ∂Zx/∂Ẑz def
= 0 for any z 6∈ {x1, . . . , xk}.

Note this definition depends on the precise way the program is written, not just on the underlying mathematics. For
example, if y, z ∈ V and x = φ(W (y + z)), then Zx = φ(ẐW (y+z)) so that ∂Zx/∂ẐWy = ∂Zx/∂ẐWz = 0. If
instead, we have x = φ(Wy + Wz), then Zx = φ(ẐWy + ẐWz) so that ∂Zx/∂ẐW (x+y) = 0. However, in both cases,
ŻW

>x = (Zy + Zz)Eφ′(ẐW (y+z)).

Remark B.6 (Partial derivative expectation). The quantity E ∂Zx

∂ẐW>y
is well defined if Zx is differentiable in ẐW

>y.
However, even if this is not the case, e.g. if x = θ(W>y) where θ is the Heavyside step function, we can still define this
expectation by leveraging Stein’s lemma:

In ZDOT, suppose {W>yi}ki=1 are all elements of VW> introduced before x. Define the matrix C ∈ Rk×k by Cij def
=

EZyiZyj and define the vector b ∈ Rk by bi def
= E ẐW>yiZx. If a = C+b (where C+ denotes the pseudoinverse of C),

then in ZDOT we may set

σ2
W E

∂Zx

∂ẐW>yi
= ai. (67)

This definition agrees with the partial derivative expectation by Stein’s lemma when the latter is well defined. Theorem B.4
holds with this broader definition of partial derivative expectation.

Pseudo-Lipschitz functions are, roughly speaking, functions whose weak derivatives are polynomially bounded.
Definition B.7. A function f : Rk → R is called pseudo-Lipschitz of degree d if |f(x) − f(y)| ≤ C‖x − y‖(1 +∑k
i=1 |xi|d + |yi|d) for some C. We say f is pseudo-Lipschitz if it is so for any degree.

Here are some basic properties of pseudo-Lipschitz functions:

• The norm ‖ · ‖ in Definition B.7 can be any norm equivalent to the `2 norm, e.g. `p, p ≥ 1, norms. Similarly,∑k
i=1 |xi|d + |yi|d can be replaced by ‖x‖dp + ‖y‖dp, for any p ≥ 1.

• A pseudo-Lipschitz function is polynomially bounded.

• A composition of pseudo-Lipschitz functions of degrees d1 and d2 is pseudo-Lipschitz of degree d1 + d2.

• A pseudo-Lipschitz function is Lipschitz on any compact set.

We adopt the following assumption for the Master Theorem Theorem B.4.
Assumption B.8. Suppose

1. If a function φ(;−) : R0+l → R with only parameter arguments is used in MOMENT, then φ is continuous in those
arguments.

2. Any other function φ(−;−) : Rk+l → R with parameters (where k > 0) used in NONLIN or MOMENT is pseudo-
Lipschitz in all of its arguments (both inputs and parameters).

Statement 1 in Assumption B.8 essentially says that if we have scalars θ1, . . . , θl in the program, then we can produce a
new scalar by applying a continuous function (a weaker restriction than a pseudo-Lipschitz function) to them. Indeed, if
θ1, . . . , θl converge almost surely, then this new scalar does too. In our setting, statement 1 is used to allow any loss function
whose derivative is continuous.

Other versions of the Master Theorem can be found in (Yang, 2020b), for example, versions where the we do not assume
any smoothness condition at all on the nonlinearities beyond that they be polynomially bounded, in exchange for assuming
what’s called a rank stability condition. This rank stability should be generically true, but checking it rigorously is subtle, so
we are content with the pseudo-Lipschitz condition in this paper.

Architectural Universality of Neural Tangent Kernel Training Dynamics

⋅×
⋅

⋅×
⋅

⋅×
⋅

so
ftm

ax

attn
logits

attn
weights

values 𝑉

keys 𝐾

query
𝑞

lin
ear co

m
b

in
atio

n
Legend

G-var

X-var

Nonlin

MatMul

MomentScalar

𝑥

𝑥

𝜇

(𝑥
−
𝜇
)
2

𝜎2

𝑥
−
𝜇

𝜎
2

𝐿𝑁(𝑥)

Layernorm Attention

Figure 4: Layernorm and attention can be implemented with NETSOR>+.

+ + +

One activation vector (across channels) per pixel

Legend

G-var

X-var

Nonlin

MatMul

1D conv with
kernel size 3

Conv weights
composed of 3
dense matrices
𝑊1,𝑊2,𝑊3

of size
#𝑜𝑢𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 ×
#𝑖𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠

𝑊1
𝑊2

𝑊3

Figure 5: Convolution can be implemented with NETSOR>.

C. More Diagrams
We can augment the graphical form of NETSOR> to accomodate the MOMENT instruction in NETSOR>+. See Fig. 4 for
an example for layernorm and attention. In short, we denote scalar variables with a square, in contrast to the circle for vector
variables, and we use a “bar-gate” to denote the MOMENT, where the function in the gate corresponds to ψ in MOMENT.

In addition, for more examples of the expressivity of NETSOR>, Figs. 5 and 6 demonstrate convolution and MLP backprop-
agation in NETSOR>.

D. Proof of Main Result
We dedicate the following section to prove Theorem 5.3. We will begin by proving a simplified version under the same
assumptions as Section 5.1, as reproduced below:

Setup D.1 (Representable NN in NTK Parametrization). Suppose a neural network f ∈ R is represented by a NETSOR>
program (in the sense of Definition 4.2) whose NONLIN all have polynomially bounded derivatives.26 Adopt the NTK
parametrization: for every matrix parameter W ∈ Rn×n of f , we factor W = 1√

n
w where w is the trainable parameter;

likewise, for each input layer matrix U i ∈ Rn×d, we factor U i = 1√
d
ui, and likewise the output matrix V = 1√

n
v. We

randomly initialize all trainable parameters iid as N (0, 1). Furthermore, we assume the following:

A1. Input and output layers {ui}, v, as well as biases are not trained (only Rn×n weight matrices are trained).

A2. The forward pass does not use both a matrix and its transpose (in different MATMULs).

26More generally, we can allow any pseudo-Lipschitz function here, but for simplicity we go with the statement in the main text.

Architectural Universality of Neural Tangent Kernel Training Dynamics

𝑥1 𝑥2𝑔1 𝑔2𝑔0 𝑥3

𝑑𝑥1 𝑑𝑥2𝑑𝑔1 𝑑𝑔2𝑑𝑔0 𝑑𝑥3

Forward Propagation

Backward Propagation

Figure 6: Backpropagation (of an MLP f) can be implemented in NETSOR>. However, NETSOR> cannot express the loss
derivative, so we cannot unroll multiple steps of SGD in NETSOR>, unlike NETSOR>+.

A3. The output is a scalar f ∈ R.

A4. We assume the last layer embedding is a G-var.

Our main result is to show that the SGD training of such a neural network described in Setup 5.2 reduces to kernel gradient
descent with kernel K̊ in the infinite-width limit.
Theorem D.2 (NTKTRAIN is Architecturally Universal). Consider training a network f described in Setup D.1 via SGD
with batch-size 1 and (WLOG) learning rate 1. Let ξt be the input and Lt : R→ R be the loss function (absorbing the label)
at time t. Suppose Lt is continuous for all t. Then, for any ξ and t, ft(ξ) converges almost surely to a random variable
f̊t(ξ) as width→∞, such that

f̊t+1(ξ)− f̊t(ξ) = −K̊(ξ, ξt)L′t(f̊t(ξt)) (68)

where K̊ is the infinite-width NTK (at initialization) of the neural network.

D.1. SGD as a NETSOR>+ Program

SGD is comprised of a sequence of forward and backward passes computed on some architecture. WLOG, let π0 denote the
reduced program implementing the body of network f , and let x(ξ) denote the final embedding such that f(ξ) = V >x(ξ),
we will now show how the SGD procedure on π0 can be implemented by a NETSOR>+ program.

D.1.1. FIRST FORWARD PASS

While π0 implements the embeddings x(ξ) by definition, the outputs f(ξ) cannot be implemented trivially in a pro-
gram since that at initialization f(ξ) = v>x(ξ)√

n
is not deterministic, and converges non-trivially to a GP, violating the

requirements of a scalar type in a NETSOR>+ program which require all scalar types to converge to a deterministic
limit as n → ∞. Nevertheless, we can still easily express evolution of f conditioned on (i.e. fixing) the values of f
at initialization. More formally, let f = [f(ξ0), f(ξ1), ..., f(ξD−1)]> ∈ RD denote a fixed vector of outputs, and let
X = [x(ξ0), x(ξ1), ..., x(ξD−1)]> ∈ Rn×D denote a fixed embedding matrix such that f = X>v√

n
. The distribution of v

when conditioned on f and X is given by (see e.g. (Yang, 2020b, Sec K.2))

v
d
=f,X

√
nX+f + Πv (69)

where X+ is the pseudo-inverse of X , v is an independent copy of v and Π is the projection operator projecting unto the
orthogonal complement of the space spanned by X . Namely:

X+ =
1

n
X(

X>X

n
)+, Π = I −X+X> (70)

Denote Σ = X>X
n ∈ RD×D, µ = X>v

n ∈ RD. Define

v̂ def
= X(

Σ+f√
n

) + v−XΣ+µ. (71)

Architectural Universality of Neural Tangent Kernel Training Dynamics

Then we see via Eq. (69) that

v
d
=f,X v̂. (72)

Given v and (the columns of) X as vectors and f as scalars in a program, v̂ may be defined in the same program via
NONLIN, where Σ+f√

n
and Σ+µ (both finite-dimensional) provide coefficients for the linear combination over (columns

of) X . Formally, to express the evolution of f conditioned on f0 = f at initialization, the program will calculate the first
forward pass up to X , calculate the loss derivatives χ assuming f0 = f, and then proceed with the backward pass and later
forward/backward passes with v replaced by v̂.

However, since Σ+f√
n
, µ

a.s.−−→ 0 and Σ+ a.s.−−→ Σ̊+ (by rank stability, c.f. (Yang, 2020b, Lemma L.11)), these coefficients of
the linear combination converge to 0, so that Z v̂ = Zv. Intuitively, this means that the distribution of v conditioned on the
equality f = X>v/

√
n is asymptotically the same as no conditioning as n→∞. Thus, for the limit calculation of δft and

other quantities, it ends up not mattering whether we use v̂ or v.

Computing The Loss Derivatives The loss derivative χ(ξ) = ∂L(f(ξ))
∂(f(ξ)) after the first forward pass given f(ξ) can be

implemented with MOMENT instructions using ψ(; f(ξ)) = L′(f(ξ)).

D.1.2. IMPLEMENTING SGD

Under SGD, the update at step t+ 1 to any weight w ∈ Rn×n is given by:

wt+1 − wt = −χt
∑

g,h:g=Wh

dgth
>
t

n
. (73)

where the summation in Eq. (73) is over all pairs of vectors g, h in program π0 satisfying g = Wh (there can be multiple
such pairs since π0 may reuse the same matrix W).

To write the full unrolled SGD as a NETSOR>+ program, we will need to implement the error signal dgt def
=
√
n∂ft∂gt

for
each G-var g at time t. To accomplish this, we recall the notion of paths in program π0:

Definition 5.5 (Paths). In a NETSOR> program, a path p starts with an X-var and ends with a G-var, alternating between X-
and G-vars along the path. We write p0 for the starting X-var, p1 for the following G-var, and so on, as well as p−1 for the
ending G-var (see Fig. 2 for a graphical illustration). For odd i, let W pi denote the defining matrix of G-var pi. For two
equal length paths p, q, we write p ∼= q (path p is isomorphic to path q) if for all odd i, W pi is the same matrix as W qi .27 In
other words, we say path p is isomorphic to path q if their sequences of MATMUL matrices are identical, (but the NONLIN
don’t have to be, see Fig. 3 for a graphical illustration). Let |p| denote the number of vectors in p (this is always an even
number).

Note that a path p represents a series of nodes independent of an input, and can be instantiated as p(ξ) by an input ξ, resulting
in a series of instantiated G-vars and X-vars pi(ξ).

For any G-var g = Wh, we can write the error term dg as the summation of errors signals over paths p:

dg(ξ) =
∑

p:p−1=x,p1=g

Jp(ξ) (74)

where Jp = (
∂p2

∂p1
)>(

∂p−2

∂p−3
)>...(

∂p−1

∂p−2
)>v (75)

(Here again, Jp represents a symbolic computation that can be instantiated with an input Jp(ξ)). Note that Jp can be defined
recursively:

Jp = (
∂p2

∂p1
)>(

∂p3

∂p2
)>Jp:3 (76)

27Here we are talking about equality of symbols rather than equality of values of those symbols.

Architectural Universality of Neural Tangent Kernel Training Dynamics

where Jp:k, k ≤ |p| is defined as:

Jp:k def
=

{
(∂p

k+1

∂pk
)>(∂p

−2

∂p−3)>...(∂p
−1

∂p−2)>v k < |p|
v k = |p|

(77)

Recall that each path p starts with an X-var p0, and alternates between G and X vars. Let W p3 denote the defining weight
matrix of G-var p3 (i.e p3 = W p3p2), and let p2 = ψ(..., p1, ...). Then we can re-write Eq. (76) as:

Jp = ψ′(..., p1, ...)� Jp:2, Jp:2 = (W p3)>Jp:3 (78)

Note that Eq. (78) can be written in NETSOR> language using MATMUL instructions using the transposed weights, and
NONLIN instructions using ψ′, which is pseudo-Lipschitz by Setup D.1.

Recall that π0 is the program defining the network architecture. We now write the unrolled SGD of this network in a new
program π. Below, recall that lack of time subscript means t = 0 (e.g. W means W0, the initialized value). In addition, feel
free to revisit the notations explained before Appendix A.

• If g = Wh ∈ π0, then:

δg̃t+1 =
√
n(Wt+1h̃t+1 −Wth̃t) = Wδh̃t+1 +

√
n(Wt+1 −Wt)h̃t +

t∑
s=0

(Ws+1 −Ws)δh̃t+1. (79)

where, using Eq. (73), we have

√
n(Wt+1 −Wt)h̃t = −χt

∑
g,h:g=Wh

dgt
h>t h̃t
n

(80)

t∑
s=0

(Ws+1 −Ws)δh̃t+1 = −
t∑

s=0

χs√
n

∑
g,h:g=Wh

dgs
h>s δh̃t
n

(81)

Tensor Program implementation Eqs. (79) to (81) may be easily implemented using NETSOR>+ instructions.
For instance, Eq. (80) (assuming the sum sums over a single pair {h, g}) may be implemented using MOMENT and

NONLIN+ instructions as follows: the term h>t h̃t
n may be implemented by a MOMENT instruction with ψ(h̃t, ht) =

1
n

∑
α(h̃t)α(ht)α. The full term is then a NONLIN+instructions ψ(dgt;χt, { h

>
t h̃t
n }h) with scalars χt, { h

>
t h̃t
n }h and

vector dgt.

• If g = ψ(h1, ..., hk) ∈ π0, then

δg̃t+1 =
√
n

(
ψ(h̃1

t +
δh̃1

t+1√
n
, ..., h̃kt +

δh̃kt+1√
n

)− ψ(h̃1
t , ..., h̃

k
t)

)
. (82)

Tensor Program implementation Eq. (82) may be implemented as a NONLIN+ instruction:

δg̃t+1 := ψ?
(
{h̃it}ki=1 ∪ {δh̃it+1}ki=1;

1√
n

)
(83)

for a set of vectors {h̃it}ki=1, {δh̃it+1}ki=1 and a scalar 1√
n

, where:

ψ?({µi}ki=1 ∪ {νi}ki=1; θ)α
def
=

{
ψ(µ1+θν1,...,µk+θνk)α−ψ(µ1,...,µk)α

θ θ > 0∑k
i=1

∂ψ(µ1,...,µk)α
∂µiα

νiα θ = 0.
(84)

Since ψ′ is pseudo-Lipschitz by Setup D.1, ψ? is pseudo-Lipschitz in all of its inputs as well.

• WLOG assume f(ξ) = v>x(ξ)√
n

, then:

f̃t+1 =
v>δx̃t+1

n
, χt = ∇ftLt. (85)

Architectural Universality of Neural Tangent Kernel Training Dynamics

Tensor Program implementation the scalar type outputs ft(ξ) at t > 0 for any input ξ can be implemented using
the MOMENT instruction. The loss derivative χt, t > 0 given ft can be implemented with MOMENT instructions using
ψ(−; f(ξ)) = L′

(
f(ξ)

)
where f(ξ) is treated as a scalar type as in the first forward pass.

• If g ∈ Rn ∈ π0:

gt+1(ξ) = g(ξ) +
1√
n

t+1∑
s=1

δgs(ξ) (86)

Tensor Program implementation g̃t+1 is implemented using a NONLIN+ instruction gt+1(ξ) = ψ
(
g(ξ) ∪

{δgs(ξ)}t+1
s=1; 1√

n

)
with ψ(µ ∪ {νs}t+1

s=1; θ) = µ+ θ
∑
s νs.

• If g = Wh ∈ π0, then using Eq. (74):

dg(ξ)t+1 =
∑

p:p−1=x,p1=g

Jpt+1(ξ) (87)

Jpt+1 = ψ′(..., p1
t+1, ...)�

(
(W p3

t+1)>Jp:3t+1

)
(88)

Using Eq. (76), Jpt+1 is implemented recursively starting from Jp:−2
t+1 = (W p−1

t+1)>v. Plugging in the weights update at
time t+ 1 (Appendix D.1.2):

Jp:−2
t+1 = (W p−1

t +W p−1

t+1 −W
p−1

t)>v = Jp:−2
t − χt

∑
g,h:g=Wp−1

t+1 h

ht√
n

dg>t v

n
(89)

Jpt+1 = ψ′(..., p1
t +

δp1
t+1√
n
, ...)� Jp:2t+1 (90)

Tensor Program implementation dg(ξ)t+1 is implemented using MOMENT and NONLIN+ instructions.

For further illustration, we present in Algorithm 1 a program implementation of the first iteration of SGD on the two hidden
layer MLP specified in Appendix A.2, but where only the middle layer w is trained; in Fig. 7 we have its graphical form.
Naturally, the following SGD steps can be implemented in a similar fashion.

Algorithm 1 NETSOR>+ program π1 implementing the first update f̃1− f̃ . Note that in this example, ψ represents multiple
functions, while φ is a fixed function representing the non-linearity of the MLP in Appendix A.2. Technically, we should
have v̂ as defined in Appendix D.1.1 instead of v, but as explained there, this does not affect the limit.

Input: W = {w},V = {v, g = g0(ξ0), g̃ = g0(ξ̃)}, C = {f = f0(ξ0), f̃ = f0(ξ̃)}
MOMENT: χ := L′(f)
NONLIN+: z := φ(g)
NONLIN+: z̃ := φ(g̃)
MATMUL: h := Wg
MATMUL: h̃ := Wg̃
NONLIN+: z̃ := φ(g̃)

MOMENT: θ := ψ(z, z̃) = z>z̃
n

NONLIN: dh := ψ(v, h) = φ′(h)� v
NONLIN+: δh̃1 := ψ(dh; θ, χ) = −χθdh
NONLIN+: δx̃ := ψ(h̃, δh̃1; 1√

n
) =
√
n
(
φ(h̃+ δh̃1√

n
)− φ(h̃)

)
MOMENT: f̃1 − f̃ = v>δx̃

n

Output: f̃1 − f̃

Architectural Universality of Neural Tangent Kernel Training Dynamics

෤𝑥෨ℎǁ𝑧෤𝑔

ǁ𝑧⋅
𝑧
/𝑛

𝜃

𝑓 ℒ
′(𝑓

)

𝜒

𝑧 𝑥ℎ𝑔

𝑑𝑧 𝑑𝑥 = 𝑣𝑑ℎ𝑑𝑔

−
𝜒
𝜃
𝑑
ℎ

𝛿 ෨ℎ

𝛿 ෤𝑥
𝑣
⊤
𝛿
෤𝑥/𝑛

ሚ𝑓1 − ሚ𝑓

First forward pass on test example ሚ𝜉

First forward/backward pass on train example 𝜉
Conditioning on 𝑓 = 𝑓(𝜉)

so 𝑓 appears as input node

Calculating how training
affects test output

𝑛
(𝜙

෨ℎ
+
𝛿
෨ℎ/

𝑛
−
𝜙
(
෨ℎ))

Figure 7: Graphical form of NETSOR>+ program (Algorithm 1) encoding the first training step and the effect on the test set
on the two hidden layer MLP specified in Appendix A.2, but where only the middle layer w is trained. Technically, we
should have v̂ as defined in Appendix D.1.1 instead of v, but as explained there, this does not affect the limit.

SGD in the Infinite Width Limit According to the NETSOR>+ rules as specified in Definition B.3, we have the following
identities:

• If g = Wh, then using Eqs. (79) to (81): (Here Zdgt = Zdgt(ξt), Zht = Zht(ξt), and Z h̃ = Zht(ξ̃))

Zδg̃t+1 = ZWδh̃t+1 − χt
∑

g,h:g=Wh

Zdgt E
[
ZhtZ h̃

]
(91)

where ZWδh̃t+1 = ẐWδh̃t+1 +
∑
y

Z ỹ E
∂Zδh̃t+1

∂ẐW>ỹ
. (92)

• If g = ψ(h1, ..., hk), then using Eqs. (82) and (84), taking the limit 1/
√
n→ 0,

Zδg̃t+1 =

k∑
i=1

∂ψ(Z h̃
1

, ..., Z h̃
k

)

∂Z h̃i
Zδh̃

i
t+1 . (93)

• Using Eqs. (86), (87), (89) and (90) and taking 1√
n
→ 0, we have by ZNONLIN+:

Zgt(ξ) = Zg0(ξ), Zdgt(ξ) = Zdg0(ξ) for any vector g ∈ π0 at time t. (94)

D.2. Deriving The NTK

Instantiate paths p and q on two inputs ξ, ξ′ by p = p(ξ), q = q(ξ′) (abusing notation slightly). We define an inner product
between them as follows:

〈
p, q
〉

def
= E

[
Zp

0

Zq
0] |p|−2∏
i=2,even

E
[∂Zpi
∂Zpi−1

∂Zq
i

∂Zqi−1

]
. (95)

where pi, qi are X-vars for all even i. Note that for even i, pi is always of the form pi = ψ(...., pi−1, ...) for some ψ. So the

partial derivatives in Eq. (95) are just ∂Zp
i

∂Zpi−1(ξ̃)
= ψ′(..., Zp

i−1

, ...).

Our goal in this section is to prove

Architectural Universality of Neural Tangent Kernel Training Dynamics

Proposition D.3.

K̊(ξ, ξ̃) =
∑

p,q:p−1=q−1=x,p∼=q

〈p(ξ), q(ξ̃)〉. (96)

For each weight W ∈ W , the gradient of the output with respect to w is given by:

∇wf(ξ) =
∑

g,h:g=Wh

dg(ξ) h(ξ)>

n
(97)

Here, g, h represent nodes in program π0 that can be instantiated by an input ξ.
The NTK of f can be expressed as:

K̊(ξ, ξ̃) = lim
n→∞

∑
W∈W

〈
∇wf(ξ),∇wf(ξ̃)

〉
(98)

= lim
n→∞

∑
W∈W

∑
g,h:g=Wh

∑
g,h:g=Wh

dg(ξ)>dg(ξ̃)

n

h(ξ)>h(ξ̃)

n
(99)

=
∑
W∈W

∑
g,h:g=Wh

∑
g,h:g=Wh

E
[
Zdg(ξ)Zdg(ξ̃)

]
E
[
Zh(ξ)Zh(ξ̃)

]
. (100)

Using Eqs. (74) and (78), for any G-var g = Wh, we can write the error term dg as the summation of errors signals over
paths p:

dg(ξ) =
∑

p:p−1=x,p1=g

Jp(ξ), Jp = ψ′(..., p1, ...)�
(
(W p3)>Jp:3

)
(101)

Hence we can write:

E
[
Zdg(ξ)Zdg(ξ̃)

]
=

∑
p1=g,p−1=x,q1=g,q−1=x

E
[
ZJ

p(ξ)ZJ
q(ξ̃)
]

(102)

ZJ
p

= Z(Wp3)>Jp:3 ∂Z
p2

∂Zp1
(103)

where ψ′ denotes the derivative w.r.t. p1. By Simple GIA Check (Yang, 2020a), we have that Z(Wp3)>Jp:3 = Ẑ(Wp3)>Jp:3

(see ZMATMUL). Hence, with abuse of notation Jp = Jp(ξ), Jq = Jq(ξ̃), p = p(ξ), q = q(ξ̃), we have

E
[
ZJ

p

ZJ
q]

= E[Ẑ(Wp3)>Jp:3Ẑ(W q3)>Jq:3]E[
∂Zp

2

∂Zp1
∂Zq

2

∂Zq1
]. (104)

From the definition of ZHAT, the expectation E[Ẑ(Wp3)>Jp:3Ẑ(W q3)>Jq:3] vanishes if the weights W p3 and W q3 are not
symbolically the same (i.e W p3 ,W q3). Then by ZHAT,

E[Ẑ(Wp3)>Jp:3Ẑ ‘(W q3)>Jq:3] =

{
E[ZJ

p:3

ZJ
q:3

] if W p3 ,W q3

0 otherwise.
(105)

Applying this logic recursively, we have

E
[
ZJ

p

ZJ
q]

=

{∏|p|−2
i=2,even E

[
∂Zp

i

∂Zpi−1
∂Zq

i

∂Zqi−1

]
if p ∼= q

0 otherwise.
(106)

Combining with Eqs. (74), (100) and (102) proves Proposition D.3.

Architectural Universality of Neural Tangent Kernel Training Dynamics

D.3. Getting Claim 3.1

Notation For the remainder of the proof we abbreviate p = p(ξ̃), q = q(ξt), pi = pi(ξ̃), qi = qi(ξt) (i.e path p is always
evaluated on ξ̃, while path q is always evaluated on ξt).
We prove Claim 3.1 by inducting on all G-vars in the network. We begin by proving the following induction hypothesis.

Definition D.4. We write Zx ≡ Zy mod ẐW• to denote that Zx−Zy is a linear combination of ẐWu for various vectors
u.
Induction Hypothesis. At any time t and G-var g = Wh, the following holds:

Zδg̃t+1 ≡ −χt
∑

p:p−1=g

∑
q:q∼=p

Zdq
−1

〈p, q〉 mod ẐW• (107)

Here, the sum is over all paths p with endpoint g and all paths q isomorphic to p. Recall that dq−1 is the (scaled) gradient dy
where y = q−1 is the endpoint of q.

D.3.1. BASE CASE

For initial G-vars g, δg̃t = 0 since we are not training the input layers (Assumption A1.). This proves the base case since the
sum in Eq. (107) has no terms and thus is 0.

D.3.2. INDUCTIVE CASE

Suppose g = Wh, where h = ψ(h1, ..., hk), we then have using Eq. (91):

Zδg̃t+1 ≡ ŻWδh̃t+1 + χt
∑

g=Wh

Zdgt E
[
ZhtZ h̃

]
mod ẐW• (108)

where ŻWδh̃t+1 =
∑
y

Zy E
∂Zδh̃t+1

∂ẐW>y
. (109)

Note
∑

g=Wh Z
dgt E

[
ZhtZ h̃

]
in Eq. (108) can be written as

∑
p:p−1=g,|p|=2

∑
q∼=p Z

dq−1〈p, q〉. Therefore, it suffices to
show that

ŻWδh̃t+1 = −χt
∑

p:p−1=g,|p|≥4

∑
q∼=p

Zdq
−1

〈p, q〉. (110)

Showing Eq. (110) By Eq. (82):

Zδh̃t+1 =

k∑
i=1

∂Z h̃

∂Z h̃i
Zδh̃

i
t+1 . (111)

Since Z h̃
1

, ..., Z h̃
k

do not depend on ZW
>y for any y (by the assumption that we don’t use both a matrix and its transpose

in the forward pass), from Eq. (111) we have for any y:

E
[∂Zδh̃t+1

∂ẐW>y

]
=

k∑
i=1

E
[∂Z h̃
∂Z h̃i

∂Zδh̃
i
t+1

∂ẐW>y

]
. (112)

Applying the induction hypothesis Eq. (107) to each G-var hi, we get

∂Zδh̃
i
t+1

∂ẐW>y
= −χt

∑
p:p−1=hi

∑
q:q∼=p

∂Zdq
−1

∂ẐW>y
〈p, q〉 mod ẐW• (113)

Plugging this back into ŻWδh̃t+1 (Eq. (109)), we get

ŻWδh̃t+1 = −χt
∑
y

Zy
k∑
i=1

∑
p:p−1=hi

∑
q:q∼=p

〈p, q〉E
[∂Z h̃
∂Z h̃i

∂Zdq
−1

∂ẐW>y

]
. (114)

Architectural Universality of Neural Tangent Kernel Training Dynamics

Note that for any path p with p−1 = hi, we may extend p by vectors g, h (recall g = Wh and h = ψ(h1, ..., hk)). Let p
denote this extension. If q is a path such that

q ∼= p and
∂Zdq

−1

∂ẐW>y
=
∂Zq−2

∂Zq−3 , (115)

then

〈p, q〉E
[∂Z h̃
∂Z h̃i

∂Zdq
−1

∂ẐW>y

]
= 〈p, q〉. (116)

Our goal now is to show q in Eq. (114) can be extended appropriately such that we may rewrite Eq. (114) as Eq. (110). This

will be done through explicitly computing the term ∂Zdq
−1

∂ẐW>y
in Eq. (114).

Computing ∂Zdq
−1

∂ẐW>y
Suppose {g1, ..., gr} are all G-vars in the program π0 that depend on q−1 i.e for all 1 ≤ j ≤ r, we

have gj = W jzj where zj = ψj(..., q
−1, ...) and where W j can be same or different matrices for different j. Note that it

follows that:

dq−1 =

r∑
j=1

ψ′j
(
..., q−1, ...

)
� ((W j)>dgj) (117)

Zdq
−1

=

r∑
j=1

∂Zz
j

∂Zq−1 Z
(W j)>dgj (118)

where Z(W j)>dgj = Ẑ(W j)>dgj + Ż(W j)>dgj = Ẑ(W j)>dgj . (119)

Note that Ż(W j)>dgj = 0 in Eq. (119) from the gradient independence assumption (GIA) because we pass the Simple

GIA Check. This may also be easily verified by explicitly computing Ż(W j)>dgj =
∑
y Z

y E ∂Zdg
j

∂ẐWy
, and noticing that the

expectation vanishes from the dependency of Zdg
j

on Zv (i.e Zdg
j

= ZvZµ for some vector µ which does not depend on

v). Since y does not depend on v and the last layer v is not trained, we have E ∂Zdg
j

∂ẐWy
= E[Zv]E[..] = 0.

Since we assumed that the forward propagation does not contain both W,W>, it follows from differentiating Eq. (118) that

∂Zdq
−1

∂ẐW>y
=

r∑
j=1

∂Zz
j

∂Zq−1

∂Ẑ(W j)>dgj

∂ẐW>y
=

∑
j:W j,W,dgj=y

∂Zz
j

∂Zq−1 . (120)

If this sum over j is nonempty, then there is a unique j such that W j ,W and dgj = y. In such a case, we may extend the
path q with gj , zj to form q satisfying Eq. (115). Plugging back into Eq. (114) we obtain Eq. (110) as desired.

Hence, we have proven the induction hypothesis.

D.3.3. PROVING CLAIM 3.1 USING THE INDUCTION HYPOTHESIS

WLOG assume f(ξ) = V >x(ξ) for some G-var x(ξ). Using the induction hypothesis and the Master Theorem (Theo-
rem B.4), we have that:

lim
n→∞

f̃t+1 − f̃t = EZvZδx̃t+1 = −χt
∑

p:p−1=x

∑
q∼=q

E
[
ZvZdq

−1]
〈p, q〉. (121)

Note that Zdq
−1

= Zv for any path q : q−1 = x. Hence, with Eq. (96), we have

lim
n→∞

f̃t+1 − f̃t = −χt
∑

p:p−1=x

∑
q∼=p
〈p, q〉 = −χtK̊(ξt, ξ̃) (122)

as desired.

Architectural Universality of Neural Tangent Kernel Training Dynamics

D.4. Relaxing Assumptions (A1.) to (A4.)

We now briefly discuss the case where Assumptions (A1.) to (A4.) are relaxed, as well as the case where f is represented by
a NETSOR>+ program. As the proof of the general case follows roughly the same logic as in Setup D.1, we only discuss
the meaningful differences in each case.

D.4.1. TRAINING THE FIRST AND LAST LAYERS

Recall the input and output layers are parameterized by {ui}, v which now depend on t. The output evolution is now given
by:

f̃t+1 − f̃t = V >t+1x̃t+1 − V >t x̃t =
v>δx̃t+1

n
+

√
n(vt+1 − vt)>x̃t

n
+

t∑
s=0

(vs+1 − vs)>δx̃t+1

n
. (123)

Plugging vt+1 − vt = −χt 1√
n
xt into Eq. (123) and taking the limit (using NETSOR>+ rules):

lim
n→∞

f̃t+1 − f̃t = E
[
ZvZδx̃t+1

]
− χt E

[
Zx(ξt)Z x̃

]
. (124)

Evaluating E
[
ZvZδx̃t+1

]
by induction requires altering the path definition so that each path p may start with an input ξ, and

ends with a G-var (that is, a path either starts with an X-var or an input). We reuse the definition of inner product between
p ∼= q in Eq. (95), only when both start with inputs ξ, ξ̃ respectively then E

[
Zp

0

Zq
0]

implies ξ>ξ̃. The remainder of the
proof follows the same logic as with Setup D.1. Note that the NTK in this case would yield:

K̊(ξt, ξ̃) =
∑
q∼=q
〈p, q〉+ E

[
Zx(ξt)Z x̃

]
. (125)

D.4.2. W,W> IN THE FORWARD PASS

When both W,W> are allowed in the forward pass, the update equations for each wt take the form:

wt+1 − wt = −χt
∑

g,h:g=Wh

dgth
>
t

n
− χt

∑
g,h:g=W>h

htdg
>
t

n
(126)

Some quick calculations using NETSOR>+rules show that for G-vars:

• If g = Wh:

Zδg̃t+1 = ZWδh̃t+1 − χt
∑

g,h:g=Wh

Zdg(ξt) E
[
Zh(ξt)Z h̃

]
)− χt

∑
g,h:g=W>h

Zh(ξt) E
[
Zdg(ξt)Z h̃

]
. (127)

• If g = W>h:

Zδg̃t+1 = ZW
>δh̃t+1 − χt

∑
g,h:g=W>h

Zdg(ξt) E
[
Zh(ξt)Z h̃

]
)− χt

∑
g,h:g=Wh

Zh(ξt) E
[
Zdg(ξt)Z h̃

]
. (128)

It is straightforward to show using GIA (Yang, 2020a) that E
[
Zdg(ξt)Z h̃

]
= 0 in both cases, leaving us with a similar

expression as with Setup D.1. The induction hypothesis for G-vars in this case takes one of two forms:

• If g = Wh then Eq. (107) holds.

• If g = W>h then Eq. (107) holds with mod ẐW
>• replacing mod ẐW•.

Some additional complications need to be resolved. Specifically, with setup Setup D.1 we have used in two places the fact
that no transpose is used in the forward pass to prove the induction hypothesis (see Eqs. (112) and (120)). To prove the
induction, and assuming g = Wh, we now have instead of Eq. (112) (using Eq. (111)):

E
∂Zδh̃t+1

∂ẐW>y
=

k∑
i=1

E
[∂Z h̃
∂Z h̃i

∂Zδh̃
i
t+1

∂ẐW>y

]
+

k∑
i=1

E
[∂2Z h̃

∂Z h̃i∂ẐW>y
Zδh̃

i
t+1
]
. (129)

Architectural Universality of Neural Tangent Kernel Training Dynamics

where {hi} are G-vars. To evaluate the additional term on the RHS of Eq. (129), we use the induction hypothesis to express
Zδh̃

i
t+1 :

E
[∂2Z h̃

∂Z h̃i∂ẐW>y
Zδh̃

i
t+1
]

= −χt
∑

p:p−1=hi

∑
q∼=p
〈p, q〉E

[∂2Z h̃

∂Z h̃i∂ẐW>y
Zdq

−1]
. (130)

Using GIA (Yang, 2020a), it is straight forward to show that the expectation on the RHS of Eq. (130) vanishes, leaving
us with the first term on the RHS of Eq. (129), as with Setup D.1. Note that the same logic may be applied in Eq. (120),
concluding the proof.

D.4.3. MULTIPLE OUTPUTS AND ARBITRARY BATCHSIZE

We have used a scalar output and a batchsize of 1 throughout this paper. However, extending to multiple (finite) outputs
and an arbitrary batchsize requires no additional arguments besides some additional notations. For example, the definition
of path should now be altered to express dependency on multiple samples (if batchnorm is used for example). The proof
however follows roughly the same logic in Setup D.1.

D.4.4. X-VAR EMBEDDING

We assumed in our proof that x, which represents the final embedding of f is a G-var. However, extending the proof to the
case where x is an X-var is straightforward. Let f(ξ) = V >x(ξ) where x = ψ(h1, ..., hk) and h1, ..., hk are G-vars. Using
the induction hypothesis, along with Eq. (93) yields:

lim
n→∞

f̃t+1 − f̃t = −χt E
[
ZvZδx̃t+1

]
= −χt

k∑
i=1

E
[
Zv

∂Z x̃

∂Z h̃i
Zδh̃t+1

]
(131)

= −χt
k∑
i=1

E
[
Zv

∂Z x̃

∂Z h̃i

∑
p:p−1=hi

∑
q∼=p

Zdh
i(ξt)〈p, q〉

]
(132)

= −χt
k∑
i=1

∑
p:p−1=hi

∑
q∼=p
〈p, q〉E

[∂Z x̃
∂Z h̃i

∂Zx(ξt)

∂Zhi(ξt)
]

(133)

= −χtK̊(ξt, ξ̃) (134)

It is straightforward to show that the expression for K̊(ξt, ξ̃) in Eq. (133) represents the NTK if this case.

D.4.5. NETWORK SPECIFIED BY NETSOR>+

If the network is more generally represented by a NETSOR>+ program instead of just a NETSOR> program, then our proof
can be very simply modified to accommodate as follows: The new operation allowed in such a network is the production of
a scalar through MOMENT, say a = 1

n

∑n
α=1 ψ(x1

α, . . . , x
k
α; θ1, . . . , θl). By a similar inductive argument as before, we will

see that 1) xit = xi0 + o(1) for all i ∈ [k] and θjt = θj0 + o(1) for all j ∈ [l], so that at = a0 + o(1); 2) in the backward
pass, any backpropagation through a will zero out: For example, if a is only used later in a NONLIN z = ψ(y; a), then

1√
n
∇af = 〈dz, ∂aψ(y; a)〉/n will converge to 0 because of GIA (as dz is linear in the final layer), and the error signal at xi

times
√
n is the constant vector with entries 1√

n
∇af , which is o(1).

Therefore, we can treat any scalar produced through MOMENT as a constant fixed at initialization, and the notion of path
from before carries over here without change (by assuming all nonlinearities with scalar parameters to be parameterless
nonlinearities where the parameters are fixed). Then the same reasoning follows.

	Additional Examples
	1 hidden layer
	2 hidden layers

	Tensor Programs: the Formal Version
	More Diagrams
	Proof of Main Result
	SGD as a NetsorT+ Program
	First Forward Pass
	Implementing SGD

	Deriving The NTK
	Getting claim:NTK
	Base Case
	Inductive case
	Proving claim:NTK using the induction hypothesis

	Relaxing ass:firstlast,ass:trans,ass:scalar,ass:GvarEmbedding
	Training the first and last layers
	W,W in the forward pass
	Multiple outputs and arbitrary batchsize
	X-var embedding
	Network specified by NetsorT+

