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Abstract

The recent success of supervised learning meth-
ods on ever larger offline datasets has spurred
interest in the reinforcement learning (RL) field
to investigate whether the same paradigms can
be translated to RL algorithms. This research
area, known as offline RL, has largely focused
on offline policy optimization, aiming to find a
return-maximizing policy exclusively from offline
data. In this paper, we consider a slightly different
approach to incorporating offline data into sequen-
tial decision-making. We aim to answer the ques-
tion, what unsupervised objectives applied to of-
fline datasets are able to learn state representations
which elevate performance on downstream tasks,
whether those downstream tasks be online RL,
imitation learning from expert demonstrations,
or even offline policy optimization based on the
same offline dataset? Through a variety of experi-
ments utilizing standard offline RL datasets, we
find that the use of pretraining with unsupervised
learning objectives can dramatically improve the
performance of policy learning algorithms that
otherwise yield mediocre performance on their
own. Extensive ablations further provide insights
into what components of these unsupervised ob-
jectives – e.g., reward prediction, continuous or
discrete representations, pretraining or finetuning
– are most important and in which settings1.

1. Introduction
Within the reinforcement learning (RL) research field, of-
fline RL has recently gained a significant amount of inter-
est (Levine et al., 2020; Lange et al., 2012). Offline RL
considers the problem of performing reinforcement learning
– i.e., learning a policy to solve a sequential decision-making

1Google Research, Google Brain. Correspondence to:
Mengjiao Yang <sherryy@google.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

1Code available at https://github.com/google-research/google-
research/tree/master/rl repr.

Figure 1. A summary of the advantages of representation learning
via contrastive self-prediction, across a variety of settings: im-
itation learning, offline RL, and partially observable online RL.
Each subplot shows the aggregated mean reward and standard
error during training, with aggregation over offline datasets of
different behavior (e.g., expert, medium, etc.), with five seeds per
dataset (see Section 3). Representation learning yields significant
performance gains in all domains and tasks.

task – exclusively from a static, offline dataset of experi-
ence. The recent interest in offline RL is partly motivated
by the success of data-driven methods in the supervised
learning literature. Indeed, the last decade has witnessed
ever more impressive models learned from ever larger static
datasets (Halevy et al., 2009; Krizhevsky et al., 2012; Brown
et al., 2020; Dosovitskiy et al., 2020). Solving offline RL
is therefore seen as a stepping stone towards developing
scalable, data-driven methods for policy learning (Fu et al.,
2020). Accordingly, much of the recent offline RL research
focuses on proposing new policy optimization algorithms
amenable to learning from offline datasets (e.g., Fujimoto
et al. (2019); Wu et al. (2019); Agarwal et al. (2020); Kumar
et al. (2020); Yu et al. (2020); Matsushima et al. (2020)).

In this paper, we consider a slightly different approach to in-
corporating offline data into sequential decision-making. We
are inspired by recent successes in semi-supervised learn-
ing (Mikolov et al., 2013; Devlin et al., 2018; Chen et al.,
2020), in which large and potentially unlabelled offline
datasets are used to learn representations of the data – i.e., a
mapping of input to a fixed-length vector embedding – and
these representations are then used to accelerate learning
on a downstream supervised learning task. We therefore
consider whether the same paradigm can apply to RL. Can
offline experience datasets be used to learn representations
of the data that accelerate learning on a downstream task?

https://github.com/google-research/google-research/tree/master/rl_repr
https://github.com/google-research/google-research/tree/master/rl_repr
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This broad and general question has been partially answered
by previous works (Ajay et al., 2020; Singh et al., 2020).
These works focus on using offline datasets to learn repre-
sentations of behaviors, or actions. More specifically, these
works learn a spectrum of behavior policies, conditioned
on a latent z, through supervised action-prediction on the
offline dataset. The latent z then effectively provides an
abstract action space for learning a hierarchical policy on a
downstream task, and this straightforward paradigm is able
to accelerate learning in a variety of sequential decision-
making settings. Inspired by these promising results and to
differentiate our own work, we focus our efforts on the ques-
tion of representation learning for observations, or states, as
opposed to learning representations of behaviors or actions.
That is, we aim to answer the question, can offline experi-
ence datasets be used to learn representations of state ob-
servations such that learning policies from these pretrained
representations, as opposed to the raw state observations,
improves performance on a downstream task?2

To approach this question, we devise a variety of offline
datasets and corresponding downstream tasks. For of-
fline datasets, we leverage the Gym-MuJoCo datasets from
D4RL (Fu et al., 2020), which provide a diverse set of
datasets from continuous control simulated robotic envi-
ronments. For downstream tasks, we consider three main
categories: (1) low-data imitation learning, in which we
aim to learn a task-solving policy from a small number of
expert trajectories; (2) offline RL, in which we aim to learn
a task-solving policy from the same offline dataset used for
representation learning; and (3) online RL, in which we
aim to learn a task-solving policy using online access to the
environment.

Once these settings are established, we then continue to
evaluate the ability of state representation learning on the
offline dataset to accelerate learning on the downstream task.
Our experiments are separated into two parts, breadth and
depth. First for breadth, we consider a diverse variety of
representation learning objectives taken from the RL and
supervised learning literature. The results of these experi-
ments show that, while several of these objectives perform
poorly, a few yield promising results. This promising set es-
sentially comprises of objectives which we call contrastive
self-prediction; these objectives take sub-trajectories of ex-
perience and then use some components of the sub-trajectory
to predict other components, with a contrastive loss when
predicting states – e.g., using a contrastive loss on the affin-
ity between a sequence of states and actions and the next

2Whether the two aspects of representation learning – action
representations and state representations – can be combined is an
intriguing question. However, to avoid an overly broad paper, we
focus only on state representation learning, and leave the question
of combining this with action representation learning to future
work.

state, akin to popular methods in the supervised learning
literature (Mikolov et al., 2013; Devlin et al., 2018).

These initial findings guide our second set of experiments.
Aiming for depth, we devise an extensive ablation based on
contrastive self-prediction to investigate what components
of the objective are most important and in which settings.
For example, whether it is important to include reward as
part of the sub-trajectory, or whether discrete representa-
tions are better than continuous, whether pre-training and
fixing the representations is better than finetuning, etc. In
short, we find that state representation learning can yield a
dramatic improvement in downstream learning. Compared
to performing policy learning from raw observations, we
show that relatively simple representation learning objec-
tives on offline datasets can enable better and faster learning
on imitation learning, offline RL, and partially observable3

online RL (see Figure 1). We believe these results are espe-
cially compelling for the imitation learning setting – where
even a pretraining dataset that is far from expert behavior
yields dramatic improvement in downstream learning – and
in the offline RL setting – where we show the benefits of
representation learning are significant even when the pre-
training dataset is the same as the downstream task dataset.
We hope that these impressive results guide and encourage
future researchers to develop even better ways to incorporate
representation learning into sequential decision-making.

2. Background and Related Work
Representation learning for RL has a rich and diverse exist-
ing literature, and we briefly review these relevant works.

Abstraction and Bisimulation Traditionally, representa-
tion learning has been framed as learning or identifying
abstractions of the state or action space of an environ-
ment (Andre & Russell, 2002; Mannor et al., 2004; Dearden
& Boutilier, 1997; Abel et al., 2018). These methods aim
to reduce the original environment state and action spaces
to more compact spaces by clustering those states and ac-
tions which yield similar rewards and dynamics. Motivated
by similar intuitions, research into bisimulation metrics
has aimed to devise or learn similarity functions between
states (Ferns et al., 2004; Castro & Precup, 2010). While
these methods originally required explicit knowledge of the
reward and dynamics functions of the environment, a num-
ber of recent works have translated these ideas to stochastic
representation learning objectives using deep neural net-
works (Gelada et al., 2019; Zhang et al., 2020; Agarwal
et al., 2021). Many of these modern approaches effectively
learn reward and transition functions in the learned embed-
ding space, and training of these models is used to inform
the learned state representations.

3Results on fully observable online RL are in Appendix B.
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Representations in Model-Based Learning The idea of
learning latent state representations via learning reward and
dynamics models leads us to related work in the model-
based RL literature. Several recent model-based RL meth-
ods use latent state representations as a way to simplify the
model learning and policy rollout elements of model-based
policy optimization (Oh et al., 2017; Silver et al., 2018;
Hafner et al., 2020), with the rollout in latent space some-
times referred to as ‘imagination’ (Racanière et al., 2017;
Hafner et al., 2019). Similar ideas have also appeared under
the label of ‘embed to control’ (Watter et al., 2015; Levine
et al., 2019). Other than learning representations through
forward models, there are also works which propose to learn
inverse models, in which an action is predicted based on
the representations of its preceding state and subsequent
state (Pathak et al., 2017; Shelhamer et al., 2016).

Contrastive Objectives Beyond model-based representa-
tions, many previous works propose the use of contrastive
losses as a way of learning useful state representations (Wu
et al., 2018; Nachum et al., 2018; Srinivas et al., 2020;
Stooke et al., 2020). These works effectively define some
notion of similarity between states and use a contrastive loss
to encourage similar states to have similar representations.
The similarity is usually based on either temporal vicinity
(pairs of states which appear in the same sub-trajectory)
or user-specified augmentations, such as random shifts of
image observations (Srinivas et al., 2020). Previous work
has established connections between the use of contrastive
loss and mutual information maximization (van den Oord
et al., 2019) and energy-based models (LeCun & Huang,
2005).

State Representation Learning in Offline RL The ex-
isting works mentioned above almost exclusively focus on
online settings, often learning the representations on a con-
tinuously evolving dataset and in tandem with online policy
learning. In contrast, our work focuses on representation
learning on offline datasets and separated from downstream
task learning. This serves two purposes: First, using static
offline datasets makes comparisons between different meth-
ods easier, avoiding confounding factors associated with
issues of exploration or nonstationary datasets. Second, the
offline setting is arguably more practical; in practice, static
offline datasets are more common than cheap online access
to an environment (Levine et al., 2020). Previous work in a
similar vein to ours includes Stooke et al. (2020) and Shel-
hamer et al. (2016), which propose to use unsupervised pre-
training, typically only on expert demonstrations, as a way
of initializing an image encoder for downstream online RL.
Our own work complements these existing studies, by pre-
senting extensive comparisons of a variety of representation
learning objectives in several distinct settings. Moreover,
our work is unique for showing benefits of representation

learning on non-image tasks, thus avoiding the use of any ex-
plicit or implicit prior knowledge that is typically exploited
for images (e.g., using image-based augmentations or using
a convolutional network architecture).

3. Task Setups
We now continue to our own contributions, starting by elab-
orating on the experimental protocol we design to evaluate
representation learning in the context of low-data imitation
learning, offline RL (specifically, offline policy optimiza-
tion), and online RL in partially observable environments.
This protocol is summarized in Table 1.

3.1. Datasets

We leverage the Gym-MuJoCo datasets from D4RL (Fu
et al., 2020). These datasets are generated from running
policies on the well-known MuJoCo benchmarks of sim-
ulated locomotive agents: halfcheetah, hopper, walker2d,
and ant. Each of these four domains is associated with four
datasets – expert, medium-expert, medium, and medium-
replay – corresponding to the quality of the policies used
to collect that data. Each dataset is composed of a number
of trajectories τ := (s0, a0, r0, s1, a1, r1, . . . , sT ). For ex-
ample, the dataset ant-expert-v0 is a dataset of trajectories
generated by expert task-solving policies on the ant domain,
while the dataset halfcheetah-medium-v0 is generated by
mediocre, far from task-solving, policies.

Notably, although the underyling MuJoCo environments are
Markovian, the datasets are not necessarily Markovian, as
they may be generated by multiple distinct policies.

3.2. Imitation Learning in Low-Data Regime

Imitation learning (Hussein et al., 2017) seeks to match the
behavior of an agent with that of an expert. While expert
demonstrations are often limited and expensive to obtain in
practice, non-expert experience data (e.g., generated from a
mediocre agent randomly interacting with an environment)
can be much more easily accessible.

To mimic this practical scenario, we consider an experi-
mental protocol in which the downstream task is behavioral
cloning (Pomerleau, 1991) on a small set of expert trajecto-
ries – selected by taking either the first 10k or 25k transitions
from an expert dataset in D4RL, corresponding to about 10
and 25 expert trajectories, respectively. We then consider
either the medium or medium-replay datasets from the same
domain for representation learning.4 Thus, this set of exper-
iments aims to determine whether representations learned

4To avoid issues of extrapolation when transferring learned
representations to the expert dataset, we include the small number
of expert demonstrations in the offline dataset during pretraining.
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Table 1. A summary of our experimental setups. In total, there are 16 choices of offline data and downstream task combinations each for
imitation learning, offline RL, and partially observable online RL. Given that we run each setting with five random seeds, this leads to a
total of 240 training runs for every representation learning objective we consider.

Imitation
Choose domain ∈ {halfcheetah, hopper,walker2d, ant}

→
Offline dataset: {domain}-{data}-v0

Downstream task: Behavioral cloning (BC) on first N
transitions from {domain}-expert-v0

Choose data ∈ {medium,medium-replay}
Choose N ∈ {10000, 25000}

Offline RL
Choose domain ∈ {halfcheetah, hopper,walker2d, ant}

→
Offline dataset: {domain}-{data}-v0

Downstream task: Behavior regularized actor critic (BRAC)
on data from {domain}-{data}-v0

Choose data ∈ {expert,medium-expert,medium,
medium-replay}

Online RL
Choose domain ∈ {halfcheetah, hopper,walker2d, ant} (partial obs) Offline dataset: {domain}-{data}-v0 with random masking

Downstream task: Soft actor critic (SAC) on randomly
masked version of {domain}

Choose data ∈ {expert,medium-expert,medium} →
medium-replay}

from large datasets of mediocre behavior can help elevate
the performance of behavioral cloning on a much smaller
expert dataset.

3.3. Offline RL with Behavior Regularization

One of the main motivations for the introduction of the
D4RL datasets was to encourage research into fully offline
reinforcement learning; i.e., whether it is possible to learn
return-maximizing policies exclusively from a static offline
dataset. Many algorithms for this setting have recently
been proposed, commonly employing some sort of behavior
regularization (Kumar et al., 2019; Jaques et al., 2019; Wu
et al., 2019). In its simplest form, behavior regularization
augments a vanilla actor-critic algorithm with a divergence
penalty measuring the divergence of the learned policy from
the offline data, thus compelling the learned policy to choose
the same actions appearing in the dataset.

While the actor and critic are typically trained with the raw
observations as input, with this next set of experiments,
we aim to determine whether representation learning can
help in this regime as well. In this setting, the pretraining
and downstream datasets are the same, determined by a
single choice of domain (halfcheetah, hopper, walker2d, or
ant) and data (expert, medium-expert, medium, or medium-
replay). For the downstream algorithm, we use behavior
regularized actor-critic (BRAC) (Wu et al., 2019), which is a
simple behavior regularized method employing a KL diver-
gence penalty. Notably, although the original BRAC paper
uses different regularization strengths and policy learning
rates for different domains, we fix these to values which we
found to generally perform best (regularization strength of
1.0 and policy learning rate of 0.00003).

Thus, this set of experiments aims to determine whether
learning BRAC from learned state representations is better

(in terms of performance and less dependence on hyperpa-
rameters) than learning BRAC from the raw states, even
when the state representations are learned using the same
offline dataset.

3.4. Online RL in Partially Observable Environments

In this set of experiments, we aim to determine whether rep-
resentations learned from offline datasets can improve or ac-
celerate learning in an online domain. One of the most popu-
lar online RL algorithms is soft actor critic (SAC) (Haarnoja
et al., 2019). SAC is a well-performing algorithm on its own,
and so to increase the difficulty of the downstream task, we
consider a simple modification to make our domains par-
tially observable: zero-masking out a random dimension
of the state observation. This modification also brings our
domains closer to practice, where partial observability due
to flaky sensor readings is common (Dulac-Arnold et al.,
2019). For those interested, we include results of represen-
tation learning on the standard, fully-observable MuJoCo
environments in Appendix B.

Accordingly, the offline dataset is determined by a choice
of domain (halfcheetah, hopper, walker2d, or ant) and data
(expert, medium-expert, medium, or medium-replay), with
the same masking applied to this dataset. Representations
learned on this dataset are then applied downstream, where
SAC is trained on the online domain, with the representation
module providing an embedding of the masked observations
of the environment within a learned embedding space.

3.5. Evaluation

Each representation learning variant we evaluate is run with
five seeds on each of the experimental setups described
above. Unless otherwise noted, a single seed corresponds
to an initial pretraining phase of 200k steps, in which a
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representation learning objective is optimized using batches
of 256 sub-trajectories randomly sampled from the offline
dataset. After pretraining, the learned representation is fixed
and applied to the downstream task, which performs the
appropriate training (BC, BRAC, or SAC) for 1M steps.
In this downstream phase, every 10k steps, we evaluate
the learned policy on the downstream domain environment
by running it for 10 episodes and computing the average
total return. We normalize this total return according to the
normalization proposed in Fu et al. (2020), such that a score
of 0 roughly corresponds to a random agent and a score of
100 to an expert agent. We average the last 10 evaluations
within the 1M downstream training, and this determines the
final score for the run. To aggregate over multiple seeds and
task setups, we simply compute the average and standard
error of this final score.

4. Experiments: Breadth Study
We begin our empirical study with an initial assessment into
the performance of a broad set of representation learning
ideas from the existing literature.

4.1. Representation Learning Objectives

We describe the algorithms we consider below. While it
is infeasible for us to extensively evaluate all previously
proposed representation learning objectives, our choice of
objectives here aims to cover a diverse set of recurring
themes and ideas from previous work (see Section 2).

We use the notation

τt:t+k := (st, at, rt, . . . , st+k−1, at+k−1, rt+k−1, st+k)

to denote a length-(k + 1) sub-trajectory of state obser-
vations, actions, and rewards; we use st:t+k, at:t+k, rt:t+k
to denote a subselection of this trajectory based on states,
actions, and rewards, respectively. We use φ to denote
the representation function; i.e., φ(s) is the representa-
tion associated with state observation s, and φ(st:t+k) :=
(φ(st), . . . , φ(st+k)). All learned functions, including φ,
are parameterized by neural networks. Unless otherwise
noted, φ is parameterized as a two-hidden layer fully-
connected network with 256 units per layer and output of
dimension 256 (see further details in Appendix A).

Inverse model Given a sub-trajectory τt:t+1, use
φ(st:t+1) to predict at. That is, we train an auxiliary f
such that f(φ(st:t+1)) is a distribution over actions, and the
learning objective is − logP (at|f(φ(st:t+1))). This objec-
tive may be generalized to sequences longer than k + 1 = 2
as − logP (at+k−1|f(φ(st:t+k), at:t+k−1)).

Forward raw model Given a sub-trajectory τt:t+1, use
φ(st), at to predict rt, st+1. That is, we train an auxiliary

f, g such that f(φ(st), at) is a distribution over next states
and g(φ(st), at) is a scalar reward prediction. The learning
objective is ||rt−g(φ(st), at)||2−logP (st+1|f(φ(st), at)).
This objective may be generalized to sequences longer
than k + 1 = 2 as ||rt − g(φ(st:t+k−1), at:t+k−1)||2 −
logP (st+1|f(φ(st:t+k−1), at:t+k)).

Forward latent model; a.k.a., DeepMDP (Gelada et al.,
2019) This is the same as the forward raw model, only
that f now describes a distribution over next state represen-
tations. Thus, the log-probability with respect to f becomes
− logP (φ(st+1)|f(φ(st), at)).

Forward energy model This is the same as the forward
raw model, only that f is no longer a distribution over raw
states. Rather, f maps φ(st), at to the same embedding
space as φ and the probability P (st+1|f(φ(st), at)) is de-
fined in an energy-based way:

ρ(st+1) exp{φ(st+1)
>Wf(φ(st), at)}

Eρ[exp{φ(s̃)>Wf(φ(st), at)}]
, (1)

where W is a trainable matrix and ρ is a non-trainable prior
distribution (we set ρ to be the distribution of states in the
offline dataset).

(Momentum) temporal contrastive learning (TCL)
Given a sub-trajectory τt:t+1, we apply a contrastive loss
between φ(st), φ(st+1). The objective is

− φ(st+1)
>Wφ(st) + logEρ[exp{φ(s̃)>Wφ(st)}], (2)

where W and ρ are as in the forward energy model above.
This objective may be generalized to sequences longer than
k + 1 = 2 by having multiple terms in the loss for i =
1, . . . , k:

−φ(st+i)>Wiφ(st)+ logEρ[exp{φ(s̃)>Wiφ(st)}]. (3)

If momentum is used, we apply the contrastive loss be-
tween f(φ(st)) and φtarget(st+i), where f is a learned
function and φtarget denotes a non-trainable version of φ,
with weights corresponding to a slowly moving average of
the weights of φ, as in Stooke et al. (2020); He et al. (2020).

Attentive Contrastive Learning (ACL) Following the
theme of contrastive losses and inspired by a number
of works in the RL (van den Oord et al., 2019) and
NLP (Mikolov et al., 2013) literature which apply such
losses between tokens and contexts using an attention
mechanism, we devise a similar objective for our settings.
Implementation-wise, we borrow ideas from BERT (De-
vlin et al., 2018), namely we (1) take a sub-trajectory
st:t+k, at:t+k, rt:t+k, (2) randomly mask a subset of these,
(3) pass the masked sequence into a transformer, and then



Representation Matters: Offline Pretraining for Sequential Decision Making

Figure 2. Performance of downstream imitation learning, offline RL, and online RL tasks under a variety of representation learning
objectives. x-axis shows aggregated average rewards (over five seeds) across the domains and datasets described in Section 3. Methods
that failed to converge are eliminated from the results (see Appendix A). ACL is set to the default configuration that favors imitation
learning (see Section 5). When applicable, we also label variants with k + 1 ∈ {2, 8}. Methods above the dotted line are variants of
contrastive self-prediction. ACL performs well on imitation learning. VPN and (momentum) TCL perform well on offline and online RL.

(4) for each masked input state, apply a contrastive loss
between its representation φ(s) and the transformer out-
put at its sequential position. We use k + 1 = 8 in our
implementation. Figure 3 provides a diagram of ACL.

Value prediction network (VPN) Taken from Oh et al.
(2017), this objective uses an RNN starting at φ(st) and in-
putting at:t+k for k steps to predict the k-step future rewards
and value functions. While the original VPN paper defines
the (k+1)-th value function in terms of a max over actions,
we avoid this potential extrapolation issue and simply use
the (k+1)-th action provided in the offline data. As we will
elaborate on later, VPN bears similarities to ACL in that it
uses certain components of the input sequence (states and
actions) to predict other components (values).

Deep bisimulation for control This objective is taken
from Zhang et al. (2020), where the representation function
φ is learned to respect an L1 distance based on a bisimula-
tion similarity deduced from Bellman backups.

4.2. Results

The results of these representation learning objectives are
presented in Figure 2. Good representation learning objec-
tives, even before the extensive ablations we will embark
on in Section 5, on average improves downstream imitation
learning, offline RL, and online RL tasks by 1.5x, 2.5x,
and 15% respectively. The objectives that appear to work
best – ACL, (Momentum) TCL, VPN – fall under a class of
objectives we term contrastive self-prediction, where self-
prediction refers to the idea that certain components of a
sub-trajectory are predicted based on other components of
the same sub-trajectory, while contrastive refers to the fact
that this prediction should be performed via a contrastive
energy-based loss when the predicted component is a state
observation. We do note that, interestingly, the advantage
does not transfer to the forward energy model, suggesting
that it is crucial for the representation learning objective to

connect representations in the past to events in the future, as
opposed to vice versa.

We also find that a longer sub-trajectory k + 1 = 8 is
generally better than a short one k + 1 = 2. The advantage
here is presumably due to the non-Markovian nature of the
dataset. Even if the environment is Markovian, the use of
potentially distinct policies for data collection can lead to
non-Markovian data.

Despite these promising successes, there are a number of
objectives which perform poorly. Raw predictions of states
(forward model) yields disappointing results in these set-
tings. Forward models of future representations – Deep-
MDP, Bisimulation – also exhibit poor performance. This
latter finding was initially surprising to us, as many theoreti-
cal notions of state abstractions are based on the principle of
predictability of future state representations. Nevertheless,
even after extensive tuning of these objectives and attempts
at similar objectives (e.g., we briefly investigated incorpo-
rating ideas from Hafner et al. (2020)), we were not able to
achieve any better results. Even if it is possible to find better
architectures or hyperparameters, we believe the difficulty
in tuning these baselines makes them unattractive in com-
parison to the simpler and better performing alternatives.

5. Experiments: Depth Study
The favorable results of objectives based on the idea of con-
trastive self-prediction is compelling, but the small number
of objectives evaluated leaves many questions unanswered.
For example, when generating the context embedding for
a specific prediction, should one use past states (as in TCL
and Momentum TCL) or also include actions and/or rewards
(as in ACL and VPN)? Should this context use the same
representation network φ (as in TCL and VPN), a momen-
tum version of it (as in Momentum TCL), or a completely
separate network (as in ACL)?

We use this section to study these and other important ques-
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Table 2. Factors of contrastive self-prediction considered in our ablation study and summaries of their effects. Input action and input
reward default to true. The remaining factors default to false. For each effect entry, ↓ means decreased performance, ↑ means improved
performance, and = means no significant effect.

Factor Description Imitation Offline Online

reconstruct action Add action prediction loss based on φ(s). ↓ ↑ ↑
reconstruct reward Add a reward prediction loss based on φ(s). ↓ ↑ ↑
predict action Add an action prediction loss based on transformer outputs. Whenever

this is true, we also set ‘input embed’ to true.
↓ ↑ ↑

predict reward Add a reward prediction loss based on transformer outputs. Whenever
this is true, we also set ‘input embed’ to true.

↓ ↑ ↑

input action Include actions in the input sequence to transformer. ↓ ↑ ↑
input reward Include rewards in the input sequence to transformer. ↓ ↑ ↑
input embed Use representations φ(s) as input to transformer, as opposed to raw

observations.
↓ = ↑

bidirectional To generate sequence output at position i, use full input sequence as
opposed to only inputs at position > i.

↓ = ↑

finetune Pass gradients into φ during learning on downstream tasks. ↓ ↓ ↑
auxiliary loss Use representation learning objective as an auxiliary loss during down-

stream learning, as opposed to pretraining.
↓ ↓ ↑

momentum Adopt an additional momentum representation network. Whenever this
is true, we also set ‘input embed’ to true.

↓ ↓ ↑

discrete embedding Learn discrete representations. Following Hafner et al. (2020), we treat
the 256-dim output of φ as logits to sample 16 categorical distributions
of dimension 16 each and use straight-through gradients.

↓ ↓ ↓

context embedding Following Devlin et al. (2018), use transformer output as representations
for downstream tasks. Whenever this is true, we also set ‘input embed’
to true.

↓ ↓ ↓

context   
embedding ?

ϕ transformer

s′ 0 s′ 1 s′ 2

a′ 0 a′ 1

r′ 0 r′ 1

s0 s1 s2 s3

a0 a1 a2 a3

r0 r1 r2 r3

e0 e1 e2 e3

ẽ0 ẽ1 ẽ2 ẽ3

r0 r1 r2 r3

a0 a1 a2 a3

s0 s1 s2 s3

maskr

maska

masks

input  embedding ?

input reward ?

input action ?

e0 e1 e2 e3
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ℒr

ℒa predict action ?

predict reward ?

ϕ

momentum? transformer

𝒟
Attentive Contrastive Learning (ACL) Downstream Tasks

imitation learning 
offline RL  
online RL

input τ′ 

e′ 0 e′ 1 e′ 2 ẽ′ 0 ẽ′ 1 ẽ′ 2
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Figure 3. A pictoral representation of our depth study based on contrastive self-prediction. We use the transformer-based architecture
of attentive contrastive learning (ACL) as a skeleton for ablations with respect to various representation learning details. Solid arrows
correspond to the configuration of ACL. Dotted arrows and blue text are factors considered in the ablation study. Gray blocks are masked
state/action/reward entries. After the pretraining phase, the representation network φ is reused for downstream tasks, unless ‘context
embedding’ is true, in which case the transformer is used.

tions by conducting a series of ablations on the factors which
compose a specific contrastive self-prediction objective and
how it is applied to downstream learning. We describe all
these factors in Table 2, as well as a high-level summary of

their effects. Further anecdotal observations found during
our research are summarized in Appendix C.

We choose the transformer-based implementation of ACL
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Figure 4. Ablation results on imitation learning, offline RL, and online RL. x-axis shows average rewards and standard error aggregated
over either different Gym-MuJoCo datasets (imitation and offline RL) or domains (online RL). Blue dotted lines show average rewards
without pretraining. (T) and (F) mean setting each factor to true or false (opposite from the default configuration). Reconstructing,
predicting, or inputting action or reward (row 2-7) impairs imitation performance but are important for offline and online RL. Bidirectional
transformer hurts imitation learning when downstream sample size is small. Finetuning and auxiliary loss can help online RL. Additional
results are presented in Appendix B.

to serve as the skeleton for all these ablations (see Figure 3),
due to its general favorable empirical performance in the
previous section, as well as its ease of modification. For
each downstream task below, we present the ablations with
respect to the default configuration of the factors in Table 2
that corresponds to the original ACL introduced in Section 4,
and change one factor at a time to observe its effect on
downstream task performance.

5.1. Results

The results of our ablation studies are presented in Figure 4,
and we highlight some of the main findings below. We also
take the best performing ablation from each row (imitation,
offline RL, and online RL) and plot the performance during
training in Figure 1. Further results are available in Ap-
pendix B, and more of our interpretations of these results
are included in Appendix D.

Let us first consider the effects of inclusion or prediction of
actions and rewards. We notice some interesting behavior
across the different downstream modes. Namely, it appears
that imitation learning is best served by focusing only on
state contrastive learning and not including or predicting
actions and rewards, whereas the offline and online RL set-
tings appear to benefit from these. Due to the mixed results
we initially observed from including or predicting actions
and rewards, we also introduce the idea of reconstructing
actions and rewards based on φ(s), and we found this to
have much more consistent benefit in the RL settings, al-
though it still degrades imitation learning performance. This
disconnect between objectives which are good for imitation
learning vs. RL, first seen in Section 4, thus continues to be
present in these ablations as well, and we find that no single
objective dominates in all settings.

We also evaluate a number of representation learning
paradigms popular in the NLP literature (Devlin et al., 2018),
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namely using bidirectional transformers, finetuning, and
context embedding. Although these techniques are ubiq-
uitous in the NLP literature, we find mixed results in RL
settings. Context embedding consistently hurts performance.
Bidirectional transformer hurts imitation learning but helps
online RL. Finetuning leads to a modest degredation in per-
formace in imitation and offline RL but can improve online
RL depending on the domain being evaluated.

We additionally considered using the representation learning
objective as an auxiliary training loss, which is popular in
the online RL literature (Shelhamer et al., 2016; Stooke
et al., 2020). And indeed, we find that it can dramatically
improve representation learning in online RL, but at the
same time, dramatically degrade performance in the offline
settings (imitation learning or offline RL).

6. Conclusion
Overall, our results show that relatively simple represen-
tation learning objectives can dramatically improve down-
stream imitation learning, offline RL, and online RL (Fig-
ure 1). Interestingly, our results suggest that the ideal rep-
resentation learning objective may depend on the nature
of the downstream task, and no single objective appears to
dominate generally. Our extensive ablations also provide a
number of intriguing insights, showing that representational
paradigms which are popular in NLP or online RL may not
translate to good performance in offline settings.

Even with this multitude of fresh insight into the question
of representation learning in RL, our study is limited in a
number of aspects, and these aspects can serve as a start-
ing point for future work. For example, one may consider
additional downstream tasks such as multi-task, transfer,
or exploration. Alternatively, one can extend our ablations
to real-world domains like robot learning. Or, one may
consider ablating over different network architectures.

Despite these limitations, we hope our current work proves
useful to RL researchers, and serves as a guide for devel-
oping even better and more general representation learning
objectives.
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