
Accelerating Safe Reinforcement Learning with Constraint-mismatched Baseline Policies

Supplementary Material for Accelerating Safe Reinforcement Learning
with Constraint-mismatched Policies

Outline. Supplementary material is outlined as follows. Section A discusses the impact of the proposed algorithm.
Section B details the proof of updating hD in Lemma 4.1. Section C describes the proof of analytical solution to SPACE in
Eq. (10). Section D gives the proof of finite-time guarantee of SPACE in Theorem 5.1 and discuss the difference between
the KL-divergence and 2-norm projections. Section E assembles the additional experiment results to provide a detailed
examination of the proposed algorithm compared to the baselines. These include:

• evaluation of the discounted reward versus the cumulative undiscounted constraint cost to demonstrate that SPACE
achieves better reward performance with fewer cost constraint violations,

• evaluation of performance of SPACE guided by baseline policies with different JC(πB) to demonstrate that SPACE
safely learns from the baseline policies which need not satisfy the cost constraint,

• ablation studies of using a fixed hD in SPACE to demonstrate the importance of using the dynamic hD to improve the
reward and cost performance,

• comparison of SPACE and other annealing approaches to demonstrate that SPACE exploits the baseline policy
effectively,

• comparison of SPACE under the KL-divergence and the 2-norm projections to demonstrate that they converge to
different stationary points,

• evaluation of using different initial values of h0
D to demonstrate that the selection of the initial value does not affect the

performance of SPACE drastically.

Section E also details the environment parameters, the architectures of policies, computational cost, infrastructure for
computation and the instructions for executing the code. Section F provides a procedure for getting a baseline human policy.
Finally, we fill the Machine Learning Reproducibility Checklist in Section G.

A. Impact of SPACE
Many autonomous systems such as self-driving cars and autonomous robots are complex. In order to deal with this
complexity, researchers are increasingly using reinforcement learning in conjunction with imitation learning for designing
control policies. The more we can learn from a previous policy (e.g., human demonstration, previous applications), the
fewer resources (e.g., time, energy, engineering effort, cost) we need to learn a new policy. The proposed algorithm could be
applied in many fields where learning a policy can take advantage of prior applications while providing assurances for the
consideration of fairness, safety, or other costs. For example, in a dialogue system where an agent is intended to converse
with a human, the agent should safely learn from human preferences while avoiding producing biased or offensive responses.
In addition, in the self-driving car domain where an agent learns a driving policy, the agent should safely learn from human
drivers while avoiding a crash. Moreover, in the personalized robotic assistant setting where an agent learns from human
demonstration, the agent should carefully imitate humans without damaging itself or causing harm to nearby humans. These
examples highlight the potential impact of the proposed algorithm for accelerating safe reinforcement learning by adapting
prior knowledge. This can open the door to advances in lifelong learning and adaptation of agents to different contexts.

One deficiency of the proposed algorithm is that the agent still experiments with cost constraint violation when learning
control policies. This is because that any learning-based system needs to experiment with various actions to find a constraint-
satisfying policy. Even though the agent does not violate the safety constraints during the learning phase, any change or
perturbation of the environment that was not envisioned at the time of programming or training may lead to a catastrophic
failure during run-time. These systems cannot guarantee that sensor inputs will not induce undesirable consequences, nor
can the systems adapt and support safety in situations in which new objectives are created. This creates huge concerns in
safety-critical applications such as self-driving vehicles and personalized chatbot system.

This raises several questions: What human-agent communication is needed to bring humans in the loop to increase safety
guarantees for the autonomous system? How can trust and safety constraints be incorporated into the planning and control
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Figure 7. (a) Illustrating when πB is outside the cost constraint set. (b) Illustrating when πB is inside the cost constraint set. πboundary is
the policy with JC(πboundary) = hC . We aim to bound hk+1

D (i.e., the KL-divergence between πboundary and πB) by using hk
D.

processes? How can one effectively identify unsafe plans of the baseline policy? We believe this paper will encourage future
work to develop rigorous design and analysis tools for continual safety assurance in conjunction with using baseline policies
from previous applications.

B. Proof of Updating hD in Lemma 4.1
Proof. Based on Theorem 1 in (Achiam et al., 2017), for any two policies π and π′ we have

JC(π
′)− JC(π) ≥

1

1− γ
Es∼dπ
a∼π′

[
AπC(s, a)−

2γεπ
′

C

1− γ

√
1

2
DKL(π′(s)||π(s))

]
⇒ 2γεπ

′

C

(1− γ)2
Es∼dπ

[√1

2
DKL(π′(s)||π(s))

]
≥ −JC(π′) + JC(π) +

1

1− γ
Es∼dπ
a∼π′

[
AπC(s, a)

]
⇒ 2γεπ

′

C

(1− γ)2
Es∼dπ

[√1

2
DKL(π′(s)||π(s))

]
≥ −JC(π′) + JC(π)

⇒
√
2γεπ

′

C

(1− γ)2

√
Es∼dπ

[
DKL(π′(s)||π(s))

]
≥ −JC(π′) + JC(π)

⇒ Es∼dπ
[
DKL(π

′(s)||π(s))
]
≥ (1− γ)4(−JC(π′) + JC(π))

2

2γ2επ
′
C

2 . (16)

The fourth inequality follows from Jensen’s inequality. We then define ϕ(π(s)) .=
∑
i π(a(i)|s) log π(a(i)|s). By Three-

point Lemma (Chen & Teboulle, 1993), for any three policies π, π′, and π̂ we have

Es∼dπ
[
DKL(π

′(s)||π̂(s))
]
= Es∼dπ

[
DKL(π

′(s)||π(s))
]
+ Es∼dπ

[
DKL(π(s)||π̂(s))

]
−Es∼dπ

[
(∇ϕ(π̂(s))−∇ϕ(π(s)))T (π′(s)− π(s))

]
. (17)

Let πboundary denote a policy satisfying JC(πboundary) = hC (i.e., πboundary is in the boundary of the set of the policies
which satisfy the cost constraint JC(π) ≤ hC). Let π′ = πboundary, π̂ = πB and π = πk in Eq. (16) and Eq. (17) (this is
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illustrated in Fig. 7). Then we have

E
s∼dπ

k

[
DKL(πboundary(s)||πB(s))

]
− E

s∼dπ
k

[
DKL(π

k(s)||πB(s))
]

= E
s∼dπ

k

[
DKL(πboundary(s)||πk(s))

]
− Es∼dπk

[
(∇ϕ(πB(s))−∇ϕ(πk(s)))T (πboundary(s)− πk(s))

]
≥ (1− γ)4(−JC(πboundary) + JC(π

k))2

2γ2επ
′
C

2

− E
s∼dπk

[
(∇ϕ(πB(s))−∇ϕ(πk(s)))T (πboundary(s)− πk(s))

]
=

(1− γ)4(−hC + JC(π
k))2

2γ2επ
′
C

2

− E
s∼dπk

[
(∇ϕ(πB(s))−∇ϕ(πk(s)))T (πboundary(s)− πk(s))

]
= O

((
− hC + JC(π

k)
)2)

, (18)

where JC(πboundary) = hC .

For the first case in Fig. 7(a), we would like to have U1 ∩ Uk+1
2 6= ∅ (feasibility). For the second case in Fig. 7(b), we

would like to have Uk+1
2 ∩ ∂U1 6= ∅ (exploration). These implies that the policy in step k + 1 is πboundary which satisfies

U1 ∩ Uk+1
2 6= ∅ and Uk+1

2 ∩ ∂U1 6= ∅.

Now let hk+1
D

.
= E

s∼dπ
k

[
DKL(πboundary(s)||πB(s))

]
and hkD

.
= E

s∼dπ
k [DKL(π

k(s)||πB(s))]. Then Eq. 18 implies

hk+1
D ≥ O

((
− hC + JC(π

k)
)2)

+ hkD.

Lemma 4.1 theoretically ensures hD is large enough to guarantee feasibility and exploration of the agent. Note that we do
not provide guarantees for finding an optimal policy. This requires additional assumptions on the objective function (e.g.,
convexity).

In addition, the goal of this paper is to understand and analyze how to effectively exploit a baseline policy in constrained RL.
Without such an analysis, we are not confident in deploying SPACE in real applications. Furthermore, the question of safely
using baseline policies has a practical potential. It is less studied by prior work (Achiam et al., 2017; Chow et al., 2019;
Tessler et al., 2018; Yang et al., 2020).

C. Proof of Analytical Solution to SPACE in Eq. (10)
We first approximate the three stages in SPACE using the following approximations.

Step 1. Approximating Eq. (4) yields

θk+ 1
3 = argmax

θ
gk

T
(θ − θk) s.t.

1

2
(θ − θk)TF k(θ − θk) ≤ δ. (19)

Step 2 and Step 3. Approximating Eq. (5) and (6), similarly yields

θk+ 2
3 = argmin

θ

1

2
(θ − θk+ 1

3 )TL(θ − θk+ 1
3 ) s.t. ak

T
(θ − θk) + bk ≤ 0, (20)

θk+1 = argmin
θ

1

2
(θ − θk+ 2

3 )TL(θ − θk+ 2
3 ) s.t. ck

T
(θ − θk) + dk ≤ 0, (21)

where L = I for the 2-norm projection and L = F k for the KL-divergence projection.

Proof. For the first problem in Eq. (19), since F k is the Fisher Information matrix, it is positive semi-definite. Hence it is a
convex program with quadratic inequality constraints. If the primal problem has a feasible point, then Slater’s condition
is satisfied and strong duality holds. Let θ∗ and λ∗ denote the solutions to the primal and dual problems, respectively. In
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addition, the primal objective function is continuously differentiable. Hence the Karush-Kuhn-Tucker (KKT) conditions are
necessary and sufficient for the optimality of θ∗ and λ∗. We now form the Lagrangian:

L(θ, λ) = −gkT (θ − θk) + λ
(1
2
(θ − θk)TF k(θ − θk)− δ

)
.

And we have the following KKT conditions:

−gk + λ∗F kθ∗ − λ∗F kθk = 0 ∇θL(θ∗, λ∗) = 0 (22)
1

2
(θ∗ − θk)TF k(θ∗ − θk)− δ = 0 ∇λL(θ∗, λ∗) = 0 (23)

1

2
(θ∗ − θk)TF k(θ∗ − θk)− δ ≤ 0 primal constraints (24)

λ∗ ≥ 0 dual constraints (25)

λ∗
(1
2
(θ∗ − θk)TF k(θ∗ − θk)− δ

)
= 0 complementary slackness (26)

By Eq. (22), we have θ∗ = θk + 1
λ∗F

k−1
gk. And by plugging Eq. (22) into Eq. (23), we have λ∗ =

√
gkTF k−1gk

2δ . Hence
we have a solution

θk+ 1
3 = θ∗ = θk +

√
2δ

gk
T
F k
−1
gk
F k
−1
gk, (27)

which also satisfies Eq. (24), Eq. (25), and Eq. (26).

For the second problem in Eq. (20), we follow the same procedure for the first problem to form the Lagrangian:

L(θ, λ) = 1

2
(θ − θk+ 1

3 )TL(θ − θk+ 1
3 ) + λ(ak

T
(θ − θk) + bk).

And we have the following KKT conditions:

Lθ∗ −Lθk+ 1
3 + λ∗ak = 0 ∇θL(θ∗, λ∗) = 0 (28)

ak
T
(θ∗ − θk) + bk = 0 ∇λL(θ∗, λ∗) = 0 (29)

ak
T
(θ∗ − θk) + bk ≤ 0 primal constraints (30)

λ∗ ≥ 0 dual constraints (31)

λ∗(ak
T
(θ∗ − θk) + bk) = 0 complementary slackness (32)

By Eq. (28), we have θ∗ = θk + λ∗L−1ak. And by plugging Eq. (28) into Eq. (29) and Eq. (31), we have λ∗ =

max(0, a
kT (θk+ 1

3−θk)+bk

akL−1ak
). Hence we have a solution

θk+ 2
3 = θ∗ = θk+ 1

3 −max(0,
ak

T
(θk+ 1

3 − θk) + bk

ak
T
L−1ak

T
)L−1ak, (33)

which also satisfies Eq. (30) and Eq. (32).

For the third problem in Eq. (21), instead of doing the projection on πk+ 2
3 which is the intermediate policy obtained in the

second step, we project the policy πk+ 1
3 onto the cost constraint. This allows us to compute the projection without too much

computational cost. We follow the same procedure for the first and second problems to form the Lagrangian:

L(θ, λ) = 1

2
(θ − θk+ 1

3 )TL(θ − θk+ 1
3 ) + λ(ck

T
(θ − θk) + dk).

And we have the following KKT conditions:

Lθ∗ −Lθk+ 1
3 + λ∗ck = 0 ∇θL(θ∗, λ∗) = 0 (34)

ck
T
(θ∗ − θk) + dk = 0 ∇λL(θ∗, λ∗) = 0 (35)

ck
T
(θ∗ − θk) + dk ≤ 0 primal constraints (36)

λ∗ ≥ 0 dual constraints (37)

λ∗(ck
T
(θ∗ − θk) + dk) = 0 complementary slackness (38)
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By Eq. (34), we have θ∗ = θk + λ∗L−1ck. And by plugging Eq. (34) into Eq. (35) and Eq. (37), we have λ∗ =

max(0, c
kT (θk+ 1

3−θk)+dk

ckL−1ck
). Hence we have a solution

θk+1 = θ∗ = θk+ 1
3 −max(0,

ck
T
(θk+ 1

3 − θk) + dk

ck
T
L−1ck

T
)L−1ck. (39)

Hence by combining Eq. (27), Eq. (33) and Eq. (39), we have

θk+1 = θk +

√
2δ

gk
T
F k
−1
gk
F k
−1
gk−max(0,

√
2δ

gkTF k−1gk
ak

T
F k
−1
gk + bk

ak
T
L−1ak

)L−1ak

−max(0,

√
2δ

gkTF k−1gk
ck
T
F k
−1
gk + dk

ck
T
L−1ck

)L−1ck.

D. Proof of Finite-Time Guarantee of SPACE in Theorem 5.1
We now describe the reason for choosing two variants of ε-FOSP under two possible projections. Let ηkR denote the step size
for the reward, ηkD denote the step size for the divergence cost, and ηkC denote the step size for the constraint cost. Without
loss of generality, under the KL-divergence projection, at step k + 1 SPACE does

θk+1 = θk + ηkRF
k−1

gk − ηkDF k
−1
ak − ηkCF k

−1
ck.

Similarly, under the 2-norm projection, at step k + 1 SPACE does

θk+1 = θk + ηkRF
kgk − ηkDak − ηkCck.

With this definition, we have the following Lemma.

Lemma D.1 (Stationary Points for SPACE). Under the KL-divergence projection, SPACE converges to a stationary point
θ∗ satisfying

η∗Rg
∗ = η∗Da

∗ + η∗Cc
∗.

Under the 2-norm projection, SPACE converges to a stationary point θ∗ satisfying

η∗Rg
∗ = F ∗(η∗Da

∗ + η∗Cc
∗).

Proof. Under the KL-divergence projection, by using the definition of a stationary point we have

θ∗ = θ∗ + η∗RF
∗−1g∗ − η∗DF ∗

−1a∗ − η∗CF ∗
−1c∗

⇒ η∗RF
∗−1g∗ = η∗DF

∗−1a∗ + η∗CF
∗−1c∗

⇒ η∗Rg
∗ = η∗Da

∗ + η∗Cc
∗.

Under the 2-norm projection, by using the definition of a stationary point we have

θ∗ = θ∗ + η∗RF
∗−1g∗ − η∗Da∗ − η∗Cc∗

⇒ η∗RF
∗−1g∗ = η∗Da

∗ + η∗Cc
∗

⇒ η∗Rg
∗ = F ∗(η∗Da

∗ + η∗Cc
∗).

Hence Lemma D.1 motivates the need for defining two variants of FOSP.

Before proving Theorem 5.1, we need the following Lemma. Define PLC (θ)
.
= argmin

θ′∈C
‖θ − θ′‖2L =

argmin
θ′∈C

(θ − θ′)TL(θ − θ′), and L = F k under the KL-divergence projection, and L = I under the 2-norm projection.

Lemma D.2 (Contraction of Projection (Yang et al., 2020)). For any θ, θ∗ = PLC (θ) if and only if (θ − θ∗)TL(θ′−θ∗) ≤
0,∀θ′ ∈ C.
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Proof. (⇒) Let θ∗ = PLC (θ) for a given θ 6∈ C, θ′ ∈ C be such that θ′ 6= θ∗, and α ∈ (0, 1). Then we have

‖θ − θ∗‖2L ≤ ‖θ −
(
θ∗ + α(θ′ − θ∗)

)
‖2L

= ‖θ − θ∗‖2L + α2‖θ′ − θ∗‖2L − 2α(θ − θ∗)TL(θ′ − θ∗)
⇒ (θ − θ∗)TL(θ′ − θ∗) ≤ α

2
‖θ′ − θ∗‖2L. (40)

Since the right hand side of Eq. (40) can be made arbitrarily small for a given α, we have

(θ − θ∗)TL(θ′ − θ∗) ≤ 0,∀θ′ ∈ C.

(⇐) Let θ∗ ∈ C be such that (θ−θ∗)TL(θ′−θ∗) ≤ 0,∀θ′ ∈ C. We show that θ∗ must be the optimal solution. Let θ′ ∈ C
and θ′ 6= θ∗. Then we have

‖θ − θ′‖2L − ‖θ − θ∗‖2L = ‖θ − θ∗ + θ∗ − θ′‖2L − ‖θ − θ∗‖2L
= ‖θ − θ∗‖2L + ‖θ′ − θ∗‖2L − 2(θ − θ∗)TL(θ′ − θ∗)− ‖θ − θ∗‖2L
> 0

⇒ ‖θ − θ′‖2L > ‖θ − θ∗‖2L.

Hence, θ∗ is the optimal solution to the optimization problem, and θ∗ = PLC (θ).

We now prove Theorem 5.1. Without loss of generality, on each learning episode SPACE updates the reward followed by the
alternation of two projections onto the constraint sets (region around πB and the cost constraint set):

θk+ 1
3 = θk − ηkF−1∇f(θk), θk+ 2

3 = PC2(θk+ 1
3 ), θk+1 = PC1(θk+ 2

3 ), if θk ∈ C2,
θk+ 1

3 = θk − ηkF−1∇f(θk), θk+ 2
3 = PC1(θk+ 1

3 ), θk+1 = PC2(θk+ 2
3 ), if θk ∈ C1,

where ηk is the step size at step k.

Proof. SPACE under the KL-divergence projection converges to an ε-FOSP. Based on Lemma D.2 under the KL-
divergence projection, and setting θ = θk − ηkF k−1∇f(θk), θ∗ = θk+ 2

3 and θ′ = θk, we have

(θk − θk+ 2
3 )TF k(θk − ηkF k−1∇f(θk)− θk+ 2

3 ) ≤ 0

⇒ ∇f(θk)T (θk+ 2
3 − θk) ≤ − 1

ηk
(θk+ 2

3 − θk)TF k(θk+ 2
3 − θk). (41)

Based on the L-Lipschitz continuity of gradients and Eq. (41), we have

f(θk+ 2
3 ) ≤ f(θk) +∇f(θk)T (θk+ 2

3 − θk) + L

2
‖θk+ 2

3 − θk‖2

≤ f(θk)− 1

ηk
(θk+ 2

3 − θk)TF k(θk+ 2
3 − θk) + L

2
‖θk+ 2

3 − θk‖2

= f(θk)− L

2
‖θk+ 2

3 − θk‖2 −∇f(θk+ 2
3 )T (θk+1 − θk+ 2

3 )− L

2
‖θk+1 − θk+ 2

3 ‖2, (42)

where the equality follows by setting δ (i.e., the size of the trust region) such that

ηk =
(θk+ 2

3 − θk)TF k(θk+ 2
3 − θk)

L‖θk+ 2
3 − θk‖2 +∇f(θk+ 2

3 )T (θk+1 − θk+ 2
3 ) + L

2 ‖θk+1 − θk+ 2
3 ‖2

.
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Again, based on Lemma D.2, for θ ∈ C2 we have

(θk − ηkF k−1∇f(θk)− θk+ 2
3 )F k(θ − θk+ 2

3 ) ≤ 0

⇒ (−ηkF k−1∇f(θk))TF k(θ − θk+ 2
3 ) ≤ −(θk − θk+ 2

3 )TF k(θ − θk+ 2
3 )

⇒ ∇f(θk)T (θ − θk+ 2
3 ) ≥ 1

ηk
(θk − θk+ 2

3 )TF k(θ − θk+ 2
3 )

⇒ ∇f(θk)Tθ ≥ ∇f(θk)Tθk+ 2
3 +

1

ηk
(θk − θk+ 2

3 )TF k(θ − θk+ 2
3 )

⇒ f(θk)T (θ − θk) ≥ ∇f(θk)T (θk+ 2
3 − θk) + 1

ηk
(θk − θk+ 2

3 )TF k(θ − θk+ 2
3 )

≥ −‖∇f(θk)‖‖θk+ 2
3 − θk‖ − 1

ηk
‖θk+ 2

3 − θk‖‖F k‖‖θ − θk+ 2
3 ‖

≥ −
(
G+

Dσ1(F
k)

ηk
)
‖θk+ 2

3 − θk‖, (43)

where in the last two inequalities we use the property of the norm. Before reaching an ε-FOSP, Eq. (43) implies that

− ε ≥ min
θ∈C2
∇f(θk)T (θ − θk) ≥ −

(
G+

Dσ1(F
k)

ηk
)
‖θk+ 2

3 − θk‖

⇒ ‖θk+ 2
3 − θk‖ ≥ ε

G+ Dσ1(F k)
ηk

. (44)

Based on Eq. (42) and Eq. (44), we have

f(θk+ 2
3 ) ≤ f(θk)− L

2
‖θk+ 2

3 − θk‖2 −∇f(θk+ 2
3 )T (θk+1 − θk+ 2

3 )− L

2
‖θk+1 − θk+ 2

3 ‖2

≤ f(θk)− Lε2

2(G+ Dσ1(F k)
ηk

)2
−∇f(θk+ 2

3 )T (θk+1 − θk+ 2
3 )− L

2
‖θk+1 − θk+ 2

3 ‖2. (45)

Based on the L-Lipschitz continuity of gradients, for the projection to the constraint set C1 we have

f(θk+1) ≤ f(θk+ 2
3 ) +∇f(θk+ 2

3 )T (θk+1 − θk+ 2
3 ) +

L

2
‖θk+1 − θk+ 2

3 ‖2. (46)

Combining Eq. (45) with Eq. (46), we have

f(θk+1) ≤ f(θk)− Lε2

2(G+ Dσ1(F k)
ηk

)2
. (47)

Hence it takes O(ε−2) iterations to reach an ε-FOSP.

SPACE under the 2-norm projection converges to an ε-FOSP. Based on Lemma D.2 under the 2-norm projection, and
setting θ = θk − ηkF k−1∇f(θk), θ∗ = θk+ 2

3 and θ′ = θk, we have

(θk − θk+ 2
3 )T (θk − ηkF k−1∇f(θk)− θk+ 2

3 ) ≤ 0

⇒(F k
−1∇f(θk))T (θk+ 2

3 − θk) ≤ − 1

ηk
(θk+ 2

3 − θk)T (θk+ 2
3 − θk). (48)

Based on the L-Lipschitz continuity of gradients and Eq. (48), we have

f(θk+ 2
3 ) ≤ f(θk) +∇f(θk)T (θk+ 2

3 − θk) + L

2
‖θk+ 2

3 − θk‖2

≤ f(θk) + (F k
−1∇f(θk))T (θk+ 2

3 − θk) +Q+
L

2
‖θk+ 2

3 − θk‖2

≤ f(θk)− 1

ηk
(θk+ 2

3 − θk)T (θk+ 2
3 − θk) +Q+

L

2
‖θk+ 2

3 − θk‖2

= f(θk)− L

2
‖θk+ 2

3 − θk‖2 −∇f(θk+ 2
3 )T (θk+1 − θk+ 2

3 )− L

2
‖θk+1 − θk+ 2

3 ‖2, (49)

where Q := ∇f(θk)T (θk+ 2
3 − θk)− (F k

−1∇f(θk))T (θk+ 2
3 − θk), which represents the difference between the gradient
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and the nature gradient, and the equality follows by setting δ (i.e., the size of the trust region) such that

ηk =
‖θk+ 2

3 − θk‖2

L‖θk+ 2
3 − θk‖2 +Q+∇f(θk+ 2

3 )T (θk+1 − θk+ 2
3 ) + L

2 ‖θk+1 − θk+ 2
3 ‖2

.

Again, based on Lemma D.2, for θ ∈ C2 we have

(θk − ηkF k−1∇f(θk)− θk+ 2
3 )(θ − θk+ 2

3 ) ≤ 0

⇒ (−ηkF k−1∇f(θk))T (θ − θk+ 2
3 ) ≤ −(θk − θk+ 2

3 )T (θ − θk+ 2
3 )

⇒ ∇f(θk)TF k−1
(θ − θk+ 2

3 ) ≥ 1

ηk
(θk − θk+ 2

3 )T (θ − θk+ 2
3 )

⇒ ∇f(θk)TF k−1
θ ≥ ∇f(θk)TF k−1

θk+ 2
3 +

1

ηk
(θk − θk+ 2

3 )T (θ − θk+ 2
3 )

⇒ ∇f(θk)TF k−1
(θ − θk) ≥ ∇f(θk)TF k−1

(θk+ 2
3 − θk) + 1

ηk
(θk − θk+ 2

3 )T (θ − θk+ 2
3 )

≥ −‖∇f(θk)‖‖F k−1‖‖θk+ 2
3 − θk‖ − 1

ηk
‖θk+ 2

3 − θk‖‖θ − θk+ 2
3 ‖

≥ −
(
Gσ1(F

k−1
) +

D

ηk
)
‖θk+ 2

3 − θk‖, (50)

where in the last two inequalities we use the property of the norm. Before reaching an ε-FOSP, Eq. (50) implies that

− ε ≥ min
θ∈C2
∇f(θk)TF k−1

(θ − θk) ≥ −
(
Gσ1(F

k−1
) +

D

ηk
)
‖θk+ 2

3 − θk‖

⇒ ‖θk+ 2
3 − θk‖ ≥ ε(

Gσ1(F k
−1

) + D
ηk

) . (51)

Based on Eq. (49) and Eq. (51), we have

f(θk+ 2
3 ) ≤ f(θk)− L

2
‖θk+ 2

3 − θk‖2 −∇f(θk+ 2
3 )T (θk+1 − θk+ 2

3 )− L

2
‖θk+1 − θk+ 2

3 ‖2

≤ f(θk)− Lε2

2(Gσ1(F k
−1

) + D
ηk
)2
−∇f(θk+ 2

3 )T (θk+1 − θk+ 2
3 )− L

2
‖θk+1 − θk+ 2

3 ‖2. (52)

Based on the L-Lipschitz continuity of gradients, for the projection to the constraint set C1 we have

f(θk+1) ≤ f(θk+ 2
3 ) +∇f(θk+ 2

3 )T (θk+1 − θk+ 2
3 ) +

L

2
‖θk+1 − θk+ 2

3 ‖2. (53)

Combining Eq. (52) with Eq. (53), we have

f(θk+1) ≤ f(θk)− Lε2

2(Gσ1(F k
−1

) + D
ηk
)2
. (54)

Hence it takes O(ε−2) iterations to reach an ε-FOSP.

Comments on Assumption 1.3. In the paper, we assume that both the diameters of the cost constraint set (C1) and the
region around πB (C2) are bounded above by H. This implies that given a small value for hD, the convergence speed is
determined by how large the constraint set is. This allows us to do an analysis for the algorithm. In practice, we agree that
this assumption is too strong and leave it as a future work for improvement.

Interpretation on Theorem 5.1. We now provide a visualization in Fig. 8 under two possible projections. For each
projection, we consider two possible Fisher information matrices. Please read the caption for more detail. In Fig. 8(a) we
observe that since the reward improvement and projection steps use the KL-divergence, the resulting two update points with
different σ1(F

k) are similar. In addition, under the 2-norm projection, the larger σn(F k) is, the greater the decrease in the
objective. This is because that a large σn(F k) implies a large curvature of f in all directions. Intuitively, this makes the
learning algorithm confident about where to update the policy to decrease the objective value greatly. Geometrically, a large
σn(F

k) makes the 2-norm distance between the pre-projection and post-projection points small, leading to a small deviation
from the reward improvement direction. This is illustrated in Fig. 8(b). We observe that since F k determines the curvature
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(a) SPACE under the KL-divergence projection

(b) SPACE under the 2-norm projection

Figure 8. Update procedures for SPACE under the KL and 2-norm projections with two possible Fisher information matrices. A lower
objective value is achieved at the darker green area. Red and orange ellipses are F ks with two different spectra of singular values. Red
and orange dots are resulting updated points under these two spectra of F ks. (a) A red ellipse has a smaller σ1(F

k) and an orange ellipse
has a larger σ1(F

k). Both ellipses have the same σn(F
k). The two resulting θk+

2
3 are similar. (b) A red ellipse has a larger σn(F

k) and
an orange ellipse has a smaller σn(F

k). Both ellipses have the same σ1(F
k). θk+

2
3 with a larger σn(F

k) (red dot) has greater decrease
of the objective value.

of f and the 2-norm projection is used, the updated point with a larger σn(F k) (red dot) achieves more improvement of
the objective value. These observations imply that the spectrum of the Fisher information matrix does not play a major
role in SPACE under the KL-divergence projection, whereas it affects the decrease of objective value in SPACE under the
2-norm projection. Hence we choose either KL-divergence or 2-norm projections depending on the tasks to achieve better
performance.

E. Additional Experiment Results
E.1. Implementation Details

Mujoco Task (Achiam et al., 2017). In the point circle and ant circle tasks, the reward and cost functions are

R(s) =
vT [−x2;x1]

1 + |‖[x1;x2]‖ − d|
,

and
C(s) = 1[|x1| > xlim],

where x1 and x2 are the coordinates in the plane, v is the velocity of the agent, and d, xlim are environmental parameters
that specify the safe area. The agent is rewarded for moving fast in a wide circle with radius of d, but is constrained to stay
within a safe region smaller than the radius of the circle in x1-coordinate xlim ≤ d. For the point agent, we use d = 5 and
xlim = 2.5; for the ant agent, we use d = 5 and xlim = 1. The environment is illustrated in Fig. 9.

In the point gather task, the agent receives a reward of +10 for gathering green apples, and a cost of 1 for gathering red
apples. Two green apples and eight red apples are placed in the environment at the beginning. In the ant gather task, the
agent receives a reward of +10 for gathering green apples, and a cost of 1 for gathering red apples. The agent also gets a
reward of −10 for falling down to encourage smooth moving. Eight green apples and eight red apples are placed in the
environment at the beginning.

For the point and ant agents, the state space consists of the positions, orientations, velocities, and the external forces applied
to the torso and joint angles. The action space is the force applied to joints.
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Figure 9. The environment of the circle task (adapted from (Achiam et al., 2017)). The agent receives the maximum reward while staying
in the safe area by following the red dashed line path.

Traffic Management Task (Vinitsky et al., 2018). In the grid task, the state space, action space, reward function, and
cost function are illustrated as follows.

(1) States: Speed, distance to the intersection, and edge number of each vehicle. The edges of the grid are uniquely numbered
so the travel direction can be inferred. For the traffic lights, we return 0 and 1 corresponding to green or red for each light,
a number between [0, tswitch] indicating how long until a switch can occur, and 0 and 1 indicating if the light is currently
yellow. Finally, we return the average density and velocity of each edge.

(2) Actions: A list of numbers a = [−1, 1]n where n is the number of traffic lights. If ai > 0 for traffic light i it switches,
otherwise no action is taken.

(3) Reward: The objective of the agent is to achieve high speeds. The reward function is

R(s) =
max(vtarget − ‖vtarget − v‖, 0)

vtarget
,

where vtarget is an arbitrary large velocity used to encourage high speeds and v ∈ Rk is the velocities of k vehicles in the
network.

(4) Cost: The objective of the agent is to let lights stay red for at most 7 consecutive seconds. The cost function is

C(s) =

n∑
i=1

1[ti,red > 7],

where ti,red is the consecutive time that the light i is in red.

In the bottleneck task, the state space, action space, reward function, and cost function are illustrated as follows.

(1) States: The states include: the mean positions and velocities of human drivers for each lane for each edge segment,
the mean positions and velocities of the autonomous vehicles on each segment, and the outflow of the system in vehicles
per/hour over the last 5 seconds.

(2) Actions: For a given edge-segment and a given lane, the action shifts the maximum speed of all the autonomous vehicles
in the segment from their current value. By shifting the max-speed to higher or lower values, the system indirectly controls
the velocity of the autonomous vehicles.

(3) Reward: The objective of the agent is to maximize the outflow of the whole traffic. The reward function is

R(st) =

i=t∑
i=t− 5

∆t

nexit(i)
5

∆t·nlane·500

,

where nexit(i) is the number of vehicles that exit the system at time-step i, and nlane is the number of lanes.

(4) Cost: The objective of the agent is to let the velocities of human drivers have lowspeed for no more than 10 seconds. The
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Parameter PC PG AC AG Gr BN CR
Reward dis. factor γ 0.995 0.995 0.995 0.995 0.999 0.999 0.990

Constraint cost dis. factor γC 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Divergence cost dis. factor γD 1.0 1.0 1.0 1.0 1.0 1.0 1.0

step size δ 10−4 10−4 10−4 10−4 10−4 10−4 5× 10−4

λGAE
R 0.95 0.95 0.95 0.95 0.97 0.97 0.95
λGAE
C 1.0 1.0 0.5 0.5 0.5 1.0 1.0
λGAE
D 0.95 0.95 0.95 0.95 0.90 0.90 0.95

Batch size 50,000 50,000 100,000 100,000 10,000 25,000 10,000
Rollout length 50 15 500 500 400 500 1000

Constraint cost threshold hC 5 0.5 5 0.2 0 0 5
Divergence cost threshold h0

D 5 3 5 3 10 10 5
Number of policy updates 1,000 1,200 2,500 1,500 200 300 600

Table 1. Parameters used in all tasks. (PC: point circle, PG: point gather, AC: ant circle, AG: ant gather, Gr: grid, BN: bottleneck, and CR:
car-racing tasks)

cost function is

C(s) =

nhuman∑
i=1

1[ti,low > 10],

where nhuman is the number of human drivers, and ti,low is the consecutive time that the velocity of human driver i is less
than 5 m/s. For more information, please refer to (Vinitsky et al., 2018).

Car-racing Task. In the car-racing task, the state space, action space, reward function, and the cost function are illustrated
as follows.

(1) States: It is a high-dimensional space where the state is a 96× 96× 3 tensor of raw pixels. Each pixel is in the range of
[0, 255].

(2) Actions: The agent has 12 actions in total: a ∈ A = {(asteer, agas, abrake)|asteer ∈ {−1, 0, 1}, agas ∈ {0, 1}, abrake ∈
{0, 0.2}}, where asteer is the steering angle, agas is the amount of gas applied, and abrake is the amount of brake applied.

(3) Reward: In each episode, we randomly generate the track. The episode is terminated if the agent reaches the maximal
step or traverse over 95% of the track. The track is discretized into 281 tiles. The agent receives a reward of 1000

281 for each
tile visited. To encourage driving efficiency, the agent receives a penalty of −1 per-time step.

(4) Cost: The cost is to constrain the accumulated number of brakes to encourage a smooth ride.

Architectures and Parameters. For the gather and circle tasks we test two distinct agents: a point-mass (S ⊆ R9, A ⊆
R2), and an ant robot (S ⊆ R32, A ⊆ R8). The agent in the grid task is S ⊆ R156, A ⊆ R4, and the agent in the bottleneck
task is S ⊆ R141, A ⊆ R20. Finally, the agent in the car-racing task is S ⊆ R96×96×3, A ⊆ R3.

For the simulations in the gather and circle tasks, we use a neural network with two hidden layers of size (64, 32) to represent
Gaussian policies. And we use the KL-divergence projection. For the simulations in the grid and bottleneck tasks, we use
a neural network with two hidden layers of size (16, 16) and (50, 25) to represent Gaussian policies, respectively. And
we use the 2-norm projection. For the simulation in the car-racing task, we use a convolutional neural network with two
convolutional operators of size 24 and 12 followed by a dense layer of size (32, 16) to represent a Gaussian policy. And we
use the KL-divergence projection. The choice of the projections depends on the task itself, we report the best performance
among two projections. We use tanh as an activation function for all the neural network policies. In the experiments,
since the step size is small, we reuse the Fisher information matrix of the reward improvement step in the KL-divergence
projection step to reduce the computational cost.

We use GAE-λ approach (Schulman et al., 2016) to estimate AπR(s, a), A
π
C(s, a), and AπD(s). For the simulations in the

gather, circle, and car-racing tasks, we use neural network baselines with the same architecture and activation functions as
the policy networks. For the simulations in the grid and bottleneck tasks, we use linear baselines. The hyperparameters of
all algorithms and all tasks are in Table 1.
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PCPO SPACE (Ours) f-PCPO f-CPO d-PCPO d-CPO

M/C Time M/C Time M/C Time M/C Time M/C Time M/C Time
PG B 22.14 B 25.2 B 31.9 B 25.5 B 32.8 B 32.6
PC B 35.1 B 51.2 B 48.4 B 49.4 B 55.5 B 55.9
AG B 386.9 B 110.5 C 268.6 C 235.1 B 138.2 B 187.5
AC B 148.9 B 94.0 C 222.6 C 214.6 B 177.4 B 151.2
Gr A 105.3 A 91.4 A 88.2 A 58.7 A 116.8 A 115.3
BN A 257.7 A 181.1 A 162.9 A 161.6 A 259.3 A 275.6
CR C 993.5 C 971.6 C 1078.3 C 940.1 C 1000.4 C 981.0

Table 2. Real-time in seconds for one policy update for all tested algorithms and tasks. (PC: point circle, PG: point gather, AC: ant circle,
AG: ant gather, Gr: grid, BN: bottleneck, and CR: car-racing tasks)

We conduct the experiments on three separate machines: machine A has an Intel Core i7-4770HQ CPU, machine B has
an Intel Core i7-6850K CPU, and machine C has an Intel Xeon X5675 CPU. We report real-time (i.e., wall-clock time)
in seconds for one policy update for all tested algorithms and tasks in Table 2. We observe that SPACE has the same
computational time as the other baselines.

For the most intensive task, i.e., the car-racing task, the memory usage is 6.28GB. The experiments are implemented
in rllab (Duan et al., 2016), a tool for developing RL algorithms. We provide the link to the code: https://sites.
google.com/view/spacealgo.

Comments on the rationale behind when to increase hD. The update method of hD is empirically designed to ensure
that the value of the cost does not increase (i.e., JC(πk) ≤ JC(π

k−1)) and the reward keeps improving (i.e., JR(πk) ≥
JR(π

k−1)) after learning from πB . Lemma 4.1 theoretically ensures hD is large enough to guarantee feasibility and
exploration of the agent.

Implementation of Updating hkD. Lemma 4.1 shows that hk+1
D should be increased at least byO

(
(JC(π

k)−hC)2
)
+hkD

if JC(πk) > JC(π
k−1) or JR(πk) < JR(π

k−1) at step k. We now provide the practical implementation. For each policy
update we check the above conditions. If one of the conditions satisfies, we increase hk+1

D by setting the constant to 10,
i.e., 10 · (JC(πk)− hC)2 + hkD. In practice, we find that the performance of SPACE is not affected by the selection of the
constant. Note that we could still compute the exact value of hk+1

D as shown in the proof of Lemma 4.1. However, this
incurs the computational cost.

Comments on learning from multiple baseline policies πB . In our setting, we use one πB . This allows us to do
theoretical analysis. One possible idea for learning from multiple πB is to compute the distance to each πB . Then, select the
one with the minimum distance to do the update. This ensures that the update for the reward in the first step is less affected
by πB . And the analysis we did can be extended. We leave it as future work for developing this.

Comments on refining the PCPO agent’s policy (Yang et al., 2020) directly. Fine-tuning the pre-trained policy directly
might result in lower reward and cost violations. This is because that the pre-trained policy has a low entropy and it does not
explore. We empirically observe that the agent pre-trained with the baseline policy yields less reward in the new task (i.e.,
different cost constraint thresholds hC) as illustrated in Section E.2. In contrast, the SPACE agent simultaneously learns
from the baseline policy while ensuring the policy entropy is high enough to explore the environment.

Comments on the feasibility of getting safe baseline policies. In many real-world applications such as drones, we can
obtain baseline policies modeled from the first principle physics, or pre-train baseline policies in the constrained and safe
environment, or use rule-based baseline policies. Importantly, we do not assume the baseline has to be a “safe policy” – it
can be a heuristic that ignores safety constraints. This is one of the main motivations for our algorithm: to utilize priors
from the baseline which may be unsafe, but guarantee the safety of the newly learned algorithm according to the provided
constraints.

Instructions for Reproducibility. We now provide the instructions for reproducing the results. First install the libraries
for python3 such as numpy, scipy. To run the Mujoco experiments, get the licence from https://www.roboti.
us/license.html. To run the traffic management experiments, install FLOW simulator from https://flow.
readthedocs.io/en/latest/. To run the car-racing experiments, install OpenAI Gym from https://github.

https://sites.google.com/view/spacealgo
https://sites.google.com/view/spacealgo
https://www.roboti.us/license.html
https://www.roboti.us/license.html
https://flow.readthedocs.io/en/latest/
https://flow.readthedocs.io/en/latest/
https://github.com/openai/gym
https://github.com/openai/gym
https://github.com/openai/gym
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(a) Bottleneck (b) Car-racing (c) Grid

Figure 10. The discounted reward vs. the cumulative undiscounted constraint cost over policy updates for the tested algorithms and tasks.
The solid line is the mean over 5 runs. SPACE achieves the same reward performance with fewer cost constraint violations in all cases.
(Best viewed in color.)

com/openai/gym. Our implementation is based on the environment from (Achiam et al., 2017), please download the
code from https://github.com/jachiam/cpo. The code is based on rllab (Duan et al., 2016), install the relevant
packages such as theano (http://deeplearning.net/software/theano/). Then, download SPACE code from
https://sites.google.com/view/spaceneurips and place the codes on the designated folder instructed by
Readme.txt on the main folder. Finally, go to the example folder and execute the code using python command.

E.2. Experiment Results

Baseline policies. We pre-train the baseline policies using a safe RL algorithm. Here we also consider three types of
baseline policies: (1) suboptimal πcost

B with JC(πcost
B ) ≈ 0, (2) suboptimal πreward

B with JC(πreward
B ) > hC , and (3) πnear

B

with JC(πnear
B ) ≈ hC Note that these πB have different degrees of constraint satisfaction.

The Discounted Reward vs. the Cumulative Undiscounted Constraint Cost (see Fig. 10). To show that SPACE
achieves higher reward under the same cost constraint violations (i.e., learning a constraint-satisfying policy without
violating the cost constraint a lot), we examine the discounted reward versus the cumulative undiscounted constraint cost.
The learning curves of the discounted reward versus the cumulative undiscounted constraint cost are shown for all tested
algorithms and tasks in Fig. 10. We observe that in these tasks under the same value of the reward, SPACE outperforms the
baselines significantly with fewer cost constraint violations. For example, in the car-racing task SPACE achieves 3 times
fewer cost constraint violations at the reward value of 40 compared to the best baseline – PCPO. This implies that SPACE
effectively leverages the baseline policy while ensuring the constraint satisfaction. In contrast, without the supervision of the
baseline policy, PCPO requires much more constraint violations to achieve the same reward performance as SPACE. In
addition, although the fixed-point and the dynamic-point approaches use the supervision of the baseline policy, the lack of
the projection step makes them less efficient in learning a constraint-satisfying policy.

Comparison of Baseline Policies (see Fig. 11). To examine whether SPACE can safely learn from the baseline policy
which need not satisfy the cost constraint, we consider two baseline policies: πcost

B and πreward
B . The learning curves of the

undiscounted constraint cost, the discounted reward, and the undiscounted divergence cost with two possible baselines over
policy updates are shown for all tested algorithms and tasks in Fig. 11. We observe that in the point gather and point circle
tasks, the initial values of the cost are larger than hC (i.e., JC(π0) > hC). Using πcost

B allows the learning algorithm to
quickly satisfy the cost without doing the extensive projection onto the cost constraint set. For example, in the point circle
task we observe that learning guided by πcost

B quickly satisfies the cost constraint. In addition, we observe that in the ant
gather and ant circle tasks, the initial values of the cost are smaller than hC (i.e., JC(π0) < hC). Intuitively, we would
expect that using πreward

B allows the agent to quickly improve the reward since the agent already satisfies the cost constraint
in the beginning. In the ant gather task we observe that SPACE guided by πreward

B does improve the reward more quickly
at around 200 iteration. However, we observe that the agent guided by the both baseline policies achieve the same final
reward performance in the ant gather and ant circle tasks. The reason is that using dynamic hD allows the agent to stay away

https://github.com/openai/gym
https://github.com/openai/gym
https://github.com/openai/gym
https://github.com/jachiam/cpo
http://deeplearning.net/software/theano/
https://sites.google.com/view/spaceneurips
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from the baseline policy. This makes the baseline policy less influential in the end. As a result, the reward improvement
mostly comes from the reward improvement step of SPACE if the agent starts in the interior of the cost constraint set (i.e.,
JC(π

0) ≤ hC).

Fixed hD (see Fig. 12). To understand the effect of using dynamic hkD when learning from a sub-optimal baseline policy,
we compare the performance of SPACE with and without adjusting hD. The learning curves of the undiscounted constraint
cost, the discounted reward, and the undiscounted divergence cost over policy updates are shown for all tested algorithms
and tasks in Fig. 12. We observe that SPACE with fixed hD converges to less reward. For example, in the ant circle task
SPACE with the dynamic hD achieves 2.3 times more reward. The value of the divergence cost in the ant circle task shows
that staying away from the baseline policy achieves more reward. This implies that the baseline policy in the ant circle task
is highly sub-optimal to the agent. In addition, we observe that in some tasks the dynamic hD does not have much effect on
the reward performance. For example, in the point gather task SPACE achieves the same reward performance. The values
of the divergence cost in the point gather task decrease throughout the training. These observations imply that the update
scheme of hD is critical for some tasks.

Comparison of SPACE vs. d-CPO, d-PCPO and the Pre-training Approach (see Fig. 13). To show that SPACE is
effective in using the supervision of the baseline policy, we compare the performance of SPACE to the dynamic-point
and the pre-training approaches. In the pre-training approach, the agent first performs the trust region update with the
objective function being the divergence cost. Once the agent has the same reward performance as the baseline policy (i.e.,
JR(π

k) ≈ JR(πB) for some k), the agent performs the trust region update with the objective function being the reward
function. The learning curves of the undiscounted constraint cost, the discounted reward, and the undiscounted divergence
cost over policy updates are shown for all tested algorithms and tasks in Fig. 13. We observe that SPACE achieves better
reward performance compared to the pre-training approach in all tasks. For example, in the point circle, ant gather and ant
circle tasks the pre-training approach seldom improves the reward but all satisfies the cost constraint. This implies that the
baseline policies in these tasks are highly sub-optimal in terms of reward performance. In contrast, SPACE prevents the
agent from converging to a poor policy.

In addition, we observe that in the point gather task the pre-training approach achieves the same reward performance as
the baseline policy, whereas SPACE has a better reward performance compared to the baseline policy. The pre-training
approach does not keep improving the reward after learning from the baseline policy. This is because that after pre-training
with the baseline policy, the entropy of the learned policy is small. This prevents the agent from trying new actions which
may lead to better reward performance. This implies that pre-training approach may hinder the exploration of the learning
agent on the new environment. Furthermore, in the car-racing task we observe that using pre-training approach achieves the
same reward performance as SPACE but improves reward slowly, and the pre-training approach has more cost constraint
violations than SPACE. This implies that jointly using reinforcement learning and the supervision of the baseline policy
achieve better reward and cost performance.

For d-CPO and d-PCPO, in the point and ant tasks we observe that both approaches have comparable or silently better reward
and cost performance compared to SPACE. However, in the car-racing task we observe that d-CPO cannot improve the
reward due to a slow update procedure for satisfying the cost constraint, whereas d-PCPO has a better reward performance.
These observations imply that the projection steps in SPACE allow the learning agent to effectively and robustly learn from
the baseline policy.

Comparison of SPACE under the KL-divergence and the 2-norm Projections (see Fig. 14). Theorem 5.1 shows that
under the KL-divergence and 2-norm projections, SPACE converges to different stationary points. To demonstrate the
difference between these two projections, Fig. 14 shows the learning curves of the undiscounted constraint cost, the
discounted reward, and the undiscounted divergence cost over policy updates for all tested algorithms and tasks. In the
Mujoco tasks, we observe that SPACE under the KL-divergence projection achieves higher reward. For instance, in the point
gather task the final reward is 25% higher under the same cost constraint satisfaction. In contrast, in the traffic management
tasks, we observe that SPACE under the 2-norm projection achieves better cost constraint satisfaction. For instance, in the
grid task SPACE under the 2-norm projection achieves a lower reward but more cost constraint satisfaction. In addition,
in the bottleneck task SPACE under the 2-norm projection achieves more reward and cost constraint satisfaction. These
observations imply that SPACE converges to different stationary points under two possible projections depending on tasks.
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Initial h0
D (see Fig. 15). To understand the effect of the initial value of h0

D, we test SPACE with three different initial
values: h0

D = 1, h0
D = 5, and h0

D = 25 in the ant circle and car-racing tasks. The learning curves of the undiscounted
constraint cost, the discounted reward, and the undiscounted divergence cost over policy updates are shown for all tested
algorithms and tasks in Fig. 15. In both tasks, we observe that the initial value of h0

D does not affect the reward and the cost
performance significantly (i.e., the mean of learning curves lies in roughly the same standard deviation over the initialization).
In addition, the value of the divergence cost over three h0

D are similar throughout the training. These observations imply that
the update scheme of hkD in SPACE is robust to the choice of the initial value of h0

D.

However, in the car-racing task we observe that the learning curves of using a smaller h0
D tend to have higher variances. For

example, the standard deviation of h0
D = 1 in the reward plot is 6 times larger than the one with h0

D = 25. This implies
that SPACE may have reward performance degradation when using a smaller initial value of h0

D. One possible reason is
that when the distance between the learned and baseline policies is large, using a small value of h0

D results in an inaccurate
projection (i.e., due to approximation errors). This causes the policy to follow a zigzag path. We leave the improvement of
this in future work.

F. Human Policies
We now describe the procedure for collecting human demonstration data in the car-racing task. A player uses the right key,
left key, up key and down key to control the direction, acceleration, and brake of the car. The human demonstration data
contain the display of the game (i.e., the observed state), the actions, and the reward. We collect 20 minutes of demonstration
data. A human player is instructed to stay in the lane but does not know the cost constraint. This allows us to test whether
SPACE can safely learn from the baseline policy which need not satisfy the cost constraints. We then use an off-policy
algorithm (DDPG) trained on the demonstration data to get the baseline human policy. Since the learned baseline human
policy does not interact with the environment, its reward performance cannot be better than the human performance. Fig. 16
shows the procedure.

Implementation Details of DDPG. We use DDPG as our off-policy algorithm. We use a convolutional neural network
with two convolutional operators of size 24 and 12 followed by a dense layer of size (32, 16) to represent a Gaussian policy.
A Q function shares the same architecture of the policy. The learning rates of the policy and Q function are set to 10−4 and
10−3, respectively.

G. The Machine Learning Reproducibility Checklist (Version 1.2, Mar.27 2019)
For all models and algorithms presented, indicate if you include2:

• A clear description of the mathematical setting, algorithm, and/or model:

– Yes, please see the problem formulation in Section 3, the update procedure for SPACE in Section 5, and the
architecture of the policy in Section E.1.

• An analysis of the complexity (time, space, sample size) of any algorithm:

– Yes, please see the implementation details in Section E.1.

• A link to a downloadable source code, with specification of all dependencies, including external libraries:

– Yes, please see the implementation details in Section E.1.

For any theoretical claim, check if you include:

• A statement of the result:

– Yes, please see Section 4 and Section 5.

• A clear explanation of any assumptions:

2Here is a link to the list: https://www.cs.mcgill.ca/˜jpineau/ReproducibilityChecklist.pdf.
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– Yes, please see Section 4 and Section 5.

• A complete proof of the claim:

– Yes, please see Section B, Section C, and Section D.

For all figures and tables that present empirical results, indicate if you include:

• A complete description of the data collection process, including sample size:

– Yes, please see Section E.1 for the implementation details.

• A link to a downloadable version of the dataset or simulation environment:

– Yes, please see Section E.1 for the simulation environment.

• An explanation of any data that were excluded, description of any pre-processing step:

– It’s not applicable. This is because that data comes from simulated environments.

• An explanation of how samples were allocated for training / validation / testing:

– It’s not applicable. The complete trajectories (i.e., data) is used for training. There is no validation set. Testing is
performed in the form of online learning approaches.

• The range of hyper-parameters considered, method to select the best hyper-parameter configuration, and specification
of all hyper-parameters used to generate results:

– Yes, we randomly select five random seeds, and please see Section E.1 for the implementation details.

• The exact number of evaluation runs:

– Yes, please see Section E.1 for the implementation details.

• A description of how experiments were run:

– Yes, please see Section E.1 for the implementation details.

• A clear definition of the specific measure or statistics used to report results:

– Yes, please see Section 6.

• Clearly defined error bars:

– Yes, please see Section 6.

• A description of results with central tendency (e.g., mean) variation (e.g., stddev):

– Yes, please see Section 6.

• A description of the computing infrastructure used:

– Yes, please see Section E.1 for the implementation details.
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Figure 11. The undiscounted constraint cost, the discounted reward, and the undiscounted divergence cost over policy updates for the
tested algorithms and tasks. The solid line is the mean and the shaded area is the standard deviation over 5 runs. SPACE ensures cost
constraint satisfaction guided by the baseline policy which need not satisfy the cost constraint. (Best viewed in color.)
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Figure 12. The undiscounted constraint cost, the discounted reward, and the undiscounted divergence cost over policy updates for the
tested algorithms and tasks. The solid line is the mean and the shaded area is the standard deviation over 5 runs. SPACE with the dynamic
hD achieves higher reward. (Best viewed in color.)
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Figure 13. The undiscounted constraint cost, the discounted reward, and the undiscounted divergence cost over policy updates for the
tested algorithms and tasks. The solid line is the mean and the shaded area is the standard deviation over 5 runs. SPACE outperforms
d-CPO, d-PCPO and the pre-training approach in terms of the efficiency of the reward improvement and cost constraint satisfaction. (Best
viewed in color.)
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Figure 14. The undiscounted constraint cost, the discounted reward, and the undiscounted divergence cost over policy updates for the
tested algorithms and tasks. The solid line is the mean and the shaded area is the standard deviation over 5 runs. SPACE converges to
differently stationary points under two possible projections. (Best viewed in color.)
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Figure 15. The undiscounted constraint cost, the discounted reward, and the undiscounted divergence cost over policy updates for the
tested algorithms and tasks. The solid line is the mean and the shaded area is the standard deviation over 5 runs. We observe that the
initial value of h0

D does not affect the reward and the cost performance significantly. (Best viewed in color.)

Figure 16. Procedure for getting a baseline human policy. We ask a human to play the car-racing game. He/She does not know the cost
constraint. The trajectories (i.e., display of the game, the action, and the reward) are then stored. A human policy is obtained by using an
off-policy algorithm (DDPG) trained on the trajectories.


