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Abstract
The Area Under the ROC Curve (AUC) is a cru-
cial metric for machine learning, which evalu-
ates the average performance over all possible
True Positive Rates (TPRs) and False Positive
Rates (FPRs). Based on the knowledge that a
skillful classifier should simultaneously embrace
a high TPR and a low FPR, we turn to study a
more general variant called Two-way Partial AUC
(TPAUC), where only the region with TPR ≥
α,FPR ≤ β is included in the area. Moreover, a
recent work shows that the TPAUC is essentially
inconsistent with the existing Partial AUC metrics
where only the FPR range is restricted, opening
a new problem to seek solutions to leverage high
TPAUC. Motivated by this, we present the first
trial in this paper to optimize this new metric. The
critical challenge along this course lies in the dif-
ficulty of performing gradient-based optimization
with end-to-end stochastic training, even with a
proper choice of surrogate loss. To address this is-
sue, we propose a generic framework to construct
surrogate optimization problems, which supports
efficient end-to-end training with deep-learning.
Moreover, our theoretical analyses show that: 1)
the objective function of the surrogate problems
will achieve an upper bound of the original prob-
lem under mild conditions, and 2) optimizing the
surrogate problems leads to good generalization
performance in terms of TPAUC with a high prob-
ability. Finally, empirical studies over several
benchmark datasets speak to the efficacy of our
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framework.

1. Introduction
ROC (Receiver Operating Characteristics) curve is a well-
known tool to evaluate classification performance at varying
threshold levels. More precisely, as shown in Fig.1-(a), it
captures the relationship between True Positive Rate (TPR)
and False Positive Rate (FPR) as a function of the classi-
fication thresholds. AUC (Area Under the ROC Curve),
summarizes the average performance of a given classifier
by calculating its area. More intuitively, as shown in (Han-
ley & McNeil, 1982), AUC is equivalent to the possibility
that a positive instance has a higher predicted score to be
positive than a negative instance. Any skillful classifier that
can produce well-separated scores for positive and nega-
tive instances will enjoy a high AUC value, no matter how
skewed the class distribution is. As a natural result, AUC is
more appropriate than accuracy for long-tail classification
problems such as disease prediction (Hao et al., 2020; Zhou
et al., 2020) and rare event detection (Liu et al., 2018; Wu
et al., 2020; Liu et al., 2020a; Wang et al., 2019), due to this
appealing property (Fawcett, 2006; Hand & Till, 2001).

Figure 1. Comparisons of different AUC variants: (a) The entire
area of ROC curve; (b) The One-way Partial AUC (OPAUC) which
measures the area of a local region of ROC within an FPR range;
(c) The Two-way Partial AUC (TPAUC).

Over the past two decades, the importance of AUC has
raised a new wave to directly optimize AUC, which has
achieved tremendous success. A partial list of the related
studies includes (Alan & Raskutti, 2004; Joachims, 2005;
2006; Calders & Jaroszewicz, 2007; Narasimhan & Agarwal,
2013a; Gao et al., 2013; Narasimhan & Agarwal, 2017a).
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However, the vast majority of such studies only consider the
area over the entire ROC curve. As argued by (Narasimhan
& Agarwal, 2013b), for some applications, only the perfor-
mance within a given range of False Positive Rate (FPR) is
of interest, as shown in Fig.1-(b). In this sense, the standard
AUC tends to provide a biased estimation of the perfor-
mance by including unrelated regions. This key investiga-
tion has motivated a series of successful studies to optimize
the One-way Partial AUC (OPAUC) with an FPR range
[α, β] (Narasimhan & Agarwal, 2013b;c; 2017b). Here we
note that the choice to truncate FPR on the ROC curve is
based on domain-specific prior knowledge for some specific
fields such as biometric screening, and medical diagnosis
(Narasimhan & Agarwal, 2013b).

Taking a step further, what should be a general rule to
select the target region under the ROC curve for classifica-
tion problems?

Since TPR and FPR evaluate complementary aspects of the
model performance, we argue that a practical classifier in
most applications must simultaneously have a high TPR and
a low FPR. In other words, a high TPR is meaningless if
the FPR is lower than a tolerance threshold, while a low
FPR cannot compensate for a low TPR (say, one can hardly
consider a model with FPR higher than 0.8 even if its TPR
is as high as 0.99, and vice versa for a low TPR model). In
this sense, we only need to pay attention to the upper-left
head region under the ROC curve, as shown in Fig.1-(c).

A recent work (Yang et al., 2019) exactly realizes this idea,
where a new metric called Two-Way Partial AUC (TPAUC)
is proposed to measure the area of a partial region of the
ROC curve with TPR ≥ p,FPR ≤ q. Furthermore, (Yang
et al., 2019) shows that the TPAUC is essentially incon-
sistent with one-way partial AUC. In other words, a higher
OPAUC does not necessarily imply a higher TPAUC, posing
a demand to seek new solutions to leverage high TPAUC.

Inspired by this fact, we present the first trial to optimize
the TPAUC metric with an end-to-end framework.

The major challenge of this task is that the objective func-
tion is not differentiable even with a proper surrogate loss
function, suggesting that there is no easy way to perform
end-to-end training. Facing this challenge, we propose a
generic framework to approximately optimize the TPAUC
with the help of deep learning. Generally speaking, our
contributions are as follows.

First, we reformulate the original optimization problem
as a bi-level optimization problem, where the inner-level
problem provides a sparse sample selection process and the
outer-level problem minimizes the loss over the selected
instances.

On top of the reformulation, we propose a generic frame-

work to construct surrogate optimization problems for the
original problem. In the core of this framework lies the
interplay of the surrogate penalty functions and surrogate
weighting functions defined in this paper. Moreover, we
construct a dual correspondence between these two classes
of functions, such that we can easily find a standard single-
level surrogate optimization problem whenever a surrogate
penalty or a surrogate weighting function is obtained.

We then proceed to explore theoretical guarantees for the
framework. On one hand, by comparing the surrogate prob-
lem and the original problem, we provide a mild sufficient
condition under which the objective function surrogate prob-
lem becomes an upper bound of the original problem and
further show that concave weighting function tends to be a
better choice than their convex counterparts. On the other
hand, we show that optimizing the surrogate problems could
leverage reasonable generalization performance in terms of
TPAUC with high probability.

2. Prior Art
Partial AUC Optimization. Comparing with existing
studies to optimize partial AUC (Narasimhan & Agarwal,
2013b;c; 2017b), the key difference is two-fold. The pre-
vious studies only focus on a one-way partial AUC, where
only the FPR is restricted within [α, β]; while we are the
first to study TPAUC optimization, a new AUC metric where
both TPR and FPR are truncated. Moreover, most related
studies are based on the cutting plane algorithm, which do
not fit to the end-to-end training framework in deep learn-
ing. In our work, getting rid of complicated combinatorial
optimization techniques, we propose a general framework
to construct much simpler surrogate optimization problems
for TPAUC that supports end-to-end training. Please see
Appendix.A for a review of the general AUC optimization
methods.

3. Preliminaries
3.1. Standard AUC metric

Before showing the formal definition of the two-way partial
AUC, we first provide a quick review of the standard AUC
metric. Under the context of binary classification problems,
an instance is denoted as (x, y), where x ∈ X is the input
raw features and y ∈ {0, 1} is the label. Taking a step
further, given a dataset D, denote by XP the set of positive
instances in our dataset, and XN the set of the negative ones,
then the sampling process could be expressed as:

XP = {x+
i }

n+

i=1
i.i.d∼ P : P

[
x+|y = 1

]
,

XN = {x−j }
n−
j=1

i.i.d∼ N : P
[
x−|y = 0

]
,
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where n+, n− are the numbers of positive/negative in-
stances, respectively; and P,N are the corresponding con-
ditional distributions. For binary class problems, our goal is
to learn a score function fθ : X → [0, 1], such that fθ(x) is
proportional to the possibility that x belongs to the positive
class. Based on the score function, we can further predict
the label of an instance x as 1 [fθ(x) > t], where t is the
decision threshold, 1 [·] is the indicator function. Given a
threshold t, we can define two elementary metrics known
as True Positive Rate (TPR) and False Positive Rate (FPR),
which are the probabilities that a positive/negative instance
is predicted as a positive instance, i.e:

TPRfθ (t) = P
x+∈P

[
fθ(x+) > t

]
,

FPRfθ (t) = P
x−∈N

[
fθ(x−) > t

]
.

(1)

Based on the label predictions, AUC is defined as the Area
under the Receiver Operating Characteristic (ROC) curve
plotted by True Positive Rate (TPR) against False Positive
Rate (FPR) with varying thresholds, which could be ex-
pressed mathematically as follows:

AUC(fθ) =

∫ 1

0

TPRfθ

(
FPR−1fθ (t)

)
dt. (2)

When the possibility to observe a tied comparison is null,
i.e.

P
x+∈P,x−∈N

[
fθ(x+) = fθ(x−)

]
= 0,

AUC is known (Hanley & McNeil, 1982) to enjoy a much
simpler formulation as the possibility that correct ranking
takes place between a positive and negative instance:

AUC(fθ) = 1− E
x+∼P

[
E

x−∼N

[
`0,1

(
fθ(x+)− fθ(x−)

)]]
,

where `0,1 denotes the 0− 1 loss with `0,1(x) = 1 if x < 0,
and `0,1(x) = 0, otherwise. Given a finite dataset S =
XP ∪ XN , the unbiased estimation of AUC(fθ) could be
expressed as:

ˆAUC(fθ) = 1−
n+∑
i=1

n−∑
j=1

`0,1
(
fθ(x+

i )− fθ(x−j )
)

n+n−
.

3.2. Two-Way Partial AUC Metrics

Definitions. As presented in the introduction, instead of
the complete area of ROC, we focus on the area of ROC
in a partial region with TPRfθ (t) ≥ 1− α,FPRfθ (t) ≤ β,
which is called two-way partial AUC in (Yang et al., 2019).
Here we define it as AUCβα:

AUCβα(fθ) =

∫ β

FPRfθ

(
TPR−1

fθ
(1−α)

) TPRfθ
(
FPR−1fθ (t)

)
dt

−
(
1− α

)
·
(
β − FPRfθ

(
TPR−1fθ (1− α)

))
.

Since the data distributions P,N are often unknown, it
is necessary to study its empirical estimation based on an
observed dataset S. (Yang et al., 2019) derives an empir-
ical version of AUCβα(fθ) as the truncated AUC over the
hard positive and negative instances, which is denoted as

ˆAUC
β

α(fθ,S) in our paper:

ˆAUC
β

α(fθ,S) = 1−
nα+∑
i=1

nβ−∑
j=1

`0,1

(
fθ(x+

(i))− f(x−(j))
)

n+n−

where x+
(i) denotes the hard positive instance that achieves

bottom-i score among all positive instances, and x−(j) de-
notes the hard negative instance achieves top-j score among
all negative instances, nα+ = bn+ · αc, and nβ− = bn− · βc,
are the numbers of the chosen hard positive and negative
examples. Please see Appendix.B for an analysis of the
inconsistency between TPAUC and OPAUC.

4. The Proposed Framework
4.1. A Generic Framework to Construct Surrogate

Optimization Problems

Based on the empirical estimation shown in Sec.3.2, it is
clear that optimizing TPAUC over a finite dataset S requires
minimizing the following quantity:

1− ˆAUC
β

α(fθ,S) =

nα+∑
i=1

nβ−∑
j=1

`0,1

(
fθ(x+

(i))− f(x−(j))
)

n+n−
.

Following the framework of surrogate loss (Mohri et al.,
2018), we replace the non-differential 0-1 loss with a convex
loss function `, such that `(t) is an upper bound of `0,1(t).
Note that if the scores live in [0, 1], standard loss functions
such as `exp(t) = exp(−t), `sq(t) = (1− t)2 often satisfy
this constraint. Hence given a feasible surrogate loss `, our
goal is then to solve the following problem:

(OP0) min
θ
R̂`α,β(S, fθ) =

nα+∑
i=1

nβ−∑
j=1

`
(
fθ(x+

(i))− f(x−(j))
)

n+n−
.

Unfortunately, even with the choice of differentiable sur-
rogate losses, the objective function R̂`α,β(S, fθ) is still
not differentiable. This is because calculating x+

(i),x
−
(j) re-

quires sorting the scores of positive and negative instances.
Nonetheless, the objective function is essentially a composi-
tion of a sparse sample selection operation and the original
loss. This is shown in the following proposition, where
(OP0) is reformulated as a so-called bi-level optimization
problem (Liu et al., 2020c;b). The inner-level problems pro-
vide a sparse sample selection process, and the outer-level
problem performs the optimization based on the chosen
instances. Please see Appendix.C for the proof.
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Proposition 1. For any α, β ∈ (0, 1), if scores fθ(x) ∈
[0, 1], and there are no ties in the scores, the original opti-
mization problem is equivalent to the following problem:

min
θ

1

n+n−

n+∑
i=1

n−∑
j=1

v+i · v
−
j · `(fθ,x

+
i ,x

−
j )

s.t. v+ = argmax
v+i ∈[0,1],

∑n+
i=1 v

+
i ≤nα+

n+∑
i=1

(
v+i · (1− fθ(x+

i ))
)

v− = argmax
v−j ∈[0,1],

∑n−
j=1 v

−
j ≤n

β
−

n−∑
j=1

(
v−j · fθ(x−j )

)
where

`(fθ,x
+
i ,x

−
j ) = `(fθ(x+

i )− fθ(x−j )).

Based on the proposition, the source of the intractability
of (OP0) comes from the `1 ball constraints

∑n+

i=1 v
+
i ≤

nα+,
∑n−
j=1 v

−
j ≤ n

β
− in the inner-level problem. To estab-

lish an efficient approximation of the original problem, we
follow a standard trick to transform the `1 ball constraints to
`1 penalty terms in the objective function (note that v+, v−
are non-negative). In this way, the inner-level problems
become:

v+ = argmax
v+i ∈[0,1]

n+∑
i=1

(
v+i · (1− fθ(x+

i ))− λ+ · v+i
)

v− = argmax
v−j ∈[0,1]

n−∑
j=1

(
v−j · fθ(x−j )− λ− · v−j

)
Furthermore, to avoid sparisty, we replace the sparsity-
inducing `1 penalty with a smooth surrogate ϕγ . This natu-
rally leads to a smooth problem:

(OP1) min
θ

1

nα+n
β
−

n+∑
i=1

n−∑
j=1

v+i · v
−
j · `(fθ,x

+
i ,x

−
j )

s.t v+ = argmax
v+i ∈[0,1]

n+∑
i=1

(
v+i · (1− fθ(x+

i ))− ϕγ(v+i )
)

v− = argmax
v−j ∈[0,1]

n−∑
j=1

(
v−j · fθ(x−j )− ϕγ(v−j )

)
To ensure that the chosen ϕγ provides an effective approx-
imation of the `1 penalty, we pose several regularities on
such functions. In the following, we define this class of
functions as the calibrated smooth penalty function.

Definition 1. A penalty function ϕγ(x) : R+ → R is called
a calibrated smooth penalty function, if it satisfies the
following regularities:

(A) ϕγ has continuous third-order derivatives.

(B) ϕγ is strictly increasing in the sense that ϕ′γ(x) > 0.

(C) ϕγ is strictly convex in the sense that ϕ′′γ(x) > 0.

(D) ϕγ has positive third-order derivatives in the sense that
ϕ′′′γ (x) > 0.

Note that the condition (B) is inherited from the `1 norm.
While the other conditions improve the smoothness of the
function. Moreover, the last condition is to ensure that the
weighting function is strictly concave (see the arguments
about the weights).

Given the penalty functions, we turn to explore a corre-
sponding factor in the framework. According to the inner
level problem, the sample weights v+i , v

−
j have a dual corre-

spondence with the penalty functions. More precisely, given
a fixed φγ , one can derive the corresponding weighting
function ψγ as a function of fθ(x) such that:

v+i = ψγ(1−fθ(x+
i )), v−j = ψγ(fθ(x−j )), v+i , v

−
j ∈ [0, 1].

Moreover, if ψγ has a closed-form expression, then we can
cancel the inner optimization problem and instead minimize
the following weighted empirical risk R̂`ψ:

R̂`ψ(S, fθ) =
1

n+n−

n+∑
i=1

n−∑
j=1

ψγ(1− fθ(x+
i ))·

ψγ(fθ(x−j )) · `(fθ,x+
i ,x

−
j ).

(3)

In this sense, adopting a smooth penalty function ends up
with a dual soft weighting strategy over the hard instances.
Again, to reach a proper weight function, we also require
it to satisfy some necessary regularities. In the following,
we define this class of functions as the calibrated weighting
function.

Definition 2. A weighting function ψγ(x) : [0, 1] → Rng,
where Rng ⊆ [0, 1], is called a calibrated weighting func-
tion, if it satisfies the following regularities:

(A) ψγ has continuous second-order derivatives.

(B) ψγ is strictly increasing in the sense that ψ′γ(x) > 0.

(C) ψγ is strictly concave in the sense that ψ′′γ (x) < 0.

In this definition, (B) is a natural requirement to make the
weight proportional to the target instance’s difficulty. Condi-
tion (C) is an interesting trait in our framework. To see why
this is necessary, let us note that the weight functions v+i ,
v−j are continuous surrogates residing in [0, 1] for threshold
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function

1
[
1− fθ(x+

i ) > 1− fθ(x+
(nα+))

]
,

1

[
fθ(x−j ) > fθ(x−

(nβ−)
)

]
,

respectively. To be simple, we continue our discussion with
a general form 1 [x > 0]. Obviously, weight decay for large
x should be smooth such that the loss could attend at the top
fθ(x+) and (1− fθ(x−)) scores. Moreover, to avoid over-
fitting, the model should as well have sufficient memory of
the easy examples. Hence the weights for such examples
should not be too close to zero. These observations are
exactly typical traits for a concave function. As shown in
Fig.2, we visualize the difference between a convex function
y = x2 and y = 1 [x > 0.5], and the difference between
concave function y = x0.05 and y = 1 [x > 0.5].

Figure 2. convex vs. concave weighting functions.

Another reason to choose concave functions is that they can
benefit the optimization process. More precisely, we expect
the loss function R̂`ψ in Eq. (3) to be an upper bound of
R̂`α,β , such that minimizing R̂`ψ could also minimize the
original loss. Back to Fig.2, this is more likely to happen
if S1/S2 is large. In fact, this is a condition which is much
easier for concave functions to satisfy. From a quantitative
perspective, the following proposition provides a sufficient
and a necessary condition under which R̂`ψ ≥ R̂`α,β . More-
over, it shows that it is generally more challenging for a
convex function to realize an upper bound. Please see Ap-
pendix.D for the proof.
Proposition 2. Given a strictly increasing weighting func-
tion ψγ : [0, 1] → [0, 1], such that v+i = ψγ(1 − fθ(x+

i )),
v−j = ψγ(fθ(x−j )), denote:

I+1 =
{
x+ : x+ ∈ XP , f(x+) ≥ f(x

(nα+)

+ )
}
,

I−1 =

{
x− : x− ∈ XN , f(x−) ≤ f(x

(nβ−)

− )

}
,

denote I2 as (XP × XN )\(I+1 × I
−
1 ); denote Ēx+∈I+1

[x]

as the empirical expectation of x over the set I+1 , and
Ēx−∈I−1 [x], Ēx+∈I+1 ,x−∈I

−
1
, Ēx+,x−∈I2 are defined sim-

ilarly; define li,j = `(fθ,x
+
i ,x

−
j ). We assume that

nα+ ∈ N, nβ− ∈ N, fθ(x+), fθ(x−) ∈ (0, 1),

then:

(a) A sufficient condition for R̂`α,β(S, fθ) ≤ R̂`ψ(S, fθ) is
that:

sup
p∈(0,1),q=− p

1−p

[ρp − ξq] ≥ 0,

where

ρp =

(
Ēx+,x−∈I2

[
vp+ · v

p
−
])1/p(

Ēx+∈I+1 ,x−∈I
−
1

[(1− v+v−)2]
)1/2 ,

ξq =
αβ

1− αβ
·

(
Ēx+,x−∈I2(`2i,j)

)1/2(
Ēx+∈I+1 ,x−∈I

−
1

(`qi,j)
)1/q .

(b) If there exists at least one strictly concave ψγ such that
the R̂`α,β(S, fθ) > R̂`ψ(S, fθ), then R̂`α,β(S, fθ) >

R̂`ψ(S, fθ) holds for all convex ψγ .

According to Prop.2, R̂`ψ can achieve the upper bound of
R̂`α,β if α, β are small, and the empirical distribution has
significant masses at instances with moderate difficulty.

Dual Correspondence Theory. Now with the penalty func-
tion and weighting function clarified, we establish their dual
correspondence with the following proposition. Please see
Appendix.E for the proof.

Proposition 3. Given a strictly convex function ϕγ , and
define ψγ(t) as:

ψγ(t) = argmax
v∈[0,1]

v · t− ϕγ(v),

then we can draw the following conclusions:

(a) If ϕγ is a calibrated smooth penalty function, we have
ψγ(t) = ϕ

′−1
γ (t),which is a calibrated weighting func-

tion.

(b) If ψγ is a calibrated weighting function such that v =
ψγ(t), we have ϕγ(v) =

∫
ψ−1γ (v)dv+ const., which

is a calibrated smooth penalty function.

According to Prop.3, given a calibrated smooth penalty func-
tion, one can obtain an implicit soft weighting strategy via
Prop.3-(a). Likewise, given a calibrated weighting func-
tion, one can find an implicit regularizer over the sample
weights via Prop.3-(b). Based on the regularities of the two
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(a) (γ − 1)−1 = 0.3 (b) (γ − 1)−1 = 0.5 (c) γ = 5 (d) γ = 10

Figure 3. Visualization of the Landscape of the pairwise weights ψγ(x) · ψγ(y). Here, (a) and (b) plot ψpoly
γ , while (c) and (d) plot ψexp

γ .

components, both ψ and ϕ have closed-form formulation if
the other one is known. This means that we can solve the
bi-level optimization framework in (OP1) by simply mini-
mizing the resulting R̂`ψ(S, fθ), leading to a much simpler
optimization that can be solved directly by an end-to-end
training framework. Consequently, the dual correspondence
theory provides a simple way to establish a surrogate opti-
mization problem of TPAUC, once a weighting function or
a penalty function is at hand.

4.2. Two Instantiations of the Generic Framework

Based on the generic framework, in this subsection, we
provide two practical instantiations.

Polynomial Surrogate Model. From the penalty function
perspective, the original `1 penalty realizes ψγ = γ · t. In
this way, it is a natural choice to adopt a polynomial penalty
ϕpoly
γ (t) = C · tγ as a dense surrogate for `1. Inspired by

this, we propose a polynomial surrogate model as example
1.

Example 1 (Polynomial Surrogate Model). In the polyno-
mial surrogate model, we set:

ϕpoly
γ (t) =

1

γ
· tγ , ψpoly

γ (t) = t
1

γ−1 , γ > 2

The visualizations of the weights are shown in Fig.3.

Example 2 (Exponential Surrogate Model). In the exponen-
tial surrogate model, we set:

ϕexp
γ (t) =

(1− t)(log(1− t)− 1) + 1

γ
, ψexp

γ (t) = 1−e−γt

Exponential Surrogate Model. Considering the properties
of the weighting functions, we expect that ψγ will have a
flat landscape for large t. Motivated by this, we adopt an
exponential weighting function ψexp

γ (t) = 1 − e−γt (the
landscape is shown in Fig.3 (c)-(d)). The resulting model is
then shown as Exp.2. The visualizations of the weights are
shown in Fig.3.

4.3. Generalization Analysis

In this subsection, we turn to explore how generalization
error behaves away from the training error in terms of the
TPAUC metric. In other words, we will show when a well-
trained model will lead to a reasonable generalization per-
formance. Our analysis is based on a standard assumption
that the classifiers are chosen from a hypothesis class F (e.g.
the class of a specific type of deep neural networks). The
key challenge here is that R̂`α,β(S, fθ) is not an unbiased
estimation of AUCβα(fθ,S), making standard generalization
analysis (Mohri et al., 2018) unavailable. Here we extend
the error decomposition technique for OPAUC (Narasimhan
& Agarwal, 2017b) and employ the result in Prop.2 to reach
the following theorem. Please see Appendix.F for the
proof.

Theorem 1 (Informal). Assume that there are no ties in the
datasets, and the surrogate loss function ` with range [0, 1],
is an upper bound of the 0-1 loss, then, for all fθ ∈ F , and
all α, β ∈ (0, 1) such that condition (a) of Proposition 2
holds, the following inequality holds with high probability:

Rα,βAUC(fθ,S) ≤R̂`ψ(fθ,S) + Õ
(

(
VC

n+
)1/2 + (

VC

n−
)1/2

)
,

where Õ is the big-O complexity notation hiding the loga-
rithm factors,Rα,βAUC(fθ,S) = 1− AUCβα(fθ,S), and VC
is the VC dimension of the hypothesis class:

T (F) , {sign(fθ(·)− δ) : fθ ∈ F , δ ∈ R}.

According to the theorem, for all α, β satisfying con-
dition (a) of Prop.2 and any model in F , the general-
ization error represented by the loss version of TPAUC
Rα,βAUC(fθ,S) = 1 − AUCβα(fθ,S) is no larger than the
empirical loss R̂`ψ(fθ,S) plus a complexity term. The com-
plexity term is affected by two factors. On one hand, it
vanishes with large enough training datasets. On the other
hand, it remains moderate if the model hypothesis class’s
VC dimension is not too large. Moreover, moderate up-
per bounds for the VC dimension are now available for
typical models ranging from linear models to deep neural



When All We Need is a Piece of the Pie: A Generic Framework for Optimizing Two-way Partial AUC

networks. Finally, for a well-trained model, the empirical
loss R̂`ψ(fθ,S) is restricted to be small in our framework;
one can then reach reasonable generalization results with
high probability.

5. Experiments
In this section, we present our empirical results and some of
the details of the experiments. Please see Appendix.G for
more details on the settings and results.

5.1. Competitors

To validate the effectiveness of our proposed methods, we
consider two types of competitors in our experiments. On
one hand, we compare our proposed methods with other
methods dealing with imbalanced data. The competitors
include class-reweighted CE, Focal (Lin et al., 2017), CB-
CE (Cui et al., 2019), and CE-Focal (Cui et al., 2019).
On the other hand, we also include a standard AUC opti-
mization method as our baseline. Here we use the square
function `sq(t) = (1 − t)2 as the surrogate loss, which is
widely-adopted in AUC optimization studies. The resulting
competitor is named SqAUC. Finally, we implement our
polynomial surrogate model and the exponential surrogate
model on top of SqAUC, which are denoted as Poly and
Exp in the rest of this section.

5.2. Evaluation Metrics

Aiming at optimizing the TPAUC metrics, we consider
TPAUC with α = 0.3, β = 0.3, α = 0.4, β = 0.4,
α = 0.5, β = 0.5, respectively. Moreover, to normalize
the range of their magnitude to [0, 1], we adopt the follow-
ing variant of the TPAUC metric:

TPAUC(α, β) = 1−
nα+∑
i=1

nβ−∑
j=1

`0,1

(
fθ(x+

(i))− f(x−(j))
)

nα+n
β
−

.

5.3. Dataset Description

Note that AUC is aimed at dealing with binary classification
problems, hence we construct long-tail binary datasets as
follows.

Binary CIFAR-10-LT Dataset. We create a long-tailed
CIFAR-10 dataset, where the sample sizes across different
classes decay exponentially, and the ratio of sample sizes
of the least frequent to the most frequent class ρ is set to
0.01. Afterwards, we create 3 binary long-tailed datasets
based on CIFAR-10-LT by selecting one category as positive
examples and the others as negative examples.

Binary CIFAR-100-LT Dataset. We create 3 CIFAR-100-
LT subsets in the same way as CIFAR-10-LT, where a su-
perclass is selected as positive examples each time.

Binary Tiny-ImageNet-200-LT Dataset. The original
Tiny-ImageNet-200 dataset contains 100,000 colour images
sourced from 200 different categories, with 500 images for
each category. Similar to the CIFAR-100-LT dataset, we
choose 3 positive superclasses to construct binary subsets.

5.4. Warm-Up Training Phase With Delay Epochs

Focusing on the hard examples at the beginning of the train-
ing process brings a high risk of over-fitting. It is thus neces-
sary to focus on the entire dataset to capture the global infor-
mation. Inspired by this investigation, we adopt a warm-up
training strategy. Specifically, the model will go through
a warm-up phase with Ek Epochs of ordinary AUC opti-
mization training. Afterward, we start the TPAUC training
phase by optimizing our proposed surrogate problems. We
will show its effect in the next subsection.

5.5. Overall Performance

The performances of all the involved methods on three sub-
sets of CIFAR-10-LT, CIFAR-100-LT, and Tiny-Imagent-
200-LT are shown in Tab.1. For each method here, the
results for different TPAUC metrics are tuned independently.
Consequently, we have the following observations: 1) The
best performance of our proposed methods consistently sur-
passes all the competitors significantly on all the datasets,
except the result for TPAUC(0.4, 0.4) and TPAUC(0.5, 0.5)
on subset 2 of Tiny-Imagent-200-LT and TPAUC(0.3, 0.3)
for subset 3 of Tiny-Imagent-200-LT. Our proposed methods
attain fairly competitive results compared with the competi-
tors even for the three failure results. 2) The performance
improvement is especially sharp on TPAUC(0.3, 0.3). This
suggests the ability of our proposed methods to optimize
the head region under the ROC curve.

5.6. Sensitivity Analysis

Our proposed framework evolves two hyperparameters: γ
for loss functions and Ek for the warm-up strategy. Next,
we analyze their effect respectively. Our analysis is based on
a 2d grid search over Ek, γ. When investigating the effect
of Ek (γ resp.), we will show the performance variation in
terms of γ (Ek resp.) given each fixed Ek (γ resp.)

Effect of Ek. In Fig.4-(a), (c), we show the sensitivity
in terms of Ek on subset 2 of CIFAR-10-LT for Exp and
Poly, respectively. For Exp, we see that increasing Ek
from 5 to 30 leads to a significantly increasing trend of
performance. This shows that a warm-up phase is necessary
for Exp. For Poly, we observe that the increasing trend
of average performance is much weaker. This is probably
because γ has a strong influence on the performance so that
the variances become much larger in general.

Effect of γ. In Fig.4-(b), (d), we show the sensitivity in
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Table 1. Performance Comparisons over different metrics and datasets, where (x, y) stands for TPAUC(x, y) in short.

dataset type methods
Subset1 Subset2 Subset3

(0.3,0.3) (0.4,0.4) (0.5,0.5) (0.3,0.3) (0.4,0.4) (0.5,0.5) (0.3,0.3) (0.4,0.4) (0.5,0.5)

CIFAR-10-LT
Competitors

CE-RW 9.09 30.86 47.99 72.83 83.33 88.71 23.47 44.44 59.69
Focal 9.84 30.89 50.83 75.72 85.10 90.06 21.47 45.88 59.09
CBCE 3.29 27.30 43.95 69.48 80.80 86.87 12.94 34.06 51.09
CBFocal 9.04 31.73 48.13 77.99 86.75 91.13 21.32 43.03 59.11
SqAUC 18.05 40.74 57.94 80.09 87.78 91.87 31.52 50.00 64.42

Ours
Poly 21.43 44.41 59.10 80.66 88.07 92.15 36.54 54.48 67.19
Exp 20.86 41.78 58.38 81.22 87.88 91.93 32.47 53.86 67.32

CIFAR-100-LT
Competitors

CE-RW 31.43 52.60 66.21 79.70 88.06 92.64 3.09 21.32 40.75
Focal 36.51 61.71 73.25 83.08 90.35 93.76 8.09 28.88 49.89
CBCE 17.53 38.79 55.19 67.91 79.32 85.82 1.84 18.46 37.04
CBFocal 41.85 62.41 73.13 82.75 89.57 92.89 7.10 29.12 44.84
SqAUC 63.24 76.62 84.68 91.02 93.69 94.73 41.60 60.36 70.86

Ours-TPAUC
Poly 68.02 79.11 85.17 91.13 93.78 95.69 47.07 65.89 75.08
Exp 63.24 77.94 84.62 90.69 93.74 95.41 44.54 64.58 73.02

Tiny-ImageNet-200-LT
Competitors

CE-RW 80.90 87.76 91.54 93.30 96.15 97.53 90.37 94.34 96.75
Focal 81.18 88.06 91.72 93.23 96.08 97.59 91.35 94.87 96.63
CBCE 80.64 87.58 91.17 93.77 96.52 97.77 91.66 95.19 96.79
CBFocal 80.44 87.95 91.91 93.46 96.43 97.64 91.06 94.82 96.62
SqAUC 80.16 87.99 91.67 93.10 96.07 97.32 92.15 95.16 96.75

Ours-TPAUC
Poly 80.44 88.21 91.98 93.00 95.61 97.47 92.02 95.25 96.84
Exp 82.61 89.13 92.62 93.82 96.12 97.38 91.25 94.78 96.57

(a) Effect of Ek on Exp (b) Effect of γ on Exp (c) Effect of Ek on Poly (d) Effect of γ on Poly

Figure 4. Sensitivity analysis on subset 2 of CIFAR-10-LT where TPAUC is measured with α = 0.3, β = 0.3. For each box in (a) and (c),
Ek is fixed as the y-axis value, and the scattered points along the box show the variation of γ. For each Box in (b) and (d), (γ − 1)−1 is
fixed as the y-axis value, and the scattered points along the box show the variation of Ek.

terms of γ on subset 2 of CIFAR-10-LT for Exp and Poly,
respectively. One can observe very different trends on these
two methods. This is because that Exp and Poly have differ-
ent characteristics in terms of the landscape of the weight
function. As shown in Fig.3-(c), (d), the weight landscape of
Exp is flat within a large subset of the domain. In this sense,
it does not have a strong dependency on γ. As shown in
Fig.3-(a), (b), the weight landscape of Poly is more sensitive
toward γ.

6. Conclusion
In this paper, we initiate the study on TPAUC optimization.
Since the original optimization problem could not be solved
directly with an end-to-end framework, we propose a gen-
eral framework to construct surrogate optimization problems
for TPAUC. Following our dual correspondence theory, we
can establish a surrogate problem once a calibrated penalty

function or a calibrated weighting function is found. To
see how and when our framework could provide efficient
approximations of the original problem, we show that the
surrogate objective function could reach the upper bound
of the original one and that concave weighting functions
are better choices than their convex counterparts. Moreover,
we also provide high probability uniform upper bounds for
the generalization error. The experiments on three datasets
consistently show the advantage of our framework.
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