
Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss
Supplementary Materials

Xue Yang 1 2 3 Junchi Yan 1 2 Qi Ming 4 Wentao Wang 1 Xiaopeng Zhang 3 Qi Tian 3

A. Proof of d := W(N (m1,Σ1);N (m2,Σ2))

The entire proof process refers to this blog (Chafaı̈, 2010).

The Wasserstein coupling distance W between two proba-
bility measures µ and ν on Rn expressed as follows:

W(µ; ν) := inf E(‖X−Y‖22)1/2 (1)

where the infimum runs over all random vectors (X,Y)
of Rn × Rn with X ∼ µ and Y ∼ ν. It turns
out that we have the following formula for d :=
W(N (m1,Σ1);N (m2,Σ2)):

d2 = ‖m1 −m2‖22 + Tr
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This formula interested several works (Givens et al., 1984;
Olkin & Pukelsheim, 1982; Knott & Smith, 1984; Dowson
& Landau, 1982). Note in particular we have:
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In the commutative case Σ1Σ2 = Σ2Σ1, Eq. 2 becomes:
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where ‖‖F is the Frobenius norm. Note that both boxes are
horizontal at this time, and Eq. 4 is approximately equivalent
to the l2-norm loss (note the additional denominator of 2
for w and h), which is consistent with the loss commonly
used in horizontal detection. This also partly proves the
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Figure 1. Different forms of GWD-based regression loss curve.

correctness of using Wasserstein distance as the regression
loss.

To prove Eq. 2, one can first reduce to the centered case
m1 = m2 = 0. Next, if (X,Y) is a random vector (Gaus-
sian or not) of Rn × Rn with covariance matrix

Γ =

(
Σ1 C
C> Σ2

)
(5)

then the quantity

E(‖X,Y‖22) = Tr(Σ1 + Σ2 − 2C) (6)

depends only on Γ. Also, when µ = N (0,Σ1) and
ν = N (0,Σ2), one can restrict the infimum which defines
W to run over Gaussian laws N (0,Γ) on Rn × Rn with
covariance matrix Γ structured as above. The sole constrain
on C is the Schur complement constraint:

Σ1 −CΣ−12 C> � 0 (7)

The minimization of the function

C� −2Tr(C) (8)

under the constraint above leads to Eq. 2. A detailed proof
is given by (Givens et al., 1984). Alternatively, one may find
an optimal transportation map as (Knott & Smith, 1984). It
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Table 1. Ablation test of GWD-based regression loss form and
hyperparameter on DOTA. The based detector is RetinaNet.

1− 1

(τ+f(d2))
τ = 1 τ = 2 τ = 3 τ = 5 f(d2) d2

f(·) = sqrt 68.56 68.93 68.37 67.77 54.27 49.11
f(·) = log 67.87 68.09 67.48 66.49 69.82

turns out that N (m2,Σ2) is the image law of N (m1,Σ1)
with the linear map

x�m2 + A(xm1) (9)

where
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To check that this maps N (m1,Σ1) to N (m2,Σ2), say in
the case m1 = m2 = 0 for simplicity, one may define the
random column vectors X ∼ N (m1,Σ1) and Y = AX
and write
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To check that the map is optimal, one may use,

E(‖X−Y‖22) =E(‖X‖22) + E(‖Y‖22)− 2E(< X,Y >)

=Tr(Σ1) + Tr(Σ2)− 2E(< X,AX >)

=Tr(Σ1) + Tr(Σ2)− 2Tr(Σ1A)
(12)

and observe that by the cyclic property of the trace,

Tr(Σ1A) = Tr((Σ
1/2
1 Σ2Σ

1/2
1 )1/2) (13)

The generalizations to elliptic families of distributions and to
infinite dimensional Hilbert spaces is probably easy. Some
more “geometric” properties of Gaussians with respect to
such distances where studied more recently by (Takatsu &
Yokota, 2012) and (Takatsu & Yokota, 2012).

B. Supplementary Experiment
B.1. Improved GWD-based Regression Loss

In Tab. 1, we compare three different forms of GWD-based
regression loss, including d2, 1− 1

(τ+f(d2)) and f(d2). The
performance of directly using GWD (d2) as the regression
loss is extremely poor, only 49.11%, due to its rapid growth
trend (as shown on the left of Fig. 1). In other words,
the regression loss d2 is too sensitive to large errors. In
contrast, 1− 1

(τ+f(d2)) achieves a significant improvement
by fitting IoU loss. This loss form introduces two new
hyperparameters, the non-linear function f(·) to transform

the Wasserstein distance, and the constant τ to modulate the
entire loss. From Tab. 1, the overall performance of using
sqrt outperforms that using log, about 0.98±0.3% higher.
For f(·) = sqrt with τ = 2, the model achieves the best
performance, about 68.93%. In order to further reduce the
number of hyperparameters of the loss function, we directly
use the GWD after nonlinear transformation (f(d2)) as the
regression loss. As shown in the red box in Fig. 1, f(d2)
still has a nearly linear trend after transformation using
the nonlinear function sqrt and only achieves 54.27%. In
comparison, the log function can better make the f(d2)
change value close to IoU loss (see green box in Fig. 1) and
achieve the highest performance, about 69.82%. In general,
we do not need to strictly fit the IoU loss, and the regression
loss should not be sensitive to large errors.

B.2. Training Strategies and Tricks

In order to further improve the performance of the model
on DOTA, we verified many commonly used training strate-
gies and tricks, including backbone, training schedule, data
augmentation (DA), multi-scale training and testing (MS),
stochastic weights averaging (SWA) (Izmailov et al., 2018;
Zhang et al., 2020), multi-scale image cropping (MSC),
model ensemble (ME), as shown in Tab. 2.

Backbone: Under the conditions of different detectors
(RetinaNet and R3Det), different training schedules (ex-
perimental groups {#11,#16}, {#24,#29}), and different
tricks (experimental groups {#26,#31}, {#28,#33}), large
backbone can bring stable performance improvement.

Multi-scale training and testing: Multi-scale training and
testing is an effective means to improve the performance
of aerial images with various object scales. In this paper,
training and testing scale set to [450, 500, 640, 700, 800,
900, 1,000, 1,100, 1,200]. Experimental groups {#3,#4},
{#5,#6} and {#11,#12} show the its effectiveness, increased
by 0.9%, 1.09%, and 0.58%, respectively.

Training schedule: When data augmentation and multi-
scale training are added, it is necessary to appropriately
lengthen the training time. From the experimental groups
{#3,#5} and {#16,#29}, we can find that the performance
respectively increases by 0.77% and 1.22% when the train-
ing schedule is increased from 40 or 30 epochs to 60 epochs.

Stochastic weights averaging (SWA): SWA technique has
been proven to be an effective tool for improving object
detection. In the light of (Zhang et al., 2020), we train our
detector for an extra 12 epochs using cyclical learning rates
and then average these 12 checkpoints as the final detection
model. It can be seen from experimental groups {#1, #2},
{#20, #21} and {#25, #26} in Tab. 2 that we get 0.99%,
1.20% and 1.13% improvement on the challenging DOTA
benchmark.
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Table 2. Ablation experiment of training strategies and tricks. R-101 denotes ResNet-101 (likewise for R-18, R-50, R-152). MS, MSC,
SWA, and ME represent data augmentation, multi-scale training and testing, stochastic weights averaging, multi-scale image cropping, and
model ensemble, respectively. The short names for categories are defined as (abbreviation-full name): PL-Plane, BD-Baseball diamond,
BR-Bridge, GTF-Ground field track, SV-Small vehicle, LV-Large vehicle, SH-Ship, TC-Tennis court, BC-Basketball court, ST-Storage
tank, SBF-Soccer-ball field, RA-Roundabout, HA-Harbor, SP-Swimming pool, and HC-Helicopter.

ID MOETHOD BACKBONE SCHED. DA MS MSC SWA ME PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC MAP50

#1

RETINANET-GWD

R-50 20 88.49 77.88 44.07 66.08 71.92 62.56 77.94 89.75 81.43 79.64 52.30 63.52 60.25 66.51 51.63 68.93
#2 X 88.60 78.59 44.10 67.24 70.77 62.54 79.78 88.86 81.92 80.46 57.44 64.02 62.64 66.52 55.29 69.92
#3

R-152

40 X 89.06 83.48 49.84 65.34 74.64 67.63 82.39 88.39 84.19 84.80 63.74 61.32 66.47 70.94 67.52 73.32
#4 X X 87.47 83.77 52.30 68.24 73.24 65.14 80.18 89.63 84.39 85.53 65.79 66.02 69.57 72.21 69.79 74.22
#5

60

X 88.88 80.47 52.94 63.85 76.95 70.28 83.56 88.54 83.51 84.94 61.24 65.13 65.45 71.69 73.90 74.09
#6 X X 87.12 81.64 54.79 68.74 76.17 68.39 83.93 89.06 84.51 85.99 63.33 66.68 72.60 70.63 74.17 75.18
#7 X X X 86.14 81.59 55.33 75.57 74.20 67.34 81.75 87.48 82.80 85.46 69.47 67.20 70.97 70.91 74.07 75.35
#8 X X X 87.63 84.32 54.83 69.99 76.17 70.12 83.13 88.96 83.19 86.06 67.72 66.17 73.47 74.57 72.80 75.94
#9 X X X X 86.96 83.88 54.36 77.53 74.41 68.48 80.34 86.62 83.41 85.55 73.47 67.77 72.57 75.76 73.40 76.30

#10 – – X X X X X 89.06 84.32 55.33 77.53 76.95 70.28 83.95 89.75 84.51 86.06 73.47 67.77 72.60 75.76 74.17 77.43
#11

R3DET-GWD

R-101

30

X 89.59 81.18 52.89 70.37 77.73 82.42 86.99 89.31 83.06 85.97 64.07 65.14 68.05 70.95 58.45 75.08
#12 X X 89.64 81.70 52.52 72.96 76.02 82.60 87.17 89.57 81.25 86.09 62.24 65.74 68.05 74.96 64.38 75.66
#13 X X X 89.66 82.11 52.74 71.64 75.95 83.09 86.97 89.28 85.04 86.17 65.52 63.29 72.18 74.88 63.17 76.11
#14 X X X 89.56 81.23 53.38 79.38 75.12 82.14 86.86 88.87 81.21 86.28 65.36 65.06 72.88 73.04 62.97 76.22
#15 X X X X 89.33 80.86 53.28 78.29 75.40 82.69 87.09 89.35 82.64 86.41 69.85 64.71 74.19 76.18 59.85 76.67
#16

R-152
X 89.51 82.68 51.92 69.51 78.97 83.38 87.53 89.67 85.65 86.17 63.90 67.44 68.27 76.43 64.22 76.35

#17 X X 89.55 82.28 52.39 68.30 77.86 83.40 87.48 89.56 84.27 86.14 65.38 63.25 71.33 72.36 69.21 76.18
#18 X X X 89.62 82.27 52.35 77.30 76.95 82.53 87.20 89.08 84.58 86.21 65.21 64.46 74.99 76.30 65.19 76.95
#19

R-18 40

X 86.63 80.12 51.98 49.67 75.73 77.54 86.10 90.05 83.22 82.31 56.05 58.86 63.30 69.06 55.07 71.05
#20 X X 87.88 81.73 51.76 69.21 73.78 77.78 86.46 90.05 84.47 84.33 59.82 59.74 66.54 69.15 60.42 73.54
#21 X X X 88.94 84.10 53.04 67.78 75.29 79.21 86.89 89.90 86.43 84.30 63.22 59.96 67.16 70.55 64.39 74.74
#22 X X X 87.27 82.59 51.90 76.58 72.74 77.04 85.59 89.18 83.91 84.81 63.34 59.46 66.41 69.79 59.03 73.98
#23 X X X X 88.38 84.75 52.63 77.35 74.29 78.53 86.32 89.12 85.73 85.13 67.84 59.48 66.88 71.59 62.58 75.37
#24

R-50

60

X 88.82 82.94 55.63 72.75 78.52 83.10 87.46 90.21 86.36 85.44 64.70 61.41 73.46 76.94 57.38 76.34
#25 X X 89.09 84.13 55.77 74.48 77.71 82.99 87.57 89.46 84.89 85.67 66.09 64.17 75.13 75.35 62.78 77.02
#26 X X X 89.04 84.99 57.14 76.13 77.79 84.03 87.70 89.53 83.83 85.64 69.60 63.75 76.10 79.22 67.80 78.15
#27 X X X 88.89 83.58 55.54 80.46 76.86 83.07 86.85 89.09 83.09 86.17 71.38 64.93 76.21 73.23 64.39 77.58
#28 X X X X 88.43 84.33 56.91 82.19 76.69 83.23 86.78 88.90 83.93 85.73 72.07 65.67 76.76 78.37 65.31 78.35
#29

R-152

X 88.74 82.63 54.88 70.11 78.87 84.59 87.37 89.81 84.79 86.47 66.58 64.11 75.31 78.43 70.87 77.57
#30 X X 89.59 84.19 56.53 75.69 77.67 84.48 87.52 90.05 84.29 86.85 68.61 64.73 76.59 77.92 71.88 78.44
#31 X X X 89.59 82.96 58.83 75.04 77.63 84.83 87.31 89.89 86.54 86.82 69.45 65.94 76.55 77.50 74.92 78.92
#32 X X X 88.99 82.26 56.62 81.40 77.04 83.90 86.56 88.97 83.63 86.48 70.45 65.58 76.41 77.30 69.21 78.32
#33 X X X X 89.28 83.70 59.26 79.85 76.42 83.87 86.53 89.06 85.53 86.50 73.04 67.56 76.92 77.09 71.58 79.08
#34 – – X X X X X 89.66 84.99 59.26 82.19 78.97 84.83 87.70 90.21 86.54 86.85 73.04 67.56 76.92 79.22 74.92 80.19
#35 – – – X X X X X 89.66 84.99 59.26 82.19 78.97 84.83 87.70 90.21 86.54 86.85 73.47 67.77 76.92 79.22 74.92 80.23

Multi-scale image cropping: Large-scene object detection
often requires image sliding window cropping before train-
ing. During testing, sliding window cropping testing is
required before the results are merged. Two adjacent sub-
images often have an overlapping area to ensure that the
truncated object can appear in a certain sub-image com-
pletely. The cropping size needs to be moderate, too large
is not conducive to the detection of small objects, and too
small will cause large objects to be truncated with high
probability. Multi-scale cropping is an effective detection
technique that is beneficial to objects of various scales. In
this paper, our multi-scale crop size and corresponding over-
lap size are [600, 800, 1,024, 1,300, 1,600] and [150, 200,
300, 300, 400], respectively. According to experimental
groups {#6, #7} and {#30, #32}, the large object categories
(e.g. GTF and SBF) that are often truncated have been sig-
nificantly improved. Take group {#6, #7} as an example,
GTF and SBF increased by 6.43% and 6.14%, respectively.

B.3. Comprehensive Overall Comparison

Results on DOTA: Due to the complexity of the aerial
image and the large number of small, cluttered and rotated
objects, DOTA is a very challenging dataset. We compare
the proposed approach with other state-of-the-art methods
on DOTA, as shown in Tab. 3. As far as I know, this is the
most comprehensive statistical comparison of methods on
the DOTA dataset. Since different methods use different
image resolution, network structure, training strategies and

various tricks, we cannot make absolutely fair comparisons.
In terms of overall performance, our method has achieved
the best performance so far, at around 80.23%.

Results on HRSC2016: The HRSC2016 contains lots of
large aspect ratio ship instances with arbitrary orientation,
which poses a huge challenge to the positioning accuracy of
the detector. Experimental results at Tab. 4 shows that our
model achieves state-of-the-art performances, about 89.85%
and 97.37% in term of 2007 and 2012 evaluation metric.
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Table 3. AP on different objects and mAP on DOTA. R-101 denotes ResNet-101 (likewise for R-50, R-152), RX-101 and H-104 stands for
ResNeXt101 (Xie et al., 2017) and Hourglass-104 (Newell et al., 2016). Other backbone include DPN-92 (Chen et al., 2017), DLA-34 (Yu
et al., 2018), DCN (Dai et al., 2017), HRNet-W48 (Wang et al., 2020a), U-Net (Ronneberger et al., 2015). MS indicates that multi-scale
training or testing is used.

METHOD BACKBONE MS PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC MAP50

T
W

O
-S

TA
G

E
M

E
T

H
O

D
S

FR-O (XIA ET AL., 2018) R-101 79.09 69.12 17.17 63.49 34.20 37.16 36.20 89.19 69.60 58.96 49.4 52.52 46.69 44.80 46.30 52.93
ICN (AZIMI ET AL., 2018) R-101 X 81.40 74.30 47.70 70.30 64.90 67.80 70.00 90.80 79.10 78.20 53.60 62.90 67.00 64.20 50.20 68.20
KARNET (TANG ET AL., 2020) R-50 89.33 83.55 44.79 71.61 63.05 67.06 69.53 90.47 79.46 77.84 51.04 60.97 65.38 69.46 49.53 68.87
RADET (LI ET AL., 2020B) RX-101 79.45 76.99 48.05 65.83 65.46 74.40 68.86 89.70 78.14 74.97 49.92 64.63 66.14 71.58 62.16 69.09
ROI-TRANS. (DING ET AL., 2019) R-101 X 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56
CAD-NET (ZHANG ET AL., 2019) R-101 87.8 82.4 49.4 73.5 71.1 63.5 76.7 90.9 79.2 73.3 48.4 60.9 62.0 67.0 62.2 69.9
AOOD (ZOU ET AL., 2020) DPN-92 X 89.99 81.25 44.50 73.20 68.90 60.33 66.86 90.89 80.99 86.23 64.98 63.88 65.24 68.36 62.13 71.18
CASCADE-FF (HOU ET AL., 2020) R-152 89.9 80.4 51.7 77.4 68.2 75.2 75.6 90.8 78.8 84.4 62.3 64.6 57.7 69.4 50.1 71.8
SCRDET (YANG ET AL., 2019) R-101 X 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61
SARD (WANG ET AL., 2019B) R-101 89.93 84.11 54.19 72.04 68.41 61.18 66.00 90.82 87.79 86.59 65.65 64.04 66.68 68.84 68.03 72.95
GLS-NET (LI ET AL., 2020A) R-101 88.65 77.40 51.20 71.03 73.30 72.16 84.68 90.87 80.43 85.38 58.33 62.27 67.58 70.69 60.42 72.96
FADET (LI ET AL., 2019) R-101 X 90.21 79.58 45.49 76.41 73.18 68.27 79.56 90.83 83.40 84.68 53.40 65.42 74.17 69.69 64.86 73.28
MFIAR-NET (YANG ET AL., 2020A) R-152 X 89.62 84.03 52.41 70.30 70.13 67.64 77.81 90.85 85.40 86.22 63.21 64.14 68.31 70.21 62.11 73.49
GLIDING VERTEX (XU ET AL., 2020B) R-101 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02
SAR (LU ET AL., 2020) R-152 89.67 79.78 54.17 68.29 71.70 77.90 84.63 90.91 88.22 87.07 60.49 66.95 75.13 75.28 64.29 75.28
MASK OBB (WANG ET AL., 2019A) RX-101 X 89.56 85.95 54.21 72.90 76.52 74.16 85.63 89.85 83.81 86.48 54.89 69.64 73.94 69.06 63.32 75.33
FFA (FU ET AL., 2020B) R-101 X 90.1 82.7 54.2 75.2 71.0 79.9 83.5 90.7 83.9 84.6 61.2 68.0 70.7 76.0 63.7 75.7
APE (ZHU ET AL., 2020) RX-101 89.96 83.62 53.42 76.03 74.01 77.16 79.45 90.83 87.15 84.51 67.72 60.33 74.61 71.84 65.55 75.75
F3-NET (YE ET AL., 2020) R-152 X 88.89 78.48 54.62 74.43 72.80 77.52 87.54 90.78 87.64 85.63 63.80 64.53 78.06 72.36 63.19 76.02
CENTERMAP (WANG ET AL., 2020B) R-101 X 89.83 84.41 54.60 70.25 77.66 78.32 87.19 90.66 84.89 85.27 56.46 69.23 74.13 71.56 66.06 76.03
CSL (YANG & YAN, 2020) R-152 X 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17
MRDET (QIN ET AL., 2020) R-101 89.49 84.29 55.40 66.68 76.27 82.13 87.86 90.81 86.92 85.00 52.34 65.98 76.22 76.78 67.49 76.24
RSDET-II (QIAN ET AL., 2021) R-152 X 89.93 84.45 53.77 74.35 71.52 78.31 78.12 91.14 87.35 86.93 65.64 65.17 75.35 79.74 63.31 76.34
OPLD (SONG ET AL., 2020) R-101 X 89.37 85.82 54.10 79.58 75.00 75.13 86.92 90.88 86.42 86.62 62.46 68.41 73.98 68.11 63.69 76.43
SCRDET++ (YANG ET AL., 2020B) R-101 X 90.05 84.39 55.44 73.99 77.54 71.11 86.05 90.67 87.32 87.08 69.62 68.90 73.74 71.29 65.08 76.81
HSP (XU ET AL., 2020A) R-101 X 90.39 86.23 56.12 80.59 77.52 73.26 83.78 90.80 87.19 85.67 69.08 72.02 76.98 72.50 67.96 78.01
FR-EST (FU ET AL., 2020A) R-101-DCN X 89.78 85.21 55.40 77.70 80.26 83.78 87.59 90.81 87.66 86.93 65.60 68.74 71.64 79.99 66.20 78.49

S
IN
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IENET (LIN ET AL., 2019) R-101 X 80.20 64.54 39.82 32.07 49.71 65.01 52.58 81.45 44.66 78.51 46.54 56.73 64.40 64.24 36.75 57.14
TOSO (FENG ET AL., 2020) R-101 X 80.17 65.59 39.82 39.95 49.71 65.01 53.58 81.45 44.66 78.51 48.85 56.73 64.40 64.24 36.75 57.92
PIOU (CHEN ET AL., 2020) DLA-34 80.9 69.7 24.1 60.2 38.3 64.4 64.8 90.9 77.2 70.4 46.5 37.1 57.1 61.9 64.0 60.5
AXIS LEARNING (XIAO ET AL., 2020) R-101 79.53 77.15 38.59 61.15 67.53 70.49 76.30 89.66 79.07 83.53 47.27 61.01 56.28 66.06 36.05 65.98
A2S-DET (XIAO ET AL., 2021) R-101 89.59 77.89 46.37 56.47 75.86 74.83 86.07 90.58 81.09 83.71 50.21 60.94 65.29 69.77 50.93 70.64
O2-DNET (WEI ET AL., 2020) H-104 X 89.31 82.14 47.33 61.21 71.32 74.03 78.62 90.76 82.23 81.36 60.93 60.17 58.21 66.98 61.03 71.04
P-RSDET (ZHOU ET AL., 2020) R-101 X 88.58 77.83 50.44 69.29 71.10 75.79 78.66 90.88 80.10 81.71 57.92 63.03 66.30 69.77 63.13 72.30
BBAVECTORS (YI ET AL., 2020) R-101 X 88.35 79.96 50.69 62.18 78.43 78.98 87.94 90.85 83.58 84.35 54.13 60.24 65.22 64.28 55.70 72.32
ROPDET (YANG ET AL., 2020C) R-101-DCN X 90.01 82.82 54.47 69.65 69.23 70.78 75.78 90.84 86.13 84.76 66.52 63.71 67.13 68.38 46.09 72.42
HRP-NET (HE ET AL., 2020) HRNET-W48 89.33 81.64 48.33 75.21 71.39 74.82 77.62 90.86 81.23 81.96 62.93 62.17 66.27 66.98 62.13 72.83
DRN (PAN ET AL., 2020) H-104 X 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23
CFC-NET (MING ET AL., 2021) R-101 X 89.08 80.41 52.41 70.02 76.28 78.11 87.21 90.89 84.47 85.64 60.51 61.52 67.82 68.02 50.09 73.50
R4DET (SUN ET AL., 2020) R-152 88.96 85.42 52.91 73.84 74.86 81.52 80.29 90.79 86.95 85.25 64.05 60.93 69.00 70.55 67.76 75.84
R3DET (YANG ET AL., 2021) R-152 X 89.80 83.77 48.11 66.77 78.76 83.27 87.84 90.82 85.38 85.51 65.67 62.68 67.53 78.56 72.62 76.47
POLARDET (ZHAO ET AL., 2020) R-101 X 89.65 87.07 48.14 70.97 78.53 80.34 87.45 90.76 85.63 86.87 61.64 70.32 71.92 73.09 67.15 76.64
S2A-NET-DAL (MING ET AL., 2020) R-50 X 89.69 83.11 55.03 71.00 78.30 81.90 88.46 90.89 84.97 87.46 64.41 65.65 76.86 72.09 64.35 76.95
R3DET-DCL (?) R-152 X 89.26 83.60 53.54 72.76 79.04 82.56 87.31 90.67 86.59 86.98 67.49 66.88 73.29 70.56 69.99 77.37
RDD (ZHONG & AO, 2020) R-101 X 89.15 83.92 52.51 73.06 77.81 79.00 87.08 90.62 86.72 87.15 63.96 70.29 76.98 75.79 72.15 77.75
S2A-NET (?) R-101 X 89.28 84.11 56.95 79.21 80.18 82.93 89.21 90.86 84.66 87.61 71.66 68.23 78.58 78.20 65.55 79.15
GWD (OURS) R-152 X 89.66 84.99 59.26 82.19 78.97 84.83 87.70 90.21 86.54 86.85 73.47 67.77 76.92 79.22 74.92 80.23

Table 4. Detection accuracy on HRSC2016.

METHOD BACKBONE MAP50 (07) MAP50 (12)
RC1 & RC2 (LIU ET AL., 2017) VGG16 75.7 –
AXIS LEARNING (XIAO ET AL., 2020) R-101 78.15 –
TOSO (FENG ET AL., 2020) R-101 79.29 –
R2PN (ZHANG ET AL., 2018) VGG16 79.6 –
RRD (LIAO ET AL., 2018) VGG16 84.3 –
ROI-TRANS. (DING ET AL., 2019) R-101 86.20 –
RSDET (QIAN ET AL., 2021) R-50 86.50 –
DRN (PAN ET AL., 2020) H-104 – 92.70
CENTERMAP (WANG ET AL., 2020B) R-50 – 92.8
SBD (LIU ET AL., 2019) R-50 – 93.70
GLIDING VERTEX (XU ET AL., 2020B) R-101 88.20 –
OPLD (SONG ET AL., 2020) R-101 88.44 –
BBAVECTORS (YI ET AL., 2020) R-101 88.6 –
S2A-NET (?) R-101 90.17 95.01
R3DET (YANG ET AL., 2021) R-101 89.26 96.01
R3DET-DCL (?) R-101 89.46 96.41
FPN-CSL (YANG & YAN, 2020) R-101 89.62 96.10
DAL (MING ET AL., 2020) R-101 89.77 –
R3DET-GWD (OURS) R-101 89.85 97.37
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