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Abstract

Boundary discontinuity and its inconsistency to
the final detection metric have been the bottle-
neck for rotating detection regression loss design.
In this paper, we propose a novel regression loss
based on Gaussian Wasserstein distance as a fun-
damental approach to solve the problem. Specif-
ically, the rotated bounding box is converted to
a 2-D Gaussian distribution, which enables to
approximate the indifferentiable rotational IoU
induced loss by the Gaussian Wasserstein dis-
tance (GWD) which can be learned efficiently
by gradient back-propagation. GWD can still be
informative for learning even there is no over-
lapping between two rotating bounding boxes
which is often the case for small object detec-
tion. Thanks to its three unique properties, GWD
can also elegantly solve the boundary discontinu-
ity and square-like problem regardless how the
bounding box is defined. Experiments on five
datasets using different detectors show the effec-
tiveness of our approach, and codes are available
at https://github.com/yangxue0827/
RotationDetection.

1. Introduction

Arbitrary-oriented objects are ubiquitous for detection
across visual datasets, such as aerial images (Yang et al.,
2018a; Jiao et al., 2018; Yang et al., 2018b; 2019), scene
text (Zhou et al., 2017; Liu et al., 2018; Jiang et al., 2017;
Ma et al., 2018; Liao et al., 2018b), faces (Shi et al., 2018)
and 3D objects (Zheng et al., 2020a), retail scenes (Chen
et al., 2020; Pan et al., 2020), etc. Compared with the large
literature on horizontal object detection (Girshick, 2015;
Ren et al., 2015; Dai et al., 2016; Lin et al., 2017a;b), re-
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Figure 1. Comparison of the detection results between Smooth L1
loss-based (left) and the proposed GWD-based (right) detector.

search in oriented object detection is relatively in its earlier
stage, with many open problems to solve.

The dominant line of works (Azimi et al., 2018; Ding et al.,
2019; Yang et al., 2019; 2021b) take a regression method-
ology to predict the rotation angle, which has achieved
state-of-the-art performance. However, compared with tra-
ditional horizontal detectors, the angle regression model
will bring new issues, as summarized as follows: i) the
inconsistency between metric and loss, ii) boundary discon-
tinuity, and iii) square-like problem. In fact, these issues
remain open without a unified solution, and they can largely
hurt the final performance especially at the boundary po-
sition, as shown in the left of Fig. 1. In this paper, we
use a two-dimensional Gaussian distribution to model an
arbitrary-oriented bounding box for object detection, and
approximate the indifferentiable rotational Intersection over
Union (IoU) induced loss between two boxes by calculating
their Gaussian Wasserstein Distance (GWD) (Chafai, 2010).

GWD elegantly aligns model learning with the final detec-
tion accuracy metric, which has been a bottleneck and not
achieved in existing rotation detectors. Our GWD based
detectors are immune from both boundary discontinuity and
square-like problem, and this immunity is independent with
how the bounding box protocol is defined, as shown on the
right of Fig. 1. The highlights of this paper are four-folds:

1) We summarize three flaws in state-of-the-art rotation de-
tectors, i.e. inconsistency between metric and loss, boundary
discontinuity, and square-like problem, due to their regres-
sion based angle prediction nature.

ii) We propose to model the rotating bounding box distance
by Gaussian Wasserstein Distance (GWD) which leads to
an approximate and differentiable IoU induced loss. It re-
solves the loss inconsistency by aligning model learning
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with accuracy metric and thus naturally improves the model.

iii) Our GWD-based loss can elegantly resolve boundary
discontinuity and square-like problem, regardless how the
rotating bounding box is defined. In contrast, the design of
most peer works (Yang & Yan, 2020; Yang et al., 2021a) are
coupled with the parameterization of bounding box.

iv) Extensive experimental results on five public datasets
and two popular detectors show the effectiveness of our
approach. Source code will be made public available.

2. Related Work

In this paper, we mainly discuss the related work on rotating
object detection. Readers are referred to (Girshick, 2015;
Renetal., 2015; Lin et al., 2017a;b) for more comprehensive
literature review on horizontal object detection.

Rotated object detection. As an emerging direction, ad-
vance in this area try to extend classical horizontal detectors
to the rotation case by adopting the rotated bounding boxes.
Compared with the few works (Yang & Yan, 2020) that treat
the rotation detection tasks an angle classification problem,
regression based detectors still dominate which have been
applied in different applications. For aerial images, ICN
(Azimi et al., 2018), ROI-Transformer (Ding et al., 2019),
SCRDet (Yang et al., 2019) and Gliding Vertex (Xu et al.,
2020) are two-stage representative methods whose pipeline
comprises of object localization and classification, while
DRN (Pan et al., 2020), R3Det (Yang et al., 2021b) and RS-
Det (Qian et al., 2021) are single-stage methods. For scene
text detection, RRPN (Ma et al., 2018) employ rotated RPN
to generate rotated proposals and further perform rotated
bounding box regression. TextBoxes++ (Liao et al., 2018a)
adopts vertex regression on SSD. RRD (Liao et al., 2018b)
further improves TextBoxes++ by decoupling classification
and bounding box regression on rotation-invariant and rota-
tion sensitive features, respectively. We discuss the specific
challenges in existing regressors for rotation detection.

Boundary discontinuity and square-like problems. Due
to the periodicity of angle parameters and the diversity of
bounding box definitions, regression-based rotation detec-
tors often suffer from boundary discontinuity and square-
like problem. Many existing methods try to solve part of the
above problems from different perspectives. For instance,
SCRDet (Yang et al., 2019) and RSDet (Qian et al., 2021)
propose IoU-smooth L1 loss and modulated loss to smooth
the the boundary loss jump. CSL (Yang & Yan, 2020) trans-
forms angular prediction from a regression problem to a
classification one. DCL (Yang et al., 2021a) further solves
square-like object detection problem introduced by the long
edge definition, which refers to rotation insensitivity issue
for instances that are approximately in square shape, which
will be detailed in Sec. 3. Instance segmentation-based

methods are practical, and relevant methods (e.g. Mask
OBB (Wang et al., 2019)) have been published. However,
this approach has its limitations. First, using rotated boxes
as binary masks will introduce background area, which will
reduce the classification accuracy of pixels and affect the
accuracy of the final prediction box. Secondly, for the top-
down methods (e.g. Mask RCNN (He et al., 2017)), dense
scenes will limit the detection of horizontal boxes because
of the excessive suppression of dense horizontal overlapping
bounding boxes due to NMS, thereby affecting subsequent
segmentation. Aerial images often show large scenes with
a large number of dense and small objects, which is not
suitable for the bottom-up methods, such as SOLO (Wang
et al., 2020b) and Condlnst (Tian et al., 2020), which assign
different instances to different channels. This is the main
reason why regression-based rotation detection algorithms
still dominate in the field of aerial imagery.

Approximate differentiable rotating IoU loss. It has been
shown in classic horizontal detectors that the use of IoU
induced loss e.g. GIoU (Rezatofighi et al., 2019), DIoU
(Zheng et al., 2020b) can ensure the consistency of the final
detection metric and loss. However, these IoU loss cannot
be applied directly in rotation detection because the rotating
IoU is indifferentiable. Many efforts have been made to find-
ing an approximate IoU loss for gradient computing. The
approximate IoU loss proposed by PolarMask (Xie et al.,
2020) is also an effective design idea. However, its calcu-
lation is discrete, which means that there is a theoretical
calculation error and the number of discrete point samples
greatly affects the final calculation accuracy. PloU (Chen
et al., 2020) is realized by simply counting the number of
pixels. To tackle the uncertainty of convex caused by rota-
tion, (Zheng et al., 2020a) proposes a projection operation
to estimate the intersection area. SCRDet (Yang et al., 2019)
combines IoU and smooth L1 loss to develop an IoU-smooth
L1 loss, which partly circumvents the need for differentiable
rotating IoU loss.

So far, there exists no truly unified solution to all the above
problems which are in fact interleaved to each other. Our
method addresses all these issues in a unified manner. It is
also decoupled from the specific definition of bounding box.
All these merits make our approach elegant and effective.

3. Rotated Object Regression Detector Revisit

To motivate this work, in this section, we introduce and ana-
lyze some deficiencies in state-of-the-art rotating detectors,
which are mostly based on angle regression.

3.1. Bounding Box Definition Specific Detector Design

Fig. 2 gives two popular definitions for parameterizing
rotating bounding box based angles: OpenCV protocol



Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss

)

Figure 2. Two definitions of bounding boxes. Left: OpenCV Defi-
nition D,., Right: Long Edge Definition D;e.

denoted by D,., and long edge definition by D;.. Note
6 € [-90°,0°) of the former denotes the acute or right an-
gle between the h,. of bounding box and x-axis. In contrast,
0 € [—90°,90°) of the latter definition is the angle between
the long edge h;. of bounding box and z-axis. The two
kinds of parameterization can be converted to each other:

_ Doc(h007 Woc, 006)7 hoc Z Woc

Dle(h157wle79l5) = { Doe(w067h007eoc +900)7 otherwise
_ Dle(hley Wie, ele)y ele € [79005
Doc(hOC’ Wocy goc) - { Dle(le7 hl67 01 — 90)7 otherwise

The main difference refers to the edge and angle (h, w, 0):
when the same bounding box takes different representations
by the two definitions, the order of the edges is exchanged
and the angle difference is 90°.

In many works, the pipeline design are tightly coupled with
the choice of the bounding box definition to avoid specific
problems: SCRDet (Yang et al., 2019), R3Det (Yang et al.,
2021b) are based on D, to avoid the square-like problem,
while CSL (Yang & Yan, 2020), DCL (Yang et al., 2021a)
resort to D, to avoid the exchangeability of edges (EoE).

3.2. Inconsistency between Metric and Loss

Intersection over Union (IoU) has been the standard metric
for both horizontal detection and rotation detection. How-
ever, there is an inconsistency between the metric and re-
gression loss (e.g. [,,-norms), that is, a smaller training loss
cannot guarantee a higher performance, which has been
extensively discussed in horizontal detection (Rezatofighi
et al., 2019; Zheng et al., 2020b). This misalignment be-
comes more prominent in rotating object detection due to
the introduction of angle parameter in regression based mod-
els. To illustrate this, we use Fig. 3 to compare IoU induced
loss and smooth L1 loss (Girshick, 2015):

Case 1: Fig. 3(a) depicts the relation between angle differ-
ence and loss functions. Though they all bear monotonicity,
only smooth L1 curve is convex while the others are not.
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Figure 3. Behavior comparison of different loss in different cases.

Case 2: Fig. 3(b) shows the changes of the two loss func-
tions under different aspect ratio conditions. It can be seen
that the smooth L1 loss of the two bounding box are con-
stant (mainly from the angle difference), but the IoU loss
will change drastically as the aspect ratio varies.

0

&ase 3: Fig. 3(c) explores the impact of center point shifting
on different loss functions. Similarly, despite the same
monotonicity, there is no high degree of consistency.

Seeing the above flaws of classic smooth L1 loss, IoU-
induced loss has become recently popular for horizontal
detection e.g. GIoU (Rezatofighi et al., 2019), DIoU (Zheng
et al., 2020b). It can help fill the gap between metric and
regression loss for rotating object detection. However, dif-
ferent from horizontal detection, the IoU of two rotating
boxes is indifferentiable for learning. In this paper, we
propose a differentiable loss based on Wasserstein distance
of two rotating boxes to replace the hard IoU loss. It is
worth mentioning that the Wasserstein distance function has
some unique properties to solve boundary discontinuity and
square-like problem, which will be detailed later.

3.3. Boundary Discontinuity and Square-Like Problem

As a standing issue for regression-based rotation detectors,
the boundary discontinuity (Yang et al., 2019; Yang & Yan,
2020) in general refers to the sharp loss increase at the
boundary induced by the angle and edge parameterization.

Specifically, Case 1-2 in Fig. 4 summarize the boundary
discontinuity. Take Case 2 as an example, we assume that
there is a red anchor/proposal (0,0,70,10, —90°) and a
green ground truth at the boundary po-
sition!, both of which are defined in OpenCV definition

!The angle of the bounding box is close to the maximum and
minimum values of the angle range. For more clearly visualization,
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Figure 4. Boundary discontinuity under two bounding box definitions (top), and illustration of the square-like problem (bottom).

D,.. The upper right corner of Fig. 4 shows two ways to
regress from anchor/proposal to ground truth. The wayl
achieves the goal by only rotating anchor/proposal by an
angle counterclockwise, but a very large smooth L1 loss
occurs at this time due to the periodicity of angle (PoA) and
the exchangeability of edges (EoE). As discussed in CSL
(Yang & Yan, 2020), this is because the result of the predic-
tion box (0,0, 70, 10, —115°) is outside the defined range.
As aresult, the model has to make predictions in other com-
plex regression forms, such as rotating anchor/proposal by
an large angle clockwise to the blue box while scaling w
and h (way2 in Case 2). A similar problem (only PoA) also
occurs in the long edge definition D, as shown in Case 1.

In fact, when the predefined anchor/proposal and ground
truth are not in the boundary position, way1 will not produce
a large loss. Therefore, there exists inconsistency between
the boundary position and the non-boundary position regres-
sion, which makes the model very confused about in which
way it should perform regression. Since non-boundary cases
account for the majority, the regression results of models,
especially those with weaker learning capacity, are fragile
in boundary cases, as shown in the left of Fig. 1.

In addition, there is also a square-like object detection prob-
lem in the D;.-based method (Yang et al., 2021a). First of
all, the D;, cannot uniquely define a square bounding box.
For square-like objectsz, D.-based method will encounter

the ground truth has been rendered with a larger angle in Fig. 4.
2Many instances are in square shape. For instance, two cate-

high ToU but high loss value similar to the boundary dis-
continuity, as shown by the upper part of Case 3 in Fig. 4.
In wayl, the red anchor/proposal (0, 0,45, 44, 0°) rotates a
small angle clockwise to get the blue prediction box. The
IoU of ground truth (0. 0,45, 43, —60°) and the prediction
box (0,0, 45,44, 30°) is close to 1, but the regression loss
is high due to the inconsistency of angle parameters. There-
fore, the model will rotate a larger angle counterclockwise
to make predictions, as described by way2. The reason
for the square-like problem in D;.-based method is not the
above-mentioned PoA and EoE, but the inconsistency of
evaluation metric and loss. In contrast, the negative impact
of EoE will be weakened when we use D,.-based method
to detect square-like objects, as shown in the comparison
between Case 2 and the lower part of Case 3. Therefore,
there is no square-like problem in the D,.-based method.

Recent methods start to address these issues. SCRDet (Yang
et al., 2019) combines IoU and smooth L1 loss to propose
a IoU-smooth L1 loss, which does not require the rotat-
ing IoU being differentiable. It also solves the problem of
inconsistency between loss and metric by eliminating the
discontinuity of loss at the boundary. However, SCRDet still
needs to determine whether the predicted bounding box re-
sult conforms to the current bounding box definition method
before calculating the IoU. In addition, the gradient direc-
tion of IoU-Smooth L1 Loss is still dominated by smooth
L1 loss. RSDet (Qian et al., 2021) devises modulated loss

gories of storage-tank (ST) and roundabout (RA) in DOTA dataset.
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Figure 5. A schematic diagram of modeling a rotating bounding

box by a two-dimensional Gaussian distribution.

to smooth the loss mutation at the boundary, but it needs
to calculate the loss of as many parameter combinations
as possible. CSL (Yang & Yan, 2020) transforms angu-
lar prediction from a regression problem to a classification
problem. CSL needs to carefully design their method ac-
cording to the bounding box definition (D;,), and is limited
by the classification granularity with theoretical limitation
for high-precision angle prediction. On the basis of CSL,
DCL (Yang et al., 2021a) further solves the problem of
square-like object detection introduced by Dj..

4. The Proposed Method

In this section we introduce a new rotating object detector
whose regression loss fulfills the following requirements:

Requirement 1: highly consistent with the IoU induced
metrics (which also solves the square-like object problem);

Requirement 2: differentiable allowing for direct learning;

Requirement 3: smooth at angle boundary case.

4.1. Wasserstein Distance for Rotating Bounding Box

Most of the ToU-based loss can be considered as a distance
function. Inspired by this, we propose a new regression
loss based on Wasserstein distance. First, we convert a
rotating bounding box B(x, y, h, w, §) into a 2-D Gaussian
distribution A/ (m, ) (see Fig. 5) by the following formula:

=2 _RSR'
_( cosf® —siné 5 0 cosf  siné
T\ sinf cosé 0 % —sinf cosf

_( %00829+%Sin29

“’T*h cosfsin 6
wah cos f sin 6

Y sin® 0 + % cos® 6
T
m =(z,y)
M
where R represents the rotation matrix, and S represents
the diagonal matrix of eigenvalues.

The Wasserstein distance W between two probability mea-
sures 1 and v on R™ expressed as (Chafai, 2010):

W (p;v) == inf E(||X — Y|2)"/? @

where the inferior runs over all random vectors (X,Y) of
R™ x R™ with X ~ pand 'Y ~ v. It turns out that we have
d:= W(N(mp, X1); N (mz, X)) and it writes as:

& = |m; — mo|? + Tr (21 F 3, — 2(2}/2222}/2)1/2)
3)
This formula has interested several works (Givens et al.,
1984; Olkin & Pukelsheim, 1982; Knott & Smith, 1984,
Dowson & Landau, 1982). Note in particular we have:

Tr ((£175:21%)) = T ((=17213)%)) - @)

In the commutative case (horizontal detection task)
3135 = 35,3, Eq. 3 becomes:

& =|m; — mo|f3 + | =}7 - =77

(w1 — w2)? + (h1 — ha)?
4

T T
=ls-norm | |z v E T w2 @
=2 1,Y1, 279 ) 2,Y2, 29
(5)

where ||| 7 is the Frobenius norm. Note that both boxes are
horizontal here, and Eq. 5 is approximately equivalent to
the [5-norm loss (note the additional denominator of 2 for w
and h), which is consistent with the loss commonly used in
horizontal detection. This also partly proves the correctness
of using Wasserstein distance as the regression loss. See
appendix for the detailed proof (Chafai, 2010) of Eq. 3.

=(z1 —22)* + (1 —y2)> +

4.2. Gaussian Wasserstein Distance Regression Loss

Note that GWD alone can be sensitive to large errors. We
perform a nonlinear transformation f and then convert
GWD into an affinity measure W similar to IoU be-
tween two bounding boxes. Then we follow the standard
IoU based loss form in detection literature (Rezatofighi et al.,

2019; Zheng et al., 2020b), as written by:

L r>1 (6)

Lywa =1— ——F<, 2
o T+ f(d)

where f(-) denotes a non-linear function to transform the
Wasserstein distance d? to make the loss more smooth and
expressive. The hyperparameter 7 modulates the entire loss.

Fig. 3(a) plots the function curve under different different
combinations of f(-) and 7. Compared with the smooth
L1 loss, the curve of Eq. 6 is more consistent with the IoU
loss curve. Furthermore, we can find in Fig. 3(c) that GWD
still can measure the distance between two non-overlapping
bounding boxes (IoU=0), which is exactly the problem that
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GloU and DIoU try to solve in horizontal detection. How-
ever, they cannot be applied for rotating detection.

Obviously, GWD has met the first two requirements in terms
of consistency and differentiability with IoU loss. To ana-
lyze Requirement 3, we first give basic properties of Eq. 1:

Property 1: X/2(w, h,0) = B/2(h,w,0 — T);
V2 (w, h, 6 — 7);

SY2(w,h,0—Z),if w = h.

Property 2: '/%(w, h,0) =
Property 3: 3'/2(w, h,6) ~

From the two bounding box definitions recall that the conver-
sion between two definitions is, the two sides are exchanged
and the angle difference is 90°. Many methods are des-
ignated inherently according to the choice of definition in
advance to solve some problems, such as D, for EoE and
D, for square-like problem. It is interesting to note that
according to Property 1, definition D,. and D;. are equiv-
alent for the GWD-based loss, which makes our method
free from the choice of box definitions. This does not mean
that the final performance of the two definition methods
will be the same. Different factors such as angle definition
and angle regression range will still cause differences in
model learning, but the GWD-based method does not need
to bind a certain definition method to solve the boundary
discontinuity and square-like problem.

GWD can also help resolve the boundary discontinuity and
square-like problem. The prediction box and ground truth
in way1 of Case 1 in Fig. 4 satisfy the following relation:
Tp = Tgt,Yp = Ygts Wp = hgt,hp = wge,0p = g — 5.
According to Property 1, the Gaussian distribution corre-
sponding to these two boxes are the same (in the sense of
same mean m and covariance X), so it naturally eliminates
the ambiguity in box representation. Similarly, according to
Properties 2-3, the ground truth and prediction box in way1
of Case 1 and Case 3 in Fig. 4 are also the same or nearly
the same (note the approximate equal symbol for w ~ h
for square-like boxes) Gaussian distribution. Through the
above analysis, we know GWD meets Requirement 3.

Overall, GWD is a unified solution to all the requirements
and its advantages in rotating detection can be summarized:

1) GWD makes the two bounding box definition methods
equivalent, which enables our method to achieve significant
improvement regardless how the bounding box is defined.

ii) GWD is a differentiable IoU loss approximation for rotat-
ing bounding box, which maintains a high consistency with
the detection metric. GWD can also measure the distance
between non-overlapping rotating bounding boxes and has
properties similar to GIoU and DIoU for the horizontal case.

iii) GWD inherently avoids the interference of boundary
discontinuity and square-like problem, so that the model
can learn in more diverse forms of regression, eliminate

the inconsistency of regression under boundary and non-
boundary positions, and reduce the learning cost.

4.3. Overall Loss Function Design

In line with (Yang & Yan, 2020; Yang et al., 2021a;b), we
use the one-stage detector RetinaNet (Lin et al., 2017b)
as the baseline. Rotated rectangle is represented by five
parameters (x,y, w, h,#). In our experiments we mainly
follow D,., and the regression equation is as follows:

te = (¢ = @a)/Wa, ty = (y = Ya)/ha
w = log(w/wa), th =log(h/ha),te =0 — 0,

*

tr = (2" — xa)/wa, ty = (Y — Ya)/ha
ty, = log(w” /wa), ty, = log(h™/ha),ts = 0" — 0,

~

@)

where x,y,w, h,0 denote the box’s center coordinates,
width, height and angle, respectively. Variables z, z,, z*
are for the ground-truth box, anchor box, and predicted box,
respectively (likewise for y, w, h, 8). The multi-task loss is:

ZP’

A
L= ]\;ZObj"' gwd n7gtn

n=1

N
Z cls pmtn (8)

where IV indicates the number of anchors, obj,, is a binary
value (obj,, = 1 for foreground and obj,, = 0 for back-
ground, no regression for background). b,, denotes the n-th
predicted bounding box, gt,, is the n-th target ground-truth.
t,, represents the label of n-th object, p,, is the n-th proba-
bility distribution of various classes calculated by sigmoid
function. The hyper-parameter A1, A2 control the trade-off
and are set to {2, 1} by default. The classification loss L5
is set as the focal loss (Lin et al., 2017b).

5. Experiments

We use Tensorflow (Abadi et al., 2016) for implementation
on a server with Tesla V100 and 32G memory.

5.1. Datasets and Implementation Details

DOTA (Xia et al., 2018) is comprised of 2,806 large aerial
images from different sensors and platforms. Objects in
DOTA exhibit a wide variety of scales, orientations, and
shapes. Then, 188,282 instances are annotated by experts
using 15 categories. The short names for categories are
defined as (abbreviation-full name): PL-Plane, BD-Baseball
diamond, BR-Bridge, GTF-Ground field track, SV-Small
vehicle, LV-Large vehicle, SH-Ship, TC-Tennis court, BC-
Basketball court, ST-Storage tank, SBF-Soccer-ball field,
RA-Roundabout, HA-Harbor, SP-Swimming pool, and HC-
Helicopter. The fully annotated DOTA benchmark contains
188,282 instances, each of which is labeled by an arbitrary
quadrilateral. Half of the original images are randomly
selected as the training set, 1/6 as the validation set, and
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Table 1. Ablation test of GWD-based regression loss form and
hyperparameter on DOTA. The based detector is RetinaNet.

Table 2. Ablation study for GWD on three datasets. ‘R’, ‘F” and
‘G’ indicate random rotation, flipping, and graying, respectively.

1 _ _ _ . _ 2
—m T=1 7=2 71=3 7—5‘ d

f(d®) = sqrt(d®) | 68.56 68.93 68.37 67.77
f(d*) =log(d*+1) | 67.87 68.09 67.48 66.49

‘ 49.11

1/3 as the testing set. We divide the images into 600 x 600
subimages with an overlap of 150 pixels and scale it to
800 x 800. With all these processes, we obtain about 20,000
training and 7,000 validation patches.

UCAS-AOD (Zhu et al., 2015) contains 1,510 aerial images
of about 659 x 1,280 pixels, with 2 categories of 14,596
instances. In line with (Azimi et al., 2018; Xia et al., 2018),
we sample 1,110 images for training and 400 for testing.

HRSC2016 (Liu et al., 2017) contains images from two
scenarios including ships on sea and ships close inshore. All
images are collected from six famous harbors. The training,
validation and test set include 436, 181 and 444 images,
respectively.

ICDAR2015 (Karatzas et al., 2015) is commonly used for
oriented scene text detection and spotting. This dataset
includes 1,000 training images and 500 testing images.

ICDAR 2017 MLT (Nayef et al., 2017) is a multi-lingual
text dataset, which includes 7,200 training images, 1,800
validation images and 9,000 testing images. The dataset is
composed of complete scene images in 9 languages, and
text regions in this dataset can be in arbitrary orientations,
being more diverse and challenging.

Experiments are initialized by ResNet50 (He et al., 2016) by
default unless otherwise specified. We perform experiments
on three aerial benchmarks and two scene text benchmarks
to verify the generality of our techniques. Weight decay
and momentum are set 0.0001 and 0.9, respectively. We
employ MomentumOptimizer over 8§ GPUs with a total of
8 images per mini-batch (1 image per GPU). All the used
datasets are trained by 20 epochs in total, and learning rate
is reduced tenfold at 12 epochs and 16 epochs, respectively.
The initial learning rates for RetinaNet is 5e-4. The num-
ber of image iterations per epoch for DOTA, UCAS-AOD,
HRSC2016, ICDAR2015, and MLT are 54k, 5k, 10k, 10k,
10k and 10k respectively, and increase exponentially if data
augmentation and multi-scale training are used.

5.2. Ablation Study

Ablation test of GWD-based regression loss form and
hyperparameter: Tab. 1 compares two different forms
of GWD-based loss. The performance of directly using
GWD (d?) as the regression loss is extremely poor, only
49.11%, due to its rapid growth trend. In other words, the
regression loss d? is too sensitive to large errors. In contrast,

METHOD Box DEF. | REG. LOsS DATASET DATA AUG. MAPs5,
Doc | SMOOTH LI 84.28
Doy GWD HRSC2016 RaFsG | 85:56 (+1.28)
D, SMOOTH L1 UCAS-AOD 94.56
RETINANET Doc GWD 95.44 (+0.88)
: Doc | SMOOTHLI 65.73
D.. GWD 68.93 (+3.20)
D SMOOTH L1 64.17
Di. GWD DOTA F 66.31 (+2.14)
3 Doe SMOOTH L1 70.66
R*DET D,. GWD 71.56 (+0.90)

Table 3. Ablation study for GWD on two scene text datasets.

METHOD REG. Loss DATASET DATA AUG. RECALL PRECISION HMEAN
SMOOTH LT LT 37.88 67.07 842
GWD v 44.01 71.83 | 54.58 (+6.16)
SMOOTH LT 7155 68.10 9.78
RETINANET | " 5wp 73.95 74.64 | 74.29 (+4.51)
SMOOTH LT oF 69.43 8T.15 7283
GWD 72.17 80.59 | 76.15 (+1.32)
Swooti LT | [CPAR2015 = ©9.09 8030 7238
D GWD 70.00 82.15 | 75.59 (+1.31)
ET  ["SMooTH LT RoF 7T.69 79.80 75.53
GWD 73.95 80.50 | 77.09 (+1.56)

Table 4. Ablation study for training strategies and tricks on DOTA.

BACKBONE SCHEDULE MS MSC SWA ME | RETINANET-GWD R°DET-GWD
R-101 30 v - 75.66
R-152 30 v - 76.18
R-152 40 v 74.22 -
R-152 60 74.09 77.57
R-152 60 v 75.18 78.44
R-152 60 v 75.35 78.32
R-152 60 ' ' 75.94 78.92
R-152 60 v v v 76.30 79.08
R-152 60 ' v v v 77.43 80.19

Table 5. High-precision detection experiment on HRSC206 data
set. The image resolution is 512, and data augmentation is used.

METHOD | REG.LOSS | AP APeo  APrs APy APso0s
SMoOTH LT | 8428 7474 4842 12.56 37.76

RETINANET | “"Gwp | 85.56 84.04 60.31 17.14 | 52.89 +(5.13)
wibpr | SMOOTHLI [ 8852 79.01 4342 458 36.18

GWD | 89.43 88.89 65.88 15.02 | 56.07 +(9.89)

Eq. 6 achieves a significant improvement by fitting IoU
loss. Eq. 6 introduces two new hyperparameters, the non-
linear function f(-) to transform the Wasserstein distance,
and the constant 7 to modulate the entire loss. From Tab.
1, the overall performance of using sqrt outperforms that
using log, about 0.98+0.3% higher. For f(-) = sqrt with
7 = 2, the model achieves the best performance, about
68.93%. All the subsequent experiments follow this setting
for hyperparameters unless otherwise specified.

Ablation test with different rotating box definitions: Tab.
2 compares the performance of RetinaNet under different
regression loss on DOTA, and both rotating box definitions:
Dy and D, are tested. For the smooth L1 loss, the accuracy
of Dj.-based method is 1.56% lower than D,.-based, at
64.17% and 65.73%, respectively. GWD-based method
does not need to be coupled with a certain definition to
solve boundary discontinuity or square-like problem, it has
increased by 2.14% and 3.20% under above two definitions.

Ablation test across datasets and detectors: We use two
detectors on five datasets to verify the effectiveness of GWD.
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Table 6. Comparison between different solutions for inconsistency between metric and loss (IML), boundary discontinuity (BD) and
square-like problem (SLP) on DOTA dataset. The v indicates that the method has corresponding problem. ™ and ¥ represent the large
aspect ratio object and the square-like object, respectively. The bold red and blue fonts indicate the top two performances respectively.

BD TRANVAL/TEST TRAIN/VAL
BASE DETECTOR METHOD BoxDeF. | IML 5 0p=—5x | SIP BRI svi v SHT  HAT | STT RAT | 7-MAPy MAPw | MAPw MAPr;  MAPaoas
- Do 7T v v | X [4207 6593 SIIT 7261 5324 [ 7838 6200 | 6078 6573 | 6470 3231 3450
- Die v | v v | v | 3831 6048 4977 6829 51.28 | 78.60 60.02 | 5811 6417 | 62.21 2606  31.49
10U-SMOOTH L1 LOSS | Doe v | x x| x | 4432 63.03 5125 7278 56.21 | 7798 63.22 | 6126 6699 | 64.61 3417 3623
RETINANET MODULATED LOSS Doe v X X X 42.92  67.92 5291 72.67 53.64 | 80.22 58.21 61.21 66.05 63.50 33.32 34.61
CSL Die v | x x| v | 4225 6828 5451 7285 53.10 | 7559 58.99 | 60.80  67.38 | 6440 3258  35.04
DCL (BCL) Dy V| x x| x | 4140 6582 5627 73.80 5430 | 79.02 60.25 | 61.55  67.39 | 6593 35.66  36.71
GWD Do x | x x| x | 4407 71.92 62,56 77.94 60.25 | 79.64 6352 | 6570  68.93 | 65.44  38.68  38.71
— De. 7T v v | x [44.15 75.09 72.88 86.04 56.49 | 8253 61.01 | 6831  70.66 | 67.18 38.41  38.46
RDET DCL (BCL) Di. V| x x| x | 4681 7487 74.96 8570 57.72 | 84.06 63.77 | 69.70  71.21 | 67.45 3544  37.54
GWD Do x | x x| x | 4673 7584 78.00 86.71 62.69 | 83.09 61.12 | 70.60  71.56 | 69.28 4335  41.56

Table 7. AP on different objects and mAP on DOTA. R-101 denotes ResNet-101 (likewise for R-50, R-152), RX-101 and H-104 represent
ResNeXt101 (Xie et al., 2017) and Hourglass-104 (Newell et al., 2016). MS indicates that multi-scale training or testing is used.

METHOD BACKBONE MS PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC MAP50
ICN (AZIMI ET AL., 2018) R-101 v 81.40 7430 47.70 7030 6490 67.80 70.00 90.80 79.10 78.20 53.60 62.90 67.00 64.20 50.20 | 68.20
« | ROI-TRANS. (DING ET AL., 2019) R-101 v 88.64 78.52 43.44 7592 68.81 73.68 83.59 90.74 77.27 81.46 5839 53.54 62.83 58.93 47.67 | 69.56
S | CAD-NET (ZHANG ET AL., 2019) R-101 87.8 82.4 49.4 73.5 71.1 63.5 76.7 90.9 79.2 73.3 48.4 60.9 62.0 67.0 62.2 69.9
= SCRDET (YANG ET AL., 2019) R-101 v 89.98 80.65 52.09 6836 6836 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 6824 65.21 72.61
g FADET (LIET AL., 2019) R-101 v 90.21 79.58 4549 76.41 73.18 68.27 79.56 90.83 83.40 84.68 53.40 6542 74.17 69.69 64.86 | 73.28
= | GLIDING VERTEX (XU ET AL., 2020) R-101 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 7091 72.94 70.86 57.32 | 75.02
2 | Mask OBB (WANG ET AL., 2019) RX-101 ' 89.56 85.95 5421 7290 76.52 74.16 85.63 89.85 83.81 86.48 54890 69.64 73.94 69.06 63.32 | 75.33
& | FEA (FUET AL., 2020) R-101 ' 90.1 82.7 54.2 75.2 71.0 79.9 83.5 90.7 83.9 84.6 61.2 68.0 70.7 76.0 63.7 75.7
o | APE (ZHU ET AL., 2020) RX-101 89.96 83.62 53.42 76.03 7401 77.16 79.45 90.83 87.15 84.51 67.72 60.33 74.61 71.84 65.55 | 75.75
E CENTERMAP (WANG ET AL., 2020A) R-101 v 89.83 84.41 54.60 70.25 77.66 78.32 87.19 90.66 84.89 8527 5646 69.23 74.13 71.56 66.06 | 76.03
CSL (YANG & YAN, 2020) R-152 v 90.25 85.53 54.64 7531 70.44 7351 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17
RSDET-II (QIAN ET AL., 2021) R-152 v 89.93 84.45 53.77 7435 71.52 7831 78.12 91.14 87.35 86.93 65.64 65.17 7535 79.74 63.31 76.34
SCRDET++ (YANG ET AL., 2020) R-101 v 90.05 84.39 5544 7399 77.54 71.11 86.05 90.67 87.32 87.08 69.62 68.90 73.74 71.29 65.08 76.81
PIOU (CHEN ET AL., 2020) DLA-34 80.9 69.7 24.1 60.2 38.3 64.4 64.8 90.9 77.2 70.4 46.5 37.1 57.1 61.9 64.0 60.5
Z | O%-DNET (WEI ET AL., 2020) H-104 v 89.31 82.14 4733 61.21 71.32 74.03 78.62 90.76 82.23 81.36 60.93 60.17 5821 6698 61.03 | 71.04
S | P-RSDET (ZHOU ET AL., 2020) R-101 v 88.58 77.83 50.44 69.29 71.10 75.79 78.66 90.88 80.10 81.71 57.92 63.03 66.30 69.77 63.13 | 72.30
& | BBAVECTORS (YIET AL., 2020) R-101 v 88.35 79.96 50.69 62.18 78.43 7898 87.94 90.85 83.58 8435 54.13 60.24 6522 6428 55.70 | 72.32
= | DRN (PANET AL., 2020) H-104 v 89.71 8234 47.22 64.10 76.22 7443 8584 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23
& | R®DET (YANG ET AL., 2021B) R-152 v 89.80 83.77 48.11 66.77 78.76 83.27 87.84 90.82 8538 85.51 65.67 62.68 67.53 78.56 72.62 76.47
£ | POLARDET (ZHAO ET AL., 2020) R-101 v 89.65 87.07 48.14 7097 7853 80.34 87.45 90.76 85.63 86.87 61.64 70.32 71.92 73.09 67.15 | 76.64
: S?A-NET-DAL (MING ET AL., 2020) R-50 v 89.69 83.11 55.03 71.00 7830 8190 88.46 90.89 84.97 8746 64.41 6565 76.86 72.09 64.35 76.95
3 R®DET-DCL (YANG ET AL., 2021A) R-152 ' 89.26 83.60 53.54 7276 79.04 82.56 87.31 90.67 86.59 86.98 67.49 66.88 73.29 70.56 69.99 77.37
Z | RDD (ZHONG & Ao, 2020) R-101 v 89.15 83.92 52,51 73.06 77.81 79.00 87.08 90.62 86.72 87.15 63.96 70.29 76.98 7579 72.15 | 77.75
“ | S?2A-NET (HAN ET AL., 2021) R-101 ' 89.28 84.11 56.95 79.21 80.18 8293 89.21 90.86 84.66 87.61 71.66 68.23 78.58 7820 65.55 | 79.15
GWD (OURS) R-152 89.66 8499 59.26 82.19 7897 84.83 87.70 90.21 86.54 R86.85 73.47 67.77 7692 79.22 74.92 80.23
. in the boundary position in scene text, so the GWD-based
Table 8. Detection accuracy on HRSC2016. . . ..
RetinaNet has obtained a notable gain — increased by 6.16%
METHOD BACKBONE MAP;5p (07) MAPs5o (12)
ROL-TRANS. (DING BT AL., 2019) =101 8620 - and 4.51% on the MLT and ICDAR?2015 datasets, respec
RSDET (QIAN ET AL., 2021) R-50 86.50 - tively. Even with the use of data augmentation or a stronger
DRN (PAN ET AL., 2020) H-104 - 92.70 3 . . . .
CENTERMAP (WANG ET AL., 2020A) R-50 - 92.8 detector R°Det, GWD can still obtain a stable gain, with an
SBD (LIU ET AL., 2019) R-50 - 93.70 :
GLIDING VERTEX (XU ET AL., 2020) R-101 88.20 - 1mprovement range from 1 '3 1 % to 1'56%'
OPLD (SONG ET AL., 2020) R-101 88.44 - . . .. . .
BBAVECTORS (Y1 ET AL., 2020) R-101 88.6 - Ablation experiment of training strategies and tricks: In
S2A-NET (HAN ET AL., 2021) R-101 90.17 95.01 d further i h £ f th del
R®DET (YANG ET AL., 20218) R-101 89.26 96.01 order to further improve the performance of the model on
RDET-DCL (YANG ET AL, 20214) R-101 89.46 96.41 DOTA, we verified many commonly used training strategies
FPN-CSL (YANG & YAN, 2020) R-101 89.62 96.10 . . . .. .
DAL (MING ET AL., 2020) R-101 89.77 - and tricks, including backbone, training schedule, multi-
R°DET-GWD (OURS) R-101 89.85 97.37

When RetinaNet is used as the base detector in Tab. 2,
the GWD-based detector is improved by 1.28%, 0.88%,
3.20%, 2.14% under three different aerial image datasets of
HRSC206, UCAS-AOD and DOTA, respectively. Note that
to increase the reliability of the results from small dataset,
the experiments of the first two datasets have involved ad-
ditional data augmentation, including random graying and
random rotation. The rotation detector R3Det (Yang et al.,
2021b) achieves the state-of-the-art performance on large-
scale DOTA. It can be seen that GWD further improves the
performance by 0.90%. Tab. 3 also gives ablation test on
two scene text datasets. There are a large number of objects

scale training and testing (MS), stochastic weights averaging
(SWA) (Izmailov et al., 2018; Zhang et al., 2020), multi-
scale image cropping (MSC), model ensemble (ME), etc.
Tab. 4 demonstrates the improvement effects of various
techniques on the RetinaNet-GWD and R3Det-GWD, and
finally achieved top performances of 77.43% and 80.19%.

5.3. Further Comparison

High precision detection: The advantage of aligning detec-
tion metric and loss is that a higher precision prediction box
can be learned. Object with large aspect ratios are more sen-
sitive to detection accuracy, so we conduct high-precision
detection experiments on the ship dataset HRSC2016. It
can be seen in Tab. 5 that our GWD-based detector exhibits
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clear advantages under high IoU thresholds. Taking AP75
as an example, GWD has achieved improvement by 11.89%
and 22.46% on the two detectors, respectively. We also com-
pares the peer techniques, mainly including IoU-Smooth L1
Loss (Yang et al., 2019), Modulated loss (Qian et al., 2021),
CSL (Yang & Yan, 2020), and DCL (Yang et al., 2021a) on
DOTA validation set. As shown on the right of Tab. 6, the
GWD-based method achieves the highest performance on
mAP~5 and mAPs5q.95, at 38.68% and 38.71%.

Comparison of techniques to solve the regression issues:
For the three issues of inconsistency between metric and
loss, boundary discontinuity and square-like problem, Tab.
6 compares the five peer techniques, including loU-Smooth
L1 Loss, Modulated loss, CSL, and DCL on DOTA. For
fairness, these methods are all implemented on the same
baseline method, and are trained and tested under the same
environment and hyperparameters.

In particular, we detail the accuracy of the seven categories,
including large aspect ratio (e.g. BR, SV, LV, SH, HA)
and square-like object (e.g. ST, RD), which contain many
corner cases in the dataset. These categories are assumed
can better reflect the real-world challenges and advantages
of our method. Many methods that solve the boundary
discontinuity have achieved significant improvements in the
large aspect ratio object category, and the methods that take
into account the square-like problem perform well in the
square-like object, such as GWD, DCL and Modulated loss.

However, there is rarely a unified method to solve all prob-
lems, and most methods are proposed for part of prob-
lems. Among them, the most comprehensive method is
IoU-Smooth L1 Loss. However, the gradient direction of
IoU-Smooth L1 Loss is still dominated by smooth L1 loss,
so the metric and loss cannot be regarded as truly consistent.
Besides, IoU-Smooth L1 Loss needs to determine whether
the prediction box is within the defined range before cal-
culating IoU at the boundary position, Otherwise, it needs
to convert to the same definition as ground truth. In con-
trast, due to the three unique properties of GWD, it need to
make additional judgments to elegantly solve all problems.
From Tab. 6, GWD outperforms on most categories. For the
seven listed categories (7-mAP) and overall performance
(mAP), GWD-based methods are also the best. Fig. 1 visu-
alizes the comparison between Smooth L1 loss-based and
GWD-based detector.

5.4. Overall Comparison

Results on DOTA: Due to the complexity of the aerial
image and the large number of small, cluttered and rotated
objects, DOTA is a very challenging dataset. We compare
the proposed approach with other state-of-the-art methods
on DOTA, as shown in Tab. 7. Since different methods
use different image resolution, network structure, training

strategies and various tricks, we cannot make absolutely fair
comparisons. In terms of overall performance, our method
has achieved the best performance so far, at around 80.23%.

Results on HRSC2016: The HRSC2016 contains lots of
large aspect ratio ship instances with arbitrary orientation,
which poses a huge challenge to the positioning accuracy of
the detector. Experimental results at Tab. 8 shows that our
model achieves state-of-the-art performances, about 89.85%
and 97.37% in term of 2007 and 2012 evaluation metric.

6. Conclusion

This paper has presented a Gaussian Wasserstain distance
based loss to model the deviation between two rotating
bounding boxes for object detection. The designated loss
directly aligns with the detection accuracy and the model
can be efficiently learned via back-propagation. More im-
portantly, thanks to its three unique properties, GWD can
also elegantly solve the boundary discontinuity and square-
like problem regardless how the bounding box is defined.
Experimental results on extensive public benchmarks show
the state-of-the-art performance of our detector.

Acknowledgments

This work was partly supported by Shanghai Municipal Sci-
ence and Technology Major Project (2021SHZDZX0102)
and NSFC (72061127003, U20B2068). Xue Yang is partly
supported by Wu Wen Jun Honorary Doctoral Scholarship,
Al Institute, Shanghai Jiao Tong University.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
Tensorflow: A system for large-scale machine learning. In
12th {USENIX} symposium on operating systems design
and implementation ({OSDI} 16), pp. 265-283, 2016.

Azimi, S. M., Vig, E., Bahmanyar, R., Koérner, M., and
Reinartz, P. Towards multi-class object detection in un-
constrained remote sensing imagery. In Asian Conference
on Computer Vision, pp. 150-165. Springer, 2018.

Chafai, D. Wasserstein distance  be-
tween two  gaussians. Website, 2010.
https://djalil.chafai.net/blog/2010/04/30/wasserstein-
distance-between-two-gaussians/.

Chen, Z., Chen, K., Lin, W., See, J., Yu, H., Ke, Y., and
Yang, C. Piou loss: Towards accurate oriented object
detection in complex environments. Proceedings of the
European Conference on Computer Vision, 2020.

Dai, J., Li, Y., He, K., and Sun, J. R-fcn: Object detec-



Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss

tion via region-based fully convolutional networks. In
Advances in neural information processing systems, pp.
379-387, 2016.

Ding, J., Xue, N., Long, Y., Xia, G.-S., and Lu, Q. Learning
roi transformer for oriented object detection in aerial
images. In The IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2849-2858, 2019.

Dowson, D. and Landau, B. The fréchet distance between
multivariate normal distributions. Journal of multivariate
analysis, 12(3):450-455, 1982.

Fu, K., Chang, Z., Zhang, Y., Xu, G., Zhang, K., and Sun,
X. Rotation-aware and multi-scale convolutional neural
network for object detection in remote sensing images.
ISPRS Journal of Photogrammetry and Remote Sensing,
161:294-308, 2020.

Girshick, R. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pp. 1440—-1448,
2015.

Givens, C. R., Shortt, R. M., et al. A class of wasserstein
metrics for probability distributions. The Michigan Math-
ematical Journal, 31(2):231-240, 1984.

Han, J., Ding, J., Li, J., and Xia, G.-S. Align deep fea-
tures for oriented object detection. IEEE Transactions on
Geoscience and Remote Sensing, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp- 770-778, 2016.

He, K., Gkioxari, G., Dollar, P., and Girshick, R. Mask r-cnn.
In Proceedings of the IEEE International Conference on
Computer Vision, pp. 2961-2969, 2017.

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D.,
and Wilson, A. G.  Averaging weights leads to
wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Jiang, Y., Zhu, X., Wang, X., Yang, S., Li, W., Wang, H.,
Fu, P, and Luo, Z. R2cnn: rotational region cnn for
orientation robust scene text detection. arXiv preprint
arXiv:1706.09579, 2017.

Jiao, J., Zhang, Y., Sun, H., Yang, X., Gao, X., Hong, W.,
Fu, K., and Sun, X. A densely connected end-to-end
neural network for multiscale and multiscene sar ship
detection. IEEE Access, 6:20881-20892, 2018.

Karatzas, D., Gomez-Bigorda, L., Nicolaou, A., Ghosh, S.,
Bagdanov, A., Iwamura, M., Matas, J., Neumann, L.,
Chandrasekhar, V. R., Lu, S., et al. Icdar 2015 com-
petition on robust reading. In 2015 13th International

Conference on Document Analysis and Recognition, pp.

1156-1160. IEEE, 2015.

Knott, M. and Smith, C. S. On the optimal mapping of
distributions. Journal of Optimization Theory and Appli-
cations, 43(1):39-49, 1984.

Li, C., Xu, C., Cui, Z., Wang, D., Zhang, T., and Yang, J.
Feature-attentioned object detection in remote sensing
imagery. In 2019 IEEE International Conference on
Image Processing, pp. 3886-3890. IEEE, 2019.

Liao, M., Shi, B., and Bai, X. Textboxes++: A single-shot
oriented scene text detector. IEEFE transactions on image
processing, 27(8):3676-3690, 2018a.

Liao, M., Zhu, Z., Shi, B., Xia, G.-s., and Bai, X. Rotation-
sensitive regression for oriented scene text detection. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 5909-5918, 2018b.

Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B.,
and Belongie, S. Feature pyramid networks for object
detection. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 2117-2125,
2017a.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollar, P.
Focal loss for dense object detection. In Proceedings of

the IEEE international conference on computer vision,
pp- 2980-2988, 2017b.

Liu, X., Liang, D., Yan, S., Chen, D., Qiao, Y., and Yan, J.
Fots: Fast oriented text spotting with a unified network. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 5676-5685, 2018.

Liu, Y., Zhang, S., Jin, L., Xie, L., Wu, Y., and Wang,
Z. Omnidirectional scene text detection with sequential-
free box discretization. arXiv preprint arXiv:1906.02371,
2019.

Liu, Z., Yuan, L., Weng, L., and Yang, Y. A high resolu-
tion optical satellite image dataset for ship recognition
and some new baselines. In Proceedings of the Interna-

tional Conference on Pattern Recognition Applications
and Methods, volume 2, pp. 324-331, 2017.

Ma, J., Shao, W., Ye, H., Wang, L., Wang, H., Zheng, Y.,
and Xue, X. Arbitrary-oriented scene text detection via

rotation proposals. IEEE Transactions on Multimedia, 20
(11):3111-3122, 2018.

Ming, Q., Zhou, Z., Miao, L., Zhang, H., and Li, L. Dy-
namic anchor learning for arbitrary-oriented object detec-
tion. arXiv preprint arXiv:2012.04150, 2020.



Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss

Nayef, N., Yin, F,, Bizid, I., Choi, H., Feng, Y., Karatzas,
D, Luo, Z., Pal, U., Rigaud, C., Chazalon, J., et al. Ic-
dar2017 robust reading challenge on multi-lingual scene
text detection and script identification-rrc-mlt. In 2017
14th IAPR International Conference on Document Anal-
ysis and Recognition, volume 1, pp. 1454-1459. IEEE,
2017.

Newell, A., Yang, K., and Deng, J. Stacked hourglass
networks for human pose estimation. In Proceedings of
the European Conference on Computer Vision, pp. 483—
499. Springer, 2016.

Olkin, I. and Pukelsheim, F. The distance between two
random vectors with given dispersion matrices. Linear
Algebra and its Applications, 48:257-263, 1982.

Pan, X., Ren, Y., Sheng, K., Dong, W., Yuan, H., Guo,
X., Ma, C., and Xu, C. Dynamic refinement network
for oriented and densely packed object detection. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 11207-11216, 2020.

Qian, W,, Yang, X., Peng, S., Yan, J., and Guo, Y. Learning
modulated loss for rotated object detection. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
2021.

Ren, S., He, K., Girshick, R., and Sun, J. Faster r-cnn:
Towards real-time object detection with region proposal
networks. In Advances in neural information processing
systems, pp. 91-99, 2015.

Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid,
1., and Savarese, S. Generalized intersection over union:
A metric and a loss for bounding box regression. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 658—666, 2019.

Shi, X., Shan, S., Kan, M., Wu, S., and Chen, X. Real-
time rotation-invariant face detection with progressive
calibration networks. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pp.
2295-2303, 2018.

Song, Q., Yang, F., Yang, L., Liu, C., Hu, M., and Xia,
L. Learning point-guided localization for detection in re-
mote sensing images. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 2020.

Tian, Z., Shen, C., and Chen, H. Conditional convolutions
for instance segmentation. Springer, 2020.

Wang, J., Ding, J., Guo, H., Cheng, W., Pan, T., and Yang,
W. Mask obb: A semantic attention-based mask oriented
bounding box representation for multi-category object
detection in aerial images. Remote Sensing, 11(24):2930,
2019.

Wang, J., Yang, W., Li, H.-C., Zhang, H., and Xia, G.-S.
Learning center probability map for detecting objects in
aerial images. IEEE Transactions on Geoscience and
Remote Sensing, 2020a.

Wang, X., Kong, T., Shen, C., Jiang, Y., and Li, L. Solo:
Segmenting objects by locations. In Proceedings of the
European Conference on Computer Vision, pp. 649-665.
Springer, 2020b.

Wei, H., Zhang, Y., Chang, Z., Li, H., Wang, H., and Sun, X.
Oriented objects as pairs of middle lines. ISPRS Journal
of Photogrammetry and Remote Sensing, 169:268-279,
2020.

Xia, G.-S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo,
J., Datcu, M., Pelillo, M., and Zhang, L. Dota: A large-
scale dataset for object detection in aerial images. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3974-3983, 2018.

Xie, E., Sun, P.,, Song, X., Wang, W., Liu, X., Liang, D.,
Shen, C., and Luo, P. Polarmask: Single shot instance
segmentation with polar representation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pp. 12193-12202, 2020.

Xie, S., Girshick, R., Dollér, P., Tu, Z., and He, K. Aggre-
gated residual transformations for deep neural networks.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1492-1500, 2017.

Xu, Y., Fu, M., Wang, Q., Wang, Y., Chen, K., Xia, G.-S.,
and Bai, X. Gliding vertex on the horizontal bounding box
for multi-oriented object detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2020.

Yang, X. and Yan, J. Arbitrary-oriented object detection
with circular smooth label. In Proceedings of the Eu-
ropean Conference on Computer Vision, pp. 677-694.
Springer, 2020.

Yang, X., Sun, H., Fu, K., Yang, J., Sun, X., Yan, M.,
and Guo, Z. Automatic ship detection in remote sens-
ing images from google earth of complex scenes based
on multiscale rotation dense feature pyramid networks.
Remote Sensing, 10(1):132, 2018a.

Yang, X., Sun, H., Sun, X., Yan, M., Guo, Z., and Fu, K.
Position detection and direction prediction for arbitrary-
oriented ships via multitask rotation region convolutional
neural network. IEEE Access, 6:50839-50849, 2018b.

Yang, X., Yang, J., Yan, J., Zhang, Y., Zhang, T., Guo,
Z., Sun, X., and Fu, K. Scrdet: Towards more robust
detection for small, cluttered and rotated objects. In

Proceedings of the IEEE International Conference on
Computer Vision, pp. 8232-8241, 2019.



Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss

Yang, X., Yan, J., Yang, X., Tang, J., Liao, W., and He,
T. Scrdet++: Detecting small, cluttered and rotated ob-
jects via instance-level feature denoising and rotation loss
smoothing. arXiv preprint arXiv:2004.13316, 2020.

Yang, X., Hou, L., Zhou, Y., Wang, W., and Yan, J. Dense
label encoding for boundary discontinuity free rotation
detection. In Proceedings of the IEEE Computer Vision
and Pattern Recognition, 2021a.

Yang, X., Yan, J., Feng, Z., and He, T. R3det: Refined
single-stage detector with feature refinement for rotat-
ing object. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2021b.

Yi, J., Wu, P, Liu, B, Huang, Q., Qu, H., and
Metaxas, D. Oriented object detection in aerial im-
ages with box boundary-aware vectors. arXiv preprint
arXiv:2008.07043, 2020.

Zhang, G., Lu, S., and Zhang, W. Cad-net: A context-aware
detection network for objects in remote sensing imagery.

IEEE Transactions on Geoscience and Remote Sensing,
57(12):10015-10024, 2019.

Zhang, H., Wang, Y., Dayoub, F., and Siinderhauf, N. Swa
object detection. arXiv preprint arXiv:2012.12645, 2020.

Zhao, P.,, Qu, Z., Bu, Y., Tan, W., Ren, Y., and Pu, S. Po-
lardet: A fast, more precise detector for rotated target in
aerial images. arXiv preprint arXiv:2010.08720, 2020.

Zheng, Y., Zhang, D., Xie, S., Lu, J., and Zhou, J. Rotation-
robust intersection over union for 3d object detection. In
European Conference on Computer Vision, pp. 464—480.
Springer, 2020a.

Zheng, Z., Wang, P.,, Liu, W,, Li, J., Ye, R., and Ren, D.
Distance-iou loss: Faster and better learning for bounding
box regression. In Proceedings of the AAAI Conference
on Artificial Intelligence, pp. 12993-13000, 2020b.

Zhong, B. and Ao, K. Single-stage rotation-decoupled de-
tector for oriented object. Remote Sensing, 12(19):3262,
2020.

Zhou, L., Wei, H., Li, H., Zhao, W., Zhang, Y., and Zhang,
Y. Arbitrary-oriented object detection in remote sens-
ing images based on polar coordinates. /EEE Access, 8:
223373-223384, 2020.

Zhou, X., Yao, C., Wen, H., Wang, Y., Zhou, S., He, W., and
Liang, J. East: an efficient and accurate scene text detec-
tor. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pp. 5551-5560, 2017.

Zhu, H., Chen, X., Dai, W., Fu, K., Ye, Q., and Jiao, J.
Orientation robust object detection in aerial images using

deep convolutional neural network. In 2015 IEEE Interna-
tional Conference on Image Processing, pp. 3735-3739.
IEEE, 2015.

Zhu, Y., Du, J., and Wu, X. Adaptive period embedding
for representing oriented objects in aerial images. IEEE
Transactions on Geoscience and Remote Sensing, 2020.



