SimAM: A Simple, Parameter-Free Attention Module for
Convolutional Neural Networks (Supplementary Materials)

In this supplementary material, we first compare more recently similar re-calibration modules by using ResNet-50 (He
et al., 2016) as backbone networks. These modules include selective kernel (SK) (Li et al., 2019b), attentive normalization
(AttNorm) (Li et al., 2019a), dropout (Srivastava et al., 2014) as well as Swish function (Ramachandran et al., 2017).
We also insert SimAM after all convolutional layers (SimAM-all). Moreover, we compare SE (Hu et al., 2018) with the
proposed SimAM on another two variants of ResNet, ResNext-50 (32x4d) and Res2Net (Gao et al., 2019). We follow the
standard training pipeline (100 epochs) to train all models from scratch. Results are shown in Table 1. As one can see, our
SimAM-all achieves the best results and our SimAM also performs comparably against other modules based on ResNet-50
network. Moreover, the SimAM can also enhance the representation power of ResNeXt-50 and Res2Net-50.

Table 1. Top-1 accuracies (%) on ImageNet dataset with different options .

Model Baseline | +SimAM | +SimAM-all +SK +AttNorm | +Dropout0.1 | +Swish
ResNet-50 76.34% | 77.46% 77.62% 77.50% 77.12% 75.51% 76.71%
Model Baseline | +SimAM +SE Model Baseline +SimAM +SE

ResNeXt-50 | 77.47% | 78.00% 77.96% Res2Net-50 |  77.94% 78.54% 78.41%

Second, we visualize the estimated 3-D weights by the proposed SimAM based on ResNet-50 network to demonstrate our
mechanism. For each stage (model.layerl to model.layer4) in ResNet-50, we show the weights generated in the last block
on randomly selected 64 images from the ImageNet validation set. To show different channels of our 3-D weights, for each
image, we randomly select 6 channels and show their selected index on each weight image. As one can see, our SIimAM can
attend some important points, curve (first two pictures), as well as some discriminative components (last two pictures).
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Figure 1. Visualization of attention weights generated by our method (from the last block in “model.layer1”). Each row represents one
image with its correspondence attention weights. We randomly select different (shown as “X”-th) channels from our 3-D weights to show.
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Figure 2. Visualization of attention weights generated by our method (from the last block in “model.layer1”). Each row represents one
image with its correspondence attention weights. We randomly select different (shown as “X”-th) channels from our 3-D weights to show.
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Figure 3. Visualization of attention weights generated by our method (from the last block in “model.layer2”). Each row represents one
image with its correspondence attention weights. We randomly select different (shown as “X”-th) channels from our 3-D weights to show.
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Figure 4. Visualization of attention weights generated by our method (from the last block in “model.layer2”). Each row represents one
image with its correspondence attention weights. We randomly select different (shown as “X”-th) channels from our 3-D weights to show.
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Figure 5. Visualization of attention weights generated by our method (from the last block in “model.layer3”). Each row represents one
image with its correspondence attention weights. We randomly select different (shown as “X”-th) channels from our 3-D weights to show.
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Figure 6. Visualization of attention weights generated by our method (from the last block in “model.layer3”). Each row represents one
image with its correspondence attention weights. We randomly select different (shown as “X”-th) channels from our 3-D weights to show.
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Figure 7. Visualization of attention weights generated by our method (from the last block in “model.layer4”’). Each row represents one
image with its correspondence attention weights. We randomly select different (shown as “X”-th) channels from our 3-D weights to show.
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Figure 8. Visualization of attention weights generated by our method (from the last block in “model.layer4”’). Each row represents one
image with its correspondence attention weights. We randomly select different (shown as “X”-th) channels from our 3-D weights to show.



