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Abstract
Meta-learning has proven to be a powerful

paradigm for transferring the knowledge from

previous tasks to facilitate the learning of a novel

task. Current dominant algorithms train a well-

generalized model initialization which is adapted

to each task via the support set. The crux lies

in optimizing the generalization capability of the

initialization, which is measured by the perfor-

mance of the adapted model on the query set of

each task. Unfortunately, this generalization mea-

sure, evidenced by empirical results, pushes the

initialization to overfit the meta-training tasks,

which significantly impairs the generalization and

adaptation to novel tasks. To address this issue,

we actively augment a meta-training task with

“more data” when evaluating the generalization.

Concretely, we propose two task augmentation

methods, including MetaMix and Channel Shuffle.

MetaMix linearly combines features and labels of

samples from both the support and query sets. For

each class of samples, Channel Shuffle randomly

replaces a subset of their channels with the corre-

sponding ones from a different class. Theoretical

studies show how task augmentation improves

the generalization of meta-learning. Moreover,

both MetaMix and Channel Shuffle outperform

state-of-the-art results by a large margin across

many datasets and are compatible with existing

meta-learning algorithms.

1. Introduction
Meta-learning, or learning to learn (Thrun & Pratt, 1998),

empowers agents with the core aspect of intelligence–
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quickly learning a new task with as little as a few examples

by drawing upon the knowledge learned from prior tasks.

The resurgence of meta-learning recently pushes ahead with

more effective algorithms that have been deployed in ar-

eas such as computer vision (Kang et al., 2019; Liu et al.,

2019; Sung et al., 2018), natural language processing (Dou

et al., 2019; Gu et al., 2018; Madotto et al., 2019), and

robotics (Xie et al., 2018; Yu et al., 2018). Some of the

dominant algorithms learn a transferable metric space from

previous tasks (Snell et al., 2017; Vinyals et al., 2016), un-

fortunately being only applicable to classification problems.

Instead, gradient-based algorithms (Finn et al., 2017; 2018)

framing meta-learning as a bi-level optimization problem

are flexible and general enough to be independent of prob-

lem types, which we focus on in this work.

The bi-level optimization procedure of gradient-based al-

gorithms is illustrated in Figure 1a. In the inner-loop, the

initialization of a base model (a.k.a., base learner) globally

shared across tasks (i.e., θ0) is adapted to each task (e.g., φ1

for the first task) via gradient descent over the support set

of the task. To reach the desired goal that optimizing from

this initialization leads to fast adaptation and generaliza-

tion, a meta-training objective evaluating the generalization

capability of the initialization on all meta-training tasks is

optimized in the outer-loop. Specifically, the generalization

capability on each task is measured by the performance of

the adapted model on a set distinguished from the support,

namely the query set.

The learned initialization, however, is at high risk of two

forms of overfitting: (1) memorization overfitting (Yin et al.,

2020) (Figure 1b) where it solves meta-training tasks via

rote memorization and does not rely on support sets for

inner-loop adaptation and (2) learner overfitting (Rajen-

dran et al., 2020) (Figure 1c) where it overfits to the meta-

training tasks and fails to generalize to the meta-testing

tasks though support sets come into play during inner-loop

adaptation. Both types of overfitting hurt the generaliza-

tion from meta-training to meta-testing tasks, which we

call meta-generalization in Figure 1a. Improving the meta-

generalization is especially challenging – standard regular-

izers like weight decay lose their power as they limit the

flexibility of fast adaptation in the inner-loop.
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Figure 1. (a) Illustration of the gradient-based meta-learning process and two types of generalization; (b)&(c) Two forms of overfitting in

gradient-based meta-learning. The red cross represents where the learned knowledge can not be well-generalized.

To this end, the few existing solutions attempt to regularize

the search space of the initialization (Yin et al., 2020) or

enforce a fair performance of the initialization across all

meta-training tasks (Jamal & Qi, 2019) while preserving

the expressive power for adaptation. Rather than passively

imposing regularization on the initialization, recently, Ra-

jendran et al. (2020) turned towards an active data augmen-

tation way, aiming to anticipate more data to meta-train the

initialization by injecting the same noise to the labels of both

support and query sets (i.e., label shift). Though the label

shift with a random constant increases the dependence of the

base learner on the support set, learning the constant is as

easy as modifying a bias. Therefore, little extra knowledge

is introduced to meta-train the initialization.

This paper sets out to investigate more flexible and powerful

ways to produce “more” data via task augmentation. The

goal for task augmentation is to increase the dependence

of target predictions on the support set and provide addi-

tional knowledge to optimize the model initialization. To

meet the goal, we propose two task augmentation strategies

– MetaMix and Channel Shuffle. MetaMix linearly com-

bines either original features or hidden representations of

the support and query sets, and performs the same linear

interpolation between their corresponding labels. For clas-

sification problems, MetaMix is further enhanced by the

strategy of Channel Shuffle, which is named as MMCF. For

samples of each class, Channel Shuffle randomly selects a

subset of channels to replace with corresponding ones of

samples from a different class. These additional signals for

the meta-training objective improve the meta-generalization

of the learned initialization as expected.

We would highlight the primary contributions of this work.

(1) We identify and formalize effective task augmentation

that is sufficient for alleviating both memorization overfit-

ting and learner overfitting and thereby improving meta-

generalization, resulting in two task augmentation methods.

(2) Both task augmentation strategies have been theoreti-

cally proved to indeed improve the meta-generalization. (3)

Throughout comprehensive experiments, we demonstrate

two significant benefits of the two augmentation strategies.

First, in various real-world datasets, the performances are

substantially improved over state-of-the-art meta-learning al-

gorithms and other strategies for overcoming overfitting (Ja-

mal & Qi, 2019; Yin et al., 2020). Second, both MetaMix

and MMCF are compatible with existing and advanced meta-

learning algorithms and ready to boost their performances.

2. Preliminaries
Gradient-based meta-learning algorithms assume a set of

tasks to be sampled from a distribution p(T ). Each task

Ti consists of a support sample set Ds
i = {(xs

i,j ,y
s
i,j)}K

s

j=1

and a query sample set Dq
i = {(xq

i,j ,y
q
i,j)}K

q

j=1, where Ks

and Kq denote the number of source and query samples,

respectively. The objective of meta-learning is to master

new tasks quickly by adapting a well-generalized model

learned over the task distribution p(T ). Specifically, the

model f parameterized by θ is trained on massive tasks

sampled from p(T ) during meta-training. When it comes to

meta-testing, f is adapted to a new task Tt with the help of

the support set Ds
t and evaluated on the query set Dq

t .

Take model-agnostic meta-learning (MAML) (Finn et al.,

2017) as an example. The well-generalized model is

grounded to an initialization for f , i.e., θ0, which is adapted

to each i-th task in a few gradient steps by its support set Ds
i .

The generalization performance of the adapted model, i.e.,

φi, is measured on the query set Dq
i , and in turn used to op-

timize the initialization θ0 during meta-training. Let L and

μ denote the loss function and the inner-loop learning rate,

respectively. The above interleaved process is formulated as

a bi-level optimization problem,

θ∗0 := min
θ0

ETi∼p(T ) [L(fφi(X
q
i ),Y

q
i )] ,

s.t. φi = θ0 − μ∇θ0L(fθ0(Xs
i ),Y

s
i ),

(1)

where X
s(q)
i and Y

s(q)
i represent the collection of samples

and their corresponding labels for the support (query) set,

respectively. The predicted value fφi(X
s(q)
i ) is denoted as

Ŷ
s(q)
i . In the meta-testing phase, to solve the new task Tt,
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the optimal initialization θ∗0 is fine-tuned on its support set

Ds
t to the resulting task-specific parameters φt.

3. Task Augmentation
In practical situations, the distribution p(T ) is unknown for

estimation of the expected performance in Eqn. (1). Instead,

the common practice is to approximate it with the empirical

performance, i.e.,

θ∗0 := min
θ0

1

nT

nT∑
i=1

[L(fφi(X
q
i ),Y

q
i )] ,

s.t. φi = θ0 − μ∇θ0L(fθ0(Xs
i ),Y

s
i ).

(2)

Unfortunately, this empirical risk observes the generaliza-

tion ability of the initialization θ0 only at a finite set of nT

tasks. When the function f is sufficiently powerful, a trivial

solution of θ0 is to overfit all tasks. Compared to standard su-

pervised learning, the overfitting is more complicated with

two cases: memorization overfitting and learner overfitting
which differ primarily in whether the support set contributes

to inner-loop adaptation. In memorization overfitting, θ∗0
memorizes all tasks, so that the adaptation to each task via

its support set is even futile (Yin et al., 2020). In learner

overfitting, θ∗0 fails to generalize to new tasks, though it

adapts to solve each meta-training task sufficiently with the

corresponding support set (Rajendran et al., 2020). Both

overfitting lead to poor meta-generalization (see Figure 1a).

Inspired by data augmentation (Cubuk et al., 2019; Zhang

et al., 2018; Zhong et al., 2020; Zhang et al., 2021) which is

used to mitigate the overfitting of training samples in con-

ventional supervised learning, we propose to alleviate the

problem of task overfitting via task augmentation. Before

proceeding to our solutions, we first formally define two

criteria for an effective task augmentation as:

Definition 1 (Criteria of Effective Task Augmentation)
An effective task augmentation for meta-learning is an aug-
mentation function g(·) that transforms a task Ti = {Ds

i ,Dq
i }

to an augmentated task T ′
i = {g(Ds

i ), g(Dq
i )}, so that the

following two criteria are met:

(1) I(g(Ŷq
i ); g(Ds

i )|θ0, g(Xq
i ))− I(Ŷq

i ;Ds
i |θ0,Xq

i ) > 0,

(2) I(θ0; g(Dq
i )|Dq

i ) > 0.

The augmented task satisfying the first criterion is expected

to alleviate the memorization overfitting, as the model more

heavily relies on the support set Ds
i to make predictions, i.e.,

increasing the mutual information between g(Ŷq
i ) and g(Ds

i ).

The second criterion guarantees that the augmented task

contributes additional knowledge to update the initialization

in the outer-loop. With more augmented meta-training tasks

satisfying this criterion, the meta-generalization ability of

the initialization to meta-testing tasks improves. Building

on this, we will introduce the proposed task augmentation

strategies.

MetaMix. One of the most immediate choices for task

augmentation is directly incorporating support sets in the

outer-loop, while it is far from enough. The support sets con-

tribute little to the value and gradients of the meta-training

objective, as the meta-training objective is formulated as

the performance of the adapted model which is exactly opti-

mized via support sets. Thus, we are motivated to produce

“more” data out of the accessible support and query sets,

resulting in MetaMix, which meta-trains θ0 by mixing sam-

ples from both the query set and the support set.

In detail, the strategy of mixing follows Manifold

Mixup (Verma et al., 2019) where not only inputs but also

hidden representations are mixed up. Assume that the model

f consists of L layers. The hidden representation of a sam-

ple set X at the l-th layer is denoted as fθl(X) (0 ≤ l≤ L−1),

where fθ0(X) = X. For a pair of support and query sets

with their corresponding labels in the i-th task Ti, i.e.,

(Xs
i ,Y

s
i ) and (Xq

i ,Y
q
i ), we randomly sample a value of

l ∈ C = {0, 1, · · · , L − 1} and compute the mixed batch of

data for meta-training as,

Xmix
i,l = λλλfφl

i
(Xs

i ) + (I− λλλ)fφl
i
(Xq

i ),

Ymix
i = λλλYs

i + (I− λλλ)Yq
i ,

(3)

where λλλ = diag({λj}K
q

j=1) and each coefficient λj ∼
Beta(α, β). Here, we assume that the size of the support set

and that of the query are equal, i.e., Ks=Kq. If Ks<Kq,

for each sample in the query set, we randomly select one

sample from the support set for mixup. The similar sam-

pling applies to Ks>Kq. In Appendix B.1, we illustrate the

Beta distribution in both symmetric (i.e., α = β) and skewed

shapes (i.e., α �= β). Using the mixed batch by MetaMix,

we reformulate the outer-loop optimization problem as,

θ∗0 := min
θ0

1

nT

nT∑
i=1

Eλλλ∼Beta(α,β)El∼C [L(fφL−l
i

(Xmix
i,l ),Ymix

i )],

(4)

where fφL−l
i

represents the rest of layers after the mixed

layer l. MetaMix is flexible enough to be compatible with

off-the-shelf gradient-based meta-learning algorithms, by re-

placing the query set with the mixed batch for meta-training.

Further, to verify the effectiveness of MetaMix, we examine

whether the criteria in Definition 1 are met in the follows.

Corollary 1 Assume that the support set is sampled inde-
pendently from the query set. Then the following two equa-
tions hold:

I(Ŷmix
i ; (Xs

i ,Y
s
i )|θ0,Xmix

i )− I(Ŷq
i ; (X

s
i ,Y

s
i )|θ0,Xq

i )

=H(Ŷs
i |θ0,Xs

i ) ≥ 0;

I(θ0;X
mix
i ,Ymix

i |Xq
i ,Y

q
i ) = H(θ0)−H(θ0|Xs

i ,Y
s
i ).

(5)
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The first criterion is easily satisfied – H(Ŷs
i |θ0,Xs

i ) hardly

equals zero as θ0 unlikely fits the support set in meta-

learning. The second criterion indicates that MetaMix con-

tributes a novel task as long as the support set of the task

being augmented is capable of reducing the uncertainty of

the initialization θ0, which is often the case. We provide the

detailed proof of Corollary 1 in Appendix A.1.

MetaMix enhanced with Channel Shuffle. In classifica-

tion, the proposed MetaMix can be further enhanced by

another task augmentation strategy named Channel Shuffle

(CF). Channel Shuffle aims to randomly replace a subset of

channels through samples of each class by the corresponding

ones in a different class. Assume that the hidden represen-

tation fφl
i
(x

s(q)
i,j ) of each sample consists of p channels, i.e.,

fφl
i
(x

s(q)
i,j ) = [f

(1)

φl
i

(x
s(q)
i,j ); . . . ; f

(p)

φl
i

(x
s(q)
i,j )]. Provided with

1) a pair of classes c and c′ with corresponding sample

sets (Xs(q)
i;c ,Y

s(q)
i;c ), (Xs(q)

i;c′ ,Y
s(q)

i;c′ ) , and 2) a random variable

Rc,c′ = diag(r1, ..., rp) with rt ∼ Bernoulli(δ) and δ > 0.5

for t ∈ [p], the channel shuffle process is formulated as:

X
s(q),cf
i;c = RRRc,c′fφl

i
(X

s(q)
i;c ) + (I−RRRc,c′)fφl

i
(X

s(q)

i;c′ ),

Y
s(q),cf
i;c = Y

s(q)
i;c .

(6)

The channel shuffle strategy is then applied in both sup-

port and query sets, with R
c,c′ shared between the two

sets. We denote the shuffled support set and query set as

(Xs,cf
i ,Ys,cf

i ) and (Xq,cf
i ,Yq,cf

i ), respectively. Then, in the

outer-loop, the channel shuffled samples will be integrated

into the MetaMix and the Eqn. (4) is reformulated as:

Xmmcf
i,l = λλλXs,cf

i + (I− λλλ)Xq,cf
i ,

Ymmcf
i = λλλYs,cf

i + (I− λλλ)Yq,cf
i ,

(7)

We name the MetaMix enhanced with channel shuffle as

MMCF. In Appendix A.2, we prove that MMCF not only

meets the first criterion in Definition 1, but also outperforms

MetaMix regarding the second criterion. Taking MAML as

an example, we show MetaMix and MMCF in Alg. 1 and

Appendix B.2, respectively.

4. Theoretic Analysis
In this section, we theoretically investigate how the pro-

posed task augmentation methods improve generalization,

by analyzing the following two-layer neural network model.

For each task Ti, we consider minimizing the squared loss

L(fφi(Xi),Yi) = (fφi(Xi)−Yi)
2 with fφi

modeled by

fφi(Xi) = φ�
i σ(WXi), (8)

where φi is the task adapted parameters and W is the global

shared parameter. Note that, the formulation of function f is

the equivalent to ANIL (Raghu et al., 2020) under the two-

layer neural network scenario, where only the head layer

Algorithm 1 Meta-training Process of MAML-MetaMix

Require: Task distribution p(T ); Learning rate μ, η; Beta

distribution parameters α, β; MetaMix candidate layer

set C
1: Randomly initialize parameter θ0
2: while not converge do
3: Sample a batch of tasks {Ti}ni=1

4: for all Ti do
5: Sample support set Ds

i = {(xs
i,j ,y

s
i,j)}K

s

j=1 and

query set Dq
i = {(xq

i,j ,y
q
i,j)}K

q

j=1 from Ti

6: Compute the task-specific parameter φi via the

inner-loop gradient descent, i.e., φi = θ0 −
μ∇θ0L(fθ0(Xs

i ),Y
s
i )

7: Sample MetaMix parameter λλλ ∼ Beta(α, β) and

mixed layer l from C
8: Forward both support and query sets and mixed

them at layer l as: Xmix
i,l = λλλfφl

i
(Xs

i ) + (I −
λλλ)fφl

i
(Xq

i ), Y
mix
i = λλλYs

i + (I− λλλ)Yq
i

9: Continual forward Xmix
i,l to the rest of layers and

compute the loss as L(f
φL−l
i

(Xmix
i,l ),Ymix

i )

10: end for
11: Update θ0 ← θ0 −

η 1
n

∑n
i=1 Eλλλ∼Beta(α,β)El∼C [L(fφL−l

i
(Xmix

i,l ),Ymix
i )]

12: end while

is adapted during the inner-loop. In the following, we will

detail the analysis of MetaMix and Channel Shuffle.

Analysis of MetaMix. In the analysis of MetaMix, we

consider a symmetric version of MetaMix algorithm for

technical reasons. Empirically we find that this symmet-

ric version and the proposed MetaMix algorithm generate

mostly identical results (see Appendix C for details). Specif-

ically, for each task Ti, we denote Zi = {xi,j ,yi,j}K
m

j=1 =

{xs
i,j ,y

s
i,j}K

s

j=1 ∪ {xq
i,j ,y

q
i,j}K

q

j=1, and Km = Ks + Kq. Fur-

ther, we consider the following MetaMix algorithm trains

the second layer parameter φi by minimizing the squared

loss on the mixed batch of data Zmix
i = {xmix

i,j ,ymix
i,j }j=1,

where Zmix
i is constructed as

xmix
i,j = λσ(Wxi,j) + (1− λ)σ(Wxi,j′),

ymix
i,j = λyi,j + (1− λ)yi,j′ ,

(9)

where j′ is a uniform sample from [Km] and λ ∼ Beta(α, β).

Extending the analysis in (Zhang et al., 2021), we have the

following theorem on the second-order approximation of

L(Zmix
i ).

Lemma 1 Consider the model set-up described above with
mixup distribution λ ∼ Beta(α, β). Then the second-order
approximation of L(Zmix

i ) is given by

L(Zi) + c · φ�
i (

1

Km

Km∑
j=1

σ(Wxi,j)σ(Wxi,j)
�)φi, (10)
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where c = EDλ [
(1−λ)2

2λ2 ] with Dλ ∼ α
α+β

Beta(α + 1, β) +
β

α+β
Beta(β + 1, α).

This result suggests that the MetaMix algorithm is imposing

a quadratic regularization on φi for the i-th task, and there-

fore reduces the complexity of the solution space and leads

to a better generalization.

To quantify the improvement of the generalization, let us

denote the population meta-risk by

R = ETi∼p(T )E(Xi,Yi)∼Ti
[L(fφi(Xi),Yi)], (11)

and the empirical version by

R({Zi}nT
i=1) =

1

nT

nT∑
i=1

1

Km

Km∑
j=1

L(fφi(xi,j),yi,j)

=ETi∼p̂(T )E(Xi,Yi)∼p̂(Ti)L(fφi(Xi),Yi).
(12)

According to Theorem 1, we study the generalization prob-

lem by considering the following function class that is

closely related to the dual problem of Eqn. (10)

FT = {φ�σ(WX) : φ�Σσ,T φ ≤ γ}, (13)

where Σσ,T = ET [σ(WX)σ(WX)�]. Notation-wise, let us

also define μσ,T = ET [σ(WX)]. Further, we also assume

the condition of the task distribution T : for all T ∼ p(T ), T
satisfies

rank(Σσ,T ) ≤ r, ‖ΣW†/2
σ,T μσ,T ‖ ≤ B, (14)

where p(T ) is the distribution of the task distribution.

We then have the following theorem showing the im-

provement on the meta-generalization gap induced by the

MetaMix algorithm.

Theorem 1 Suppose X, Y and φ are all bounded, and also
assume assumption Eqn. (14) holds. Then there exists con-
stants C1, C2, C3, C4 > 0, such that for all fT ∈ FT , we
have, with probability at least 1− δ,

|R({Zi}nT
i=1)−R| ≤C1

√
γ · (r +B)

Km
+ C2

√
log(nT /δ)

Km

+C3

√
γ ·B + 1

nT
+ C4

√
log(1/δ)

nT
.

(15)

According to Lemma 1, Mixup is regularizing φ�Σσ,Tφ and

making γ small. With this interpretation, Theorem 2 then

suggests that a smaller value of γ induced by Mixup will

help reduce the generalization error, and therefore mitigate

the overfitting.

Analysis of Channel Shuffle. We then analyze the channel

shuffle strategy under the same two-layer neural network

model considered above, with binary class yi,j ∈ {0, 1}.

Instead of applying the mixup on Zi = {xi,j ,yi,j}K
m

j=1 :=

{xi,j;0, 0}K
m0

j=1 ∪ {xi,j;1, 1}K
m1

j=1 , we now apply the channel

shuffle strategy. Specifically, we consider the shuffled data

Zcf
i = {xcf

i,j ,yi,j}K
m

j=1 = {xcf
i,j;0, 0}K

m0

j=1 ∪{xcf
i,j;1, 1}K

m1

j=1 . Ac-

cording to Eqn. (6), {xcf
i,j;k} (k ∈ {0, 1}) is constructed as

xcf
i,j;k =

1

δ
· (Rσ(Wxi,j;k) + (I−R)σ(Wxi,j′;1−k))

for j ∈ [Kmk ], k ∈ {0, 1}.
(16)

Let us denote such randomness by ξ. Recall that R =

diag(r1, ..., rp) with rt ∼ Bernoulli(δ), the scaling 1
δ

is added

for technical convenience. Since the last layer is linear, the

scaling 1
δ

will not affect the training and prediction results.

We now define L(Zcf
i ) = 1

Km

∑Km

j=1 L(φi
�(xcf

i,j),yi,j). For

a generic vector v ∈ R
p, we denote v◦2 = (v21 , ..., v

2
p) and

diag(v◦2) = diag(v21 , ..., v
2
p) as the diagonal matrix with

diagonal elements (v21 , ..., v
2
p). We then have the following

theorem on the second-order approximation of L(Zcf
i ).

Theorem 2 Consider the model set-up described above
and recall that ξ is the randomness involved in the data
argumentation. Assume the training data is preprocessed
as 1

Km0

∑Km0

j=1 σ(Wxi,j;0) = 1
Km1

∑Km1

j=1 σ(Wxi,j;1) = 0.
There exists a constant c > 0, such that the second-order
approximation of EξL(Zcf

i ) is given by

L(Zi) +
1− δ

δ
φ�
i (

1

Km

Km∑
j=1

diag(σ(Wxi,j)
◦2)φi+

+
1− δ

δ
φ�
i (

1

Km0

Km0∑
j=1

σ(Wxi,j;0)σ(Wxi,j;0)
�

+
1

Km1

Km1∑
j=1

σ(Wxi,j;1)σ(Wxi,j;1)
�)φi.

(17)

Theorem 2 suggests that the Channel Shuffle algorithm will

also impose a quadratic data-adaptive regularization on φi,

and the second quadratic term resembles the one induced

by MetaMix in Lemma 1. As a result, it will make the γ in

Theorem 2 smaller and further reduce the overfitting. We

provide more details and the full proof about theoretical

analysis in Appendix C.

5. Discussion with Related Works
One influential line of meta-learning algorithms is learning

a transferable metric space between samples from previous

tasks (Mishra et al., 2018; Oreshkin et al., 2018; Snell et al.,

2017; Vinyals et al., 2016), which classify samples via lazy

learning with the learned distance metric (e.g., Euclidean

distance (Snell et al., 2017), cosine distance (Vinyals et al.,

2016)). However, their applications are limited to classifi-

cation problems, being infeasible in other problems (e.g.,
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regression). In this work, we focus on gradient-based meta-

learning algorithms that learn a well-generalized model ini-

tialization from meta-training tasks (Finn & Levine, 2018;

Finn et al., 2017; 2018; Flennerhag et al., 2020; Grant et al.,

2018; Lee & Choi, 2018; Li et al., 2017; Park & Oliva,

2019), being agnostic to problems. This initialization is

adapted to each task via the support set, and in turn the

initialization is updated by maximizing the generalization

performance on the query set. These approaches are at high

risk of overfitting the meta-training tasks and generalizing

poorly to meta-testing tasks.

Common techniques increase the generalization capability

via regularizations such as weight decay (Krogh & Hertz,

1992), dropout (Gal & Ghahramani, 2016; Srivastava et al.,

2014), and incorporating noise (Achille & Soatto, 2018;

Alemi et al., 2017; Tishby & Zaslavsky, 2015). However,

the adapted model by only a few steps on the support set

in the inner-loop likely performs poorly on the query set.

To improve such generalization for better adaptation, either

the number of parameters to adapt is reduced (Raghu et al.,

2020; Zintgraf et al., 2019; Oh et al., 2021) or adpative noise

is added (Lee et al., 2020). The contribution of address-

ing this inner-loop overfitting towards meta-regularization,

though positive, is limited.

Until very recently, two regularizers were proposed to

specifically improve meta-generalization, including MR-

MAML (Yin et al., 2020) which regularizes the search space

of the initialization while meanwhile allows it to be suffi-

ciently adapted in the inner-loop, and TAML (Jamal & Qi,

2019) enforcing the initialization to behave similarly across

tasks. Instead of imposing regularizers on the initializa-

tion, Rajendran et al. (2020) proposed to inject a random

constant noise to labels of both support and query sets. The

shared noise, however, is easy to be learned in the inner-loop.

Besides, as we prove in Appendix A.3, this augmentation

fails to meet the second criterion in Definition 1 and there-

fore little additional information is provided to meta-train

the initialization. Our work takes sufficiently powerful ways

actively soliciting more data to meta-train the initializa-

tion. Note that our task augmentation strategies are more

than just a simple application of conventional data augmen-

tation strategies (Cubuk et al., 2019; Verma et al., 2019;

Zhang et al., 2018), which have been proved in both (Lee

et al., 2020) and our experiments to have a very limited

role. We initiate to include more query data that satisfy the

proposed Criterion 1 in the meta-training phase, so that the

dependence on support sets during inner-loop adaptation is

increased and the meta-generalization is improved.

6. Experiments
To show the effectiveness of MetaMix, we conduct ex-

periments on three meta-learning problems, namely: (1)

drug activity prediction, (2) pose prediction, and (3) image

classification. We apply MetaMix on four gradient-based

meta-learning algorithms, including MAML (Finn et al.,

2017), MetaSGD (Li et al., 2017), T-Net (Lee & Choi,

2018), and ANIL (Raghu et al., 2020). For comparison,

we consider the following regularizers: Weight Decay as the

traditional regularizer, CAVIA (Zintgraf et al., 2019) and

Meta-dropout (Lee et al., 2020) which regularize the inner-

loop, and MR-MAML (Yin et al., 2020), TAML (Jamal &

Qi, 2019), and Meta-Aug (Rajendran et al., 2020), all of

which handle meta-generalization.

6.1. Drug Activity Prediction

Experimental Setup. We solve a real-world application of

drug activity prediction (Martin et al., 2019) where there

are 4,276 target assays (i.e., tasks) each of which consists

of a few drug compounds with tested activities against the

target protein. We randomly selected 100 assays for meta-

testing, 76 for meta-validation and the rest for meta-training.

We repeat the random process four times and construct

four groups of meta-testing assays for evaluation. Follow-

ing (Martin et al., 2019), we evaluate the square of Pearson

coefficient R2 between the predicted ŷq
i and the groundtruth

yq
i of all query samples for each i-th task, and report the

mean and median R2 values over all meta-testing assays

as well as the number of assays with R2 > 0.3 which is

deemed as an indicator of reliability in pharmacology. We

use a base model of two fully connected layers with 500 hid-

den units. In Beta(α, β), we set α = β= 0.5. More details

on the dataset and settings are discussed in Appendix D.1.

Performance. In practice, we notice that only updating the

final layer in the inner-loop achieves the best performance,

which is equivalent to ANIL. Thus, we apply this inner-loop

update strategy to all baselines. For stability, here we also

use ANIL++ (Antoniou et al., 2019) which stabilizes ANIL

for comparison. In Table 1, we compare MetaMix with the

baselines on the four drug evaluation groups. We observe

that MetaMix consistently improves the performance de-

spite of the backbone meta-learning algorithms (i.e., ANIL,

ANIL++, MetaSGD, T-Net) in all scenarios. In addition,

ANIL-MetaMix outperforms other anti-overfitting strate-

gies. Particularly, compared to Meta-Aug, the better perfor-

mance of ANIL-MetaMix indicates that additional informa-

tion provided by MetaMix benefits the meta-generalization.

In summary, the consistent superior performance, even sig-

nificantly better than the state-of-the-art pQSAR-max for

this dataset, demonstrates that (1) MetaMix is compatible

with existing meta-learning algorithms; (2) MetaMix is ca-

pable of improving the meta-generalization ability. Besides,

in Appendix E.1, we investigate the influence of different

hyperparameter settings (e.g., α in Beta(α, α)), and demon-

strate the robustness of MetaMix under different settings.
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Table 1. Performance of drug activity prediction.

Model
Group 1 Group 2 Group 3 Group 4

Mean Med. >0.3 Mean Med. >0.3 Mean Med. >0.3 Mean Med. >0.3

pQSAR-max (Martin et al., 2019) 0.390 0.335 51 0.335 0.280 44 0.373 0.315 50 0.362 0.260 46

Weight Decay 0.307 0.228 40 0.243 0.157 34 0.259 0.171 38 0.290 0.241 47
CAVIA 0.300 0.232 42 0.234 0.132 35 0.260 0.184 39 0.317 0.292 46
Meta-dropout 0.319 0.203 41 0.250 0.172 35 0.281 0.214 39 0.316 0.275 47
Meta-Aug 0.317 0.201 43 0.253 0.193 38 0.286 0.220 41 0.303 0.224 42
MR-ANIL 0.297 0.202 41 0.232 0.152 32 0.289 0.217 40 0.293 0.249 43
TAML 0.296 0.200 41 0.260 0.203 36 0.260 0.227 40 0.308 0.281 46

MetaSGD 0.331 0.224 45 0.249 0.187 33 0.282 0.226 40 0.312 0.287 48
T-Net 0.323 0.264 46 0.236 0.170 29 0.285 0.220 43 0.285 0.239 42
ANIL 0.299 0.184 41 0.226 0.143 30 0.268 0.199 37 0.304 0.282 48
ANIL++ 0.367 0.299 50 0.315 0.252 43 0.335 0.289 48 0.362 0.324 51

MetaSGD-MetaMix 0.364 0.296 49 0.271 0.230 45 0.312 0.267 48 0.338 0.319 51
T-Net-MetaMix 0.352 0.291 50 0.276 0.229 42 0.310 0.285 47 0.336 0.298 50
ANIL-MetaMix 0.347 0.292 49 0.301 0.282 47 0.302 0.258 45 0.348 0.303 51
ANIL++-MetaMix 0.413 0.393 59 0.337 0.301 51 0.381 0.362 55 0.380 0.348 55

Analysis of Overfitting. In Figure 2, we visualize the meta-

training and meta-testing performance of ANIL, ANIL-

MetaMix and other two representative anti-overfitting strate-

gies (i.e., MR-ANIL, Meta-Aug) with respect to the training

iteration. Interestingly, we find (1) in the meta-testing phase,

applying MetaMix significantly increases the performance

gap between pre-update (θ0) and post-update (φi), indicat-

ing that MetaMix improves the dependence of target predic-

tion on support sets, and therefore alleviates memorization

overfitting; (2) compared to Meta-Aug and MR-ANIL, the

worse pre-update meta-training performance but better post-

update meta-testing performance of MetaMix demonstrates

its superiority to mitigate the learner overfitting.

Effect of Data Mixture Strategy in MetaMix. To further

investigate where the improvement stems from, we adopt

five different mixup strategies for meta-training. The results

are reported in Table 2. We use Mixup(Dm, Dn) to denote

the mixup of data Dm and Dn (e.g., Mixup(Ds, Dq) in our

case). Dcob=Ds⊕Dq represents the concatenation of Ds and

Dq. In drug activity prediction, since the support and query

sets are pre-split based on the biological domain knowledge,

we also introduce set shuffle as another ablation model by

randomly shuffling the pre-split sets. In Table 2, we find

that (1) MetaMix achieves the best performance compared

with other ablation models; (2) the fact that MetaMix en-

joys better performance than Mixup(Dq,Dq) suggests that

MetaMix is much more than simple data augmentation –

it increases the dependency of the learner on support sets

and thereby minimizes the memorization; (3) involving the

support set only is insufficient for meta-generalization due

to its relative small gradient norm, which is further verified

by the unsatisfactory performance of Ds ⊕ Dq compared

with MetaMix .

Analysis of Criteria. We further analyze augmentation

methods on drug data (Group 1) with respect to the two cri-

teria (C1, C2) we propose and the CE-increasing criterion

H(Y|X)↑ proposed by Meta-Aug. We report the results in

Table 3, where Mix-all applies Mixup to the whole dataset

without differentiating different tasks. We observe that C1

and C2 are qualified to guide the design of task augmen-

tation methods, as evidenced in Table 3 where methods

satisfying more of C1 and C2 tend to perform better.

6.2. Pose Prediction

Experimental Setup. Following (Yin et al., 2020), we use

the regression dataset created from Pascal 3D data (Xiang

et al., 2014), where a 128×128 grey-scale image is used as

input and the orientation relative to a fixed pose labels each

image. 50 and 15 objects are randomly selected for meta-

training and meta-testing, respectively. Following (Yin et al.,

2020), the base model consists of an encoder with three

convolutional blocks and a decoder with four convolutional

blocks. For MetaMix, we set α=β=0.5 in Beta(α, β) and

only perform Mainfold Mixup on the decoder (see Appendix

D.2 for detailed settings).

Results. Table 4 shows the performance (averaged MSE

with 95% confidence interval) of baselines and MetaMix

under 10/15-shot scenarios. The inner-loop regularizers

are not as effective as MR-MAML, TAML and Meta-Aug

in improving meta-generalization; MAML-MetaMix and

Meta-Aug significantly improve MR-MAML, suggesting

the effectiveness of bringing more data in than imposing

meta-regularizers only. The better performance of MAML-

MetaMix than Meta-Aug further verifies the effectiveness of

introducing additional knowledge to learn the initialization.

We also investigate the influence of mixup strategies and

hyperparameters on pose prediction in Appendix F.1 and F.2,

respectively. The results again advocate the effectiveness
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Table 2. Effect of mixture strategies on drug activity prediction. All strategies are applied on ANIL++.

Strategies
Group 1 Group 2 Group 3 Group 4

Mean Med. >0.3 Mean Med. >0.3 Mean Med. >0.3 Mean Med. >0.3

Dq 0.367 0.299 50 0.315 0.252 43 0.335 0.289 48 0.362 0.324 51
Set Shuffle 0.371 0.352 55 0.293 0.224 42 0.339 0.297 50 0.360 0.300 50
Mixup(Ds, Ds) 0.224 0.164 33 0.210 0.164 31 0.214 0.154 29 0.191 0.141 22
Mixup(Dq , Dq) 0.388 0.354 55 0.322 0.264 46 0.341 0.306 50 0.358 0.325 53
Dcob = Ds ⊕Dq 0.376 0.324 52 0.301 0.242 44 0.333 0.329 51 0.336 0.281 48

MetaMix 0.413 0.393 59 0.337 0.301 51 0.381 0.362 55 0.380 0.348 55

(a) : ANIL (b) : MR-ANIL (c) : Meta-Aug (d) : ANIL-MetaMix

Figure 2. Overfitting analysis on Group 1 of drug activity prediction. All models use the same inner-loop update strategy as ANIL.

Table 3. Criteria analysis on Group 1 of drug activity prediction.

All models use ANIL as the backbone meta-learning algorithm.

Aug. Method C1 C2 H(Y|X)↑ Mean R2

Mix-All 0.292
Mixup(Dq , Dq)

√ √
0.322

Meta-Aug
√ √

0.317

ANIL-MetaMix
√ √ √

0.347

and robustness of the proposed mixup strategy in improving

the meta-generalization ability.

6.3. Image Classification

Experimental Setup. For image classification problems,

standard benchmarks (e.g., Omniglot (Lake et al., 2011)

and MiniImagenet (Vinyals et al., 2016)) are considered

as mutually-exclusive tasks by introducing the shuffling

mechanism of labels, which significantly alleviates the meta-

overfitting issue (Yin et al., 2020). To show the power of pro-

posed augmentation strategies, following (Yin et al., 2020),

we adopt the non-mutually-exclusive setting for each image

classification benchmark: each class with its classification

label remains unchanged across different meta-training tasks

during meta-training. Besides, we study image classifica-

tion for heterogeneous tasks in Appendix G.1. We use the

multi-dataset in (Yao et al., 2019) which consists of four

subdatasets, i.e., Bird, Texture, Aircraft, and Fungi. The

non-mutually-exclusive setting is also applied to this multi-

dataset. Three representative heterogeneous meta-learning

algorithms (i.e., MMAML (Vuorio et al., 2019), HSML (Yao

et al., 2019), ARML (Yao et al., 2020)) are taken as base-

lines and applied with task augmentation stategies. For each

Table 4. Performance (MSE ± 95% confidence interval) of pose

prediction.

Model 10-shot 15-shot

Weight Decay 2.772± 0.259 2.307± 0.226
CAVIA 3.021± 0.248 2.397± 0.191
Meta-dropout 3.236± 0.257 2.425± 0.209
Meta-Aug 2.553± 0.265 2.152± 0.227
MR-MAML 2.907± 0.255 2.276± 0.169
TAML 2.785± 0.261 2.196± 0.163

ANIL 6.746± 0.416 6.513± 0.384
MAML 3.098± 0.242 2.413± 0.177
MetaSGD 2.803± 0.239 2.331± 0.182
T-Net 2.835± 0.189 2.609± 0.213

ANIL-MetaMix 6.354± 0.393 6.112± 0.381
MAML-MetaMix 2.438± 0.196 2.003± 0.147
MetaSGD-MetaMix 2.390± 0.191 1.952± 0.154
T-Net-MetaMix 2.563± 0.201 2.418± 0.182

task, the classical N-way, K-shot setting is used to evaluate

the performance. We use the standard four-block convolu-

tional neural network as the base model. We set α=β=2.0

for all datasets. Detailed descriptions of experiment settings

and hyperparameters are discussed in Appendix D.3.

Results. In Table 5 and Appendix G.1, we report the perfor-

mance (accuracy with 95% confidence interval) on homoge-

neous datasets (i.e., Omniglot, MiniImagenet) and heteroge-

neous datasets, respectively. As described in Section 3, we

will use Channel Shuffle enhanced MetaMix (MMCF) in

image classification problems. Aligned with other problems,

in all non-mutually-exclusive datasets, applying the MMCF

consistently improves existing meta-learning algorithms.

For example, MAML-MMCF significantly boosts MAML

and most importantly outperforms MR-MAML, substanti-
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Table 5. Performance (accuracy ± 95% confidence interval) of image classification on Omniglot and MiniImagenet.

Model
Omniglot MiniImagenet

20-way 1-shot 20-way 5-shot 5-way 1-shot 5-way 5-shot

Weight Decay 86.81± 0.64% 96.20± 0.17% 33.19± 1.76% 52.27± 0.96%
CAVIA 87.63± 0.58% 94.16± 0.20% 34.27± 1.79% 50.23± 0.98%
MR-MAML 89.28± 0.59% 96.66± 0.18% 35.00± 1.60% 54.39± 0.97%
Meta-dropout 85.60± 0.63% 95.56± 0.17% 34.32± 1.78% 52.40± 0.96%
TAML 87.50± 0.63% 95.78± 0.19% 33.16± 1.68% 52.78± 0.97%

MAML 87.40± 0.59% 93.51± 0.25% 32.93± 1.70% 51.95± 0.97%
MetaSGD 87.72± 0.61% 95.52± 0.18% 33.70± 1.63% 52.14± 0.92%
T-Net 87.71± 0.62% 95.67± 0.20% 33.73± 1.72% 54.04± 0.99%
ANIL 88.35± 0.56% 95.85± 0.19% 34.13± 1.67% 52.59± 0.96%

MAML-MMCF 92.06± 0.51% 97.95± 0.17% 39.26± 1.79% 58.96± 0.95%
MetaSGD-MMCF 93.59± 0.45% 98.24± 0.16% 40.06± 1.76% 60.19± 0.96%
T-Net-MMCF 93.27± 0.46% 98.09± 0.15% 38.33± 1.73% 59.13± 0.99%
ANIL-MMCF 92.24± 0.48% 98.36± 0.13% 37.94± 1.75% 59.03± 0.93%

Table 6. Performance (accuracy ± 95% confidence interval) of MiniImagenet and Omniglot w.r.t. different data augmentation strategies

applied on MAML.

Strategy
Omniglot MiniImagenet

20-way 1-shot 20-way 5-shot 5-way 1-shot 5-way 5-shot

Dq 87.40± 0.59% 93.51± 0.25% 32.93± 1.70% 51.95± 0.97%
Mixup(Ds, Ds) 46.98± 0.92% 85.56± 0.28% 24.39± 1.48% 33.18± 0.82%
Mixup(Dq , Dq) 90.65± 0.56% 96.90± 0.16% 34.56± 1.77% 55.80± 0.97%
Dcob = Ds ⊕Dq 86.74± 0.54% 95.54± 0.19% 33.33± 1.70% 51.97± 0.96%

MetaMix 91.53± 0.53% 97.63± 0.15% 38.53± 1.79% 57.55± 1.01%
Channel Shuffle 89.81± 0.55% 97.10± 0.17% 35.50± 1.73% 54.52± 0.96%

MMCF 92.06± 0.51% 97.95± 0.17% 39.26± 1.79% 58.96± 0.95%

ating the effectiveness of MMCF in improving the meta-

generalization ability. It is worth mentioning that we also

conduct the experiments on the standard mutually-exclusive

setting of MiniImagenet in Appendix G.2. Though the label

shuffling has significantly mitigated meta-overfitting, apply-

ing MMCF still improves the meta-generalization to some

extent. Besides, under the MiniImagenet 5-shot scenario,

we investigate the influence of different hyperparameters, in-

cluding sampling λ from the Beta distribution with different

values of α and β, varying different fixed values of λ, and

adjusting the layer to mixup (i.e., C in Eqn. (4)) in Appendix

G.3. All these studies indicate the robustness of MetaMix

and Channel Shuffle in improving the meta-generalization.

Ablation Study. To align with other problems, for MMCF,

we vary the mixup and data augmentation strategies (i.e.,

MetaMix, Channel Shuffle) in image classification in Ta-

ble 6. First, comparing MetaMix to other data mixup strate-

gies, we again corroborate the effectiveness of MetaMix

in improving meta-generalization. Second, we compare

MMCF with MetaMix and Channel Shuffle, the better per-

formance of MMCF indicates the additional effects of Chan-

nel Shuffle to enhance MetaMix in classification problems,

as our theoretic analyses suggest.

7. Conclusion
Current gradient-based meta-learning algorithms are at high

risk of overfitting on meta-training tasks but poorly gen-

eralizing to meta-testing tasks. To address this issue, we

propose two novel data augmentation strategies – MetaMix

and Channel Shuffle, which actively involve more data in

the outer-loop optimization process. Specifically, MetaMix

linearly interpolates the features and labels of support and

target sets. In classification problems, MetaMix is further

enhanced by Channel Shuffle, which randomly replaces a

subset of channels with the corresponding ones from another

class. We theoretically demonstrate that all strategies can

improve the meta-generalization capability. The state-of-the-

art results on different real-world datasets demonstrate the

effectiveness and compatibility of the proposed methods.
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