Addressing Catastrophic Forgetting in Few-Shot Problems

A. Background

This section provides a background explanation of using BOL to approximate the posterior of the model parameters and
overcome catastrophic forgetting, commonly in large-scale supervised classification. We apply this approach to our recursion
in Eq. (5).

The posterior is typically intractable due to the enormous size of the modern neural network architectures. This leads to
the requirement for a good approximation of the posterior of the model parameters. A particularly suitable candidate for
this purpose is the Laplace approximation (MacKay, 1992; Ritter et al., 2018b), as it simply adds a quadratic regulariser
to the training objective. Variational continual learning (Nguyen et al., 2018) is another possible method to obtain an
approximation for the posterior of the model parameters.

A.1. Bayesian Online Learning

Upon the arrival of the new dataset D1, we consider the posterior p(6|D1.¢11) of the parameters # of a neural network.
Using Bayes’ rule on the posterior gives the recursive formula

P(0|D1:441) X p(Di11]0)p(0]D1:1) (15)

where Eq. (15) follows from the assumption that each dataset is independent given 6. As the normalised posterior p(0|D1.¢)
is usually intractable, it can be approximated by a parametric distribution ¢ with parameter ¢,. The BOL framework consists
of the update step and the projection step (Opper, 1998). The update step uses the approximate posterior ¢(6|¢;) obtained
from the previous step for an update in the form of Eq. (15):

P(0D1:t41, 0t) X P(Di41|0)q(0]). (16)

The new posterior p(0|D1.+41, ¢+) might not belong to the same parametric family as q(0|¢;). In this case, the new
posterior has to be projected into the same parametric family to obtain ¢(8|¢p;+1). Opper (1998) performs this projection
by minimising the KL-divergence between the new posterior and the parametric ¢, while Ritter et al. (2018a) use Laplace
approximation and Nguyen et al. (2018) use variational inference.

A.2. Laplace Approximation
We consider finding a MAP estimate following from Eq. (15):

07 1= argénax p(0|D1:441) = arggnax {log p(D¢41]0) + log p(0|D1.¢) }. 17

Since the posterior p(68]|D1.;) of a neural network is intractable except for small architectures, the unnormalised posterior
p(0]D1.¢) is considered instead. Performing Taylor expansion on the logarithm of the unnormalised posterior around a mode
0; gives

log p(0]D1:¢) ~ log p(0]D1:¢ (0 —07)" A (0 - 67), (18)

1
)’9:9; 9
where A; denotes the Hessian matrix of the negative log-posterior evaluated at §;. The expansion in Eq. (18) suggests

using a Gaussian approximate posterior. Given the parameter ¢; = {p, A;}, a mean ;41 for step ¢ + 1 can be obtained by
finding a mode of the approximate posterior as follows via a standard gradient-based optimisation:

1
pes1 = arg max { logP(D 11 16) — (6) A0 - ut>}. (19)

The precision matrix is updated as A;y1 = H;11 + Ay, where Hy 1 is the Hessian matrix of the negative log-likelihood for
41 evaluated at p; 1 with entries

2

i 0
H ————— log p(D¢+1]0)

17 T 990 90G) (20)

O=pit1

For a neural network model, gradient-based optimisation methods such as SGD (Robbins & Monro, 1951) and Adam
(Kingma & Ba, 2015) are the standard gradient-based methods in finding a mode for Laplace approximation in Eq. (19). We
show in Section 4.1 that this provides a well-suited skeleton to implement Bayesian online meta-learning in Eq. (5) with the
mode-seeking optimisation procedure.

Addressing Catastrophic Forgetting in Few-Shot Problems

A.3. Block-Diagonal Hessian Approximation

Since the full Hessian matrix in Eq. (20) is intractable for large neural networks, we seek for an efficient and relatively
close approximation to the Hessian matrix. Diagonal approximations (Denker & LeCun, 1991; Kirkpatrick et al., 2017)
are memory and computationally efficient, but sacrifice approximation accuracy as they ignore the interaction between
parameters. Consider instead separating the Hessian matrix into blocks where different blocks are associated to different
layers of a neural network. A particular diagonal block corresponds to the Hessian for a particular layer of the neural
network. The block-diagonal Kronecker-factored approximation (Martens & Grosse, 2015; Grosse & Martens, 2016; Botev
et al., 2017) utilises the fact that each diagonal block of the Hessian is Kronecker-factored for a single data point. This
provides a better Hessian approximation as it takes the parameter interactions within a layer into consideration.

A.3.1. KRONECKER-FACTORED APPROXIMATION

Consider a neural network with L layers and parameter 6 = [vec(W1)T, ... vec(Wy)T]T where Wy is the weight of layer
¢for ¢ = {1,..., L} and vec denotes stacking the columns of a matrix into a vector. We denote the input of the neural
network as agp = x and the output of the neural network as hy. As the input passes through each layer of the neural
network, we have the pre-activation for layer £ as hy = Wya,_1 and the activation as a; = f¢(h¢) where fy is the activation
function of layer /. If a bias vector is applicable in calculating the pre-activation of a layer, we append the bias vector to
the last column of the weight matrix and append a scalar one to the last element of the activation. The gradient g, of loss
Lg(z,y) = —log p(y|z, §) with respect to h, for an input-target pair (z,y) is the pre-activation gradient for layer £.

Martens & Grosse (2015) show that the /-th diagonal block Fy of the Fisher information matrix F' can be approximated
by the Kronecker product between the expectation of the outer product of the (¢ — 1)-th layer activation and the ¢-th layer
pre-activation gradient:

Fy =B, ylae—1a;_1 @ gegf @D
~ Eelag—1a] 1] © Byjalgegi) (22)
=Ai_1 ® Gy, (23)

where Ay_; = E [as—1a}_,] and G, = Ey‘m[gggf]. Grosse & Martens (2016) extend the block-diagonal Kronecker-
factored Fisher approximation for fully-connected layers to that for convolutional layers. For batch normalisation layers, we
adopt the unit-wise approximation (Osawa et al., 2020). The Gaussian log-probability term can be calculated efficiently
without expanding the Kronecker product using the identity

(Ap—1 @ Gy) vec(Wy — Wy') = vec(Go(Wy — W;)Agﬁl). (24)

As we mentioned in Section 4.2, approximating the Hessian with the one-step SGD inner loop assumption results in having
terms that multiply two or more Kronecker products together. The ¢-th diagonal block of F in Eq. (11) is

M
- 1 m m ~m ~m m m
Fe= Vi Z (I— A7 @GP AL, @ G — AP @ G, (25)

m=1

where /Tzn_l ® CNT'Z‘ is the Kronecker product corresponding to the non-Jacobian terms in Eq. (11) for task m, and A}* ; ® G
is the Kronecker product corresponding to the Hessian in Eq. (12). We expand F, using the Kronecker product property:

(A7, ® GP)(AT, @ G}') = AT | A7, @ GGy (26)
This gives
o1& ~ - - ~ - ~
Fo=: (A G — Ay A GGy — A7y (A7) @Gy (G + AP A (A7) T oGP GG .
m 27

Finally, moving the meta-batch averaging into the Kronecker factors gives the approximation:
FrmAp @Gy~ A1 A1 @ GGy — Ap_1(Arm1)T @ Go(G)T + Ap1 A1 (A1) @ GoGo(Gy)T, (28)
where A;_; = =3 g}”_l, G, = D Gm, Ay_1Agq = G AZ”_lgz"_l, and so on.

Addressing Catastrophic Forgetting in Few-Shot Problems

A.3.2. POSTERIOR REGULARISING HYPERPARAMETER FOR PRECISION UPDATE

Ritter et al. (2018a) use a hyperparameter A as a multiplier to the Hessian when updating the precision:
Aty1 = AHep1 + As. (29)

In the large-scale supervised classification setting, this hyperparameter has a regularising effect on the Gaussian posterior
approximation for a balance between having a good performance on a new dataset and maintaining the performance on
previous datasets (Ritter et al., 2018a). A large A results in a sharply peaked Gaussian posterior and is therefore unable
to learn new datasets well, but can prevent forgetting previously learned datasets. A small A in contrast gives a dispersed
Gaussian posterior and allows better performance on new datasets by sacrificing the performance on the previous datasets.

A 4. Variational Continual Learning

The variational continual learning method (Nguyen et al., 2018) also provides a suitable meta-training framework for BOML
in Eq. (5). Consider approximating the posterior ¢ by minimising the KL-divergence between the parametric ¢ and the new
posterior as in the projection step in Eq. (16), where ¢ belongs to some pre-determined approximate posterior family Q with
parameters ¢;:

q(0]pe41) = argelgin Dxr1.(q(019)lp(De+110)q(0]¢1)) (30)
q

= argergin{ — Eqg ()9 [log p(D¢+110)] + Dxr.(a(019)|a(0] 1)) }- (3D
q

The optimisation in Eq. (31) leads to the objective

P41 = arg;min{ — Eq016)llog p(De4110)] + Dxcr(a(019)lla (0]) } - (32)

One can use a Gaussian mean-field approximate posterior q(6|¢;) = HdD:1 N (.0, 0% 4), where ¢y = {144,044}, and
D = dim(#). The first term in Eq. (32) can be estimated via simple Monte Carlo with local reparameterisation trick (Kingma
et al., 2015), and the second KL-divergence term has a closed form for Gaussian distributions.

Addressing Catastrophic Forgetting in Few-Shot Problems

Algorithm 1 Bayesian online meta-learning with Laplace approximation (BOMLA)

1: Require: sequential base sets (or tasks) D1, ..., Dy, learning rate «, posterior regulariser A, number of meta-training
iterations (or epochs) J, meta-batch size (or number of mini-batches) M

2: Initialise: 1, Ag, 0

3: fort =1to T do

4: fori=1,...,Jdo > meta-training on base set (or task) D

5: for m = 1to M do
6: Sample task (or split the batch) D" = D™ U D™
7: Inner update ™ = SGD;(L(6, DI™))
8: end for
9: Evaluate loss fBOMXA (6, py 1, Ay—1) in Eq. (8)
10: Outer update 0 < 0 — aVy fEOMA (0, 11, Ar—1)
11: end for
12: Update mean p; <— 6 > update posterior mean
13: For sequential datasets, sample a number of tasks for Hessian approximation
14: Run inner update in line 7 for each sampled task (or for each batch) B
15: Approximate H; with block-diagonal Kronecker-factored approximation to ' in Eq. (11)
16: Update precision Ay <— AH; + Ay > update posterior precision
17: end for

Algorithm 2 Bayesian online meta-learning with variational inference (BoMVI)

1: Require: sequential base sets (or tasks) D1, . . ., Dr, learning rate «v, number of meta-training iterations (or epochs) J,
meta-batch size (or number of mini-batches) M

2: Initialise: ¢9 = {10, 00}

3: fort =1to T do

4: fori=1,2,...,Jdo > meta-training on base set (or task) D

5: for m = 1to M do
6: Sample task (or split the batch) DI* = D™ U D™
7: Inner update ™ = SGD;(L(6, DI™))
8: end for
9: Evaluate loss f2°MV1(¢, ¢;_1) in Eq. (14)
10: Outer update yi < p — aV, fEOM(p, ¢r_1), and o < 0 — aV, fEOMV (B, ¢r_1)
11: end for
12: Update py <— pand oy < o > update posterior parameters
13: end for
B. Algorithms

B.1. BOMLA and BoMVI

Algorithm 1 gives the pseudo-code of the BOMLA algorithm, with the corresponding variation for the Section 6.2 Omniglot
sequential tasks setting in brackets. The algorithm is formed of three main elements: meta-training on a specific base set or
task (line 4 — 11), updating the Gaussian mean (line 12) and updating the Gaussian precision (line 13 — 16). For the precision
update, we approximate the Hessian using block-diagonal Kronecker-factored approximation.

Algorithm 2 gives the pseudo-code of the BOM VI algorithm, with the corresponding variation for the Section 6.2 Omniglot
sequential tasks setting in brackets. The algorithm is formed of two main elements: meta-training on a specific base set or
task (line 4 — 11) and updating the parameters of the Gaussian mean-field approximate posterior (line 12).

Addressing Catastrophic Forgetting in Few-Shot Problems

B.2. BOMVI Monte Carlo Estimator

Recall that the BOMVI objective is:

M M
1 771 m 77L
2N 60) = =37 D Eatole) [log (DI 710™)] — Z a(01) [1og p(D}710)] + Dicr.(q(6]9)9(01+)),
m=1 m=1

where ™ = SG'Dy,(L(6, D;'jrls)) form =1,..., M. The Monte Carlo estimator for the first term of the BOMVI objective
is difficult to compute, as every sampled meta-parameters 6,. for » = 1, ..., R has to undergo a few-shot quick adaptation
prior to the log-likelihood evaluation. As a consequence the estimator is prone to a large variance. Moreover, every
quickly-adapted sample 6,. contributes to the meta-learning gradients of the posterior mean and covariance, resulting in a
high computational cost when taking the meta-gradients.

To solve these impediments, we introduce a slight modification to the SGD quick adaptation ™. Instead of taking the
gradients with respect to the sampled meta-parameters, we consider the gradients with respect to the posterior mean. A
one-step SGD quick adaptation, for instance, becomes:

" =6 — avmﬁ(pt,Dﬁf) (33)

This gives ™ ~ N (Ji,, diag(c2)) where
fit = jie = oV, L, DY), (34)

since § ~ N (u,diag(c?)). A quick adaptation with more steps works in a similar fashion. With this modification, we can
calculate the Monte Carlo estimate for the first term using the local reparameterisation trick as usual.

Addressing Catastrophic Forgetting in Few-Shot Problems

C. Experiments
C.1. Triathlon and Pentathlon

In these experiments, we use the model architecture proposed by Vinyals et al. (2016) that takes 4 modules with 64 filters
of size 3 x 3, followed by a batch normalisation, a ReLU activation and a 2 x 2 max-pooling. A fully-connected layer is
appended to the final module before getting the class probabilities with softmax. Tables 1 and 2 are the hyperparameters
used in these experiment.

Omniglot: Omniglot (Lake et al., 2011) comprises 1623 characters from 50 alphabets and each character has 20 instances.
We use 1100 characters for meta-training, 100 characters for validation and the remaining for meta-evaluation. New classes
with rotations in the multiples of 90° are formed after splitting the characters as mentioned.

miniQuickDraw: QuickDraw (Ha & Eck, 2017) comprises 345 categories of drawings collected from the players in the
game “Quick, Draw!”. We generate miniQuickDraw by randomly sampling 1000 instances in each class of QuickDraw.

CIFAR-FS: CIFAR-FS (Bertinetto et al., 2019) has 100 classes of objects and each class comprises 600 images. We
use the same split as Bertinetto et al. (2019): 64 classes for meta-training, 16 classes for validation and 20 classes for
meta-evaluation.

minilmageNet: minilmageNet (Vinyals et al., 2016) takes 100 classes and 600 instances in each class from the ImageNet
dataset. We use the same split as Ravi & Larochelle (2017): 64 classes for meta-training, 16 classes for validation and 20

classes for meta-evaluation.

VGG-Flowers: VGG-Flowers (Nilsback & Zisserman, 2008) comprises 102 different types of flowers as the classes. We
randomly split 66 classes for meta-training, 16 classes for validation and 20 classes for meta-evaluation.

Aircraft: Aircraft (Maji et al., 2013) is a fine-grained dataset consisting of 100 aircraft models as the classes and each class
has 100 images. We randomly split 64 classes for meta-training, 16 classes for validation and 20 classes for meta-evaluation.

Table 1. Hyperparameters for the triathlon and pentathlon experiments (same value for all datasets)

Hyperparameter BoMLA BomVI
Posterior regulariser A (various values) -
Precision initialisation values 107* ~ 1072 -
Number of tasks sampled for Hessian approx. 5000 -
Covariance initialisation values - exp(—5)
Number of Monte Carlo samples - 20
Meta-batch size M 32 32
Number of query samples per class 15 15
Number of iterations per dataset 5000 5000
Outer loop optimiser Adam Adam
Outer loop learning rate 0.001 0.001
Number of tasks sampled for meta-evaluation 100 100

Table 2. Hyperparameters for the triathlon and pentathlon experiments (individual datasets)

Hyperparameter Omniglot miniQuickDraw CIFAR-FS minilmageNet VGG-Flowers Aircraft
Number of inner SGD steps 1 3 5 5 5 5
in meta-training (k)
Inner SGD learning rate (o) 0.4 0.2 0.1 0.1 0.1 0.1
Outer learning rate decay - x 0.1 halfway x0.1 halfway ~ x0.1 halfway x0.1 every 1000 x0.1
schedule (none for BOMVI) iterations halfway
Number of inner SGD steps 3 5 10 10 10 10

in meta-evaluation

Addressing Catastrophic Forgetting in Few-Shot Problems

C.2. Pentathlon: Analysing the Change in Approximate Posterior Covariance

We visualise the covariance of the meta-parameters approximate posterior from BOMVT to better understand how the
uncertainty in the algorithm prevents catastrophic forgetting in few-shot classification problems. We follow the pentathlon
sequence going from left to right of the figure: Omniglot — CIFAR-FS — minilmageNet — VGG-Flowers — Aircraft.
The Gaussian mean-field approximate posterior becomes increasingly concentrated in general as it learns on more datasets.
This is especially true for the earlier layers (Conv 1 and Conv 2), meaning that the posterior progressively becomes very
confident on the meta-parameters of the raw-level filters. The covariance for the layer closest to the classifier (Conv 4)
remains large in general, although there are some filters with decreasing covariance. As the convolutional layer gets closer
to the classifying layer, a larger fine-tuning in the meta-parameters is needed (Ravi & Beatson, 2019) to cope with few-shot
tasks from different knowledge domains. The approximate posterior covariance from BOMLA is too large for visualisation
as it is block-diagonal. The BOMLA covariance for each convolutional layer has dimension D x D where D is the number
of parameters in a convolutional layer. In theory, the BOMLA covariance should also follow the same pattern as the BOMVI
covariance.

Omniglot CIFAR-FS minilmageNet VGG-Flowers Aircraft

Conv 1

Conv 2

0.002

Conv 3

Conv 4

“50 100 150 O 50 100 150 0 - 100

Figure 9. The change in the approximate posterior covariance after meta-training is completed on each dataset. Going from left to right
are the pentathlon sequence of datasets. Going from top to bottom are the convolutional layers of the neural network which gets closer to
the classifying layer.

Addressing Catastrophic Forgetting in Few-Shot Problems

C.3. Pentathlon: the Comparison between BOMVI and BOMLA with Different Values of \

Meta-evaluation accuracy (%)
100

Omniglot

<))
(=]

CIFAR-FS
5
o

%_Aq?;mxg;wu;,ﬁn’nma«-wﬂqaﬁ

30
45
2
Z 40 e |
@35 AN RS SINARIE -
g mkwnw
E 30 ""353;'\(; T
g C e v g e
g 25 Ciha i PR S S Epy A DN
g7 BOML nricnn,
£ 60 —— BOMIA, A=1000
= —— BOMILA, A=100
v —— BOMLA, A=1
D40 BOMVI
50 Baseline
'ﬁ ------- Sequential MAML
g0
<

w
=1

Omniglot meta-train CIFAR-FS meta-train minilmageNet meta-train VGG-Flowers meta-train Aircraft meta-train
Meta-training time

Figure 10. Meta-evaluation accuracy across 3 seed runs on each dataset along meta-training. Higher accuracy values indicate better results
with less forgetting as we proceed to new datasets. BOMLA with a large A = 1000 gives better performance in the off-diagonal plots
(retains performances on previously learned datasets) but worse performance in the diagonal plots (does not learn well on new datasets).
A small \ = 1 gives better performance in the diagonal plots (learns well on new datasets) but worse performance in the off-diagonal
plots (forgets previously learned datasets). BOM VI is also able to retain performance on previous datasets, although it may be unable to
perform as good as BOMLA due to sampling and estimator variance.

Tuning the posterior regulariser A mentioned in Section 4.2 and Appendix A.3.2 corresponds to balancing between a smaller
performance trade-off on a new dataset and less forgetting on previous datasets. As shown in the figure above, a larger
A = 1000 results in a more concentrated Gaussian posterior and is therefore unable to learn new datasets well, but can better
retain the performances on previous datasets. A smaller A\ = 1 on the other hand gives a widespread Gaussian posterior and
learns better on new datasets by sacrificing the performance on the previous datasets. In this experiment, the value A = 100
gives the best balance between old and new datasets. Ideally we seek for a good performance on both old and new datasets,
but in reality there is a trade-off between retaining performance on old datasets and learning well on new datasets due to
posterior approximation errors.

Addressing Catastrophic Forgetting in Few-Shot Problems

C.4. Omniglot: Sequential Tasks from a Stationary Task Distribution

In this experiment, we use the model architecture proposed by Vinyals et al. (2016) that takes 4 modules with 64 filters
of size 3 x 3, followed by a batch normalisation, a ReLU activation and a 2 x 2 max-pooling. A fully-connected layer is
appended to the final module before getting the class probabilities with softmax. Table 3 shows the hyperparameters used in
this experiment.

The Omniglot dataset comprises 50 alphabets (super-classes). Each alphabet has numerous characters (classes) and each
character has 20 instances. As the meta-training alphabets arrive sequentially, we form non-overlapping sequential tasks
from each arriving alphabet, and the tasks also do not overlap in the characters. We use 35 alphabets for meta-training, 7
alphabets for validation and 8 alphabets for meta-evaluation. The alphabet splits are as follows:

35 alphabets for meta-training:

Alphabet_of_the_Magi, Angelic, Armenian, Asomtavruli_ (Georgian), Atlantean,
Aurek-Besh, Avesta, Balinese, Bengali, Braille, Burmese_ (Myanmar), Early_Aramaic,
Grantha, Gujarati, Gurmukhi, Hebrew, Inuktitut_ (Canadian_Aboriginal_Syllabics),
Japanese_ (hiragana), Japanese_ (katakana), Kannada, Keble, Korean,

Latin, Malayalam, Malay_ (Jawi_-_Arabic), Manipuri, Mongolian,

Ojibwe_ (Canadian_Aboriginal_Syllabics), 0ld_Church_Slavonic_(Cyrillic), Oriva,
Sanskrit, Sylheti, Tengwar, Tifinagh, ULOG

7 alphabets for validation:

Anglo-Saxon_Futhorc, Arcadian, Blackfoot_ (Canadian_Aboriginal_Syllabics),
Cyrillic, Ge_ez, Glagolitic, N_Ko

8 alphabets for meta-evaluation:

Atemayar_Qelisayer, Futurama, Greek, Mkhedruli_ (Georgian), Syriac_ (Estrangelo),
Syriac_ (Serto), Tagalog, Tibetan

Table 3. Hyperparameters for the Omniglot sequential tasks experiment.

Hyperparameter BoMLA BomVI
Posterior regulariser A 0.01 -
Precision initialisation values 1074~ 1072 -
Covariance initialisation values - exp(—10)
Number of Monte Carlo samples - 5
Number of mini-batches M 1 1
Number of query samples per class (meta-evaluation) 15 15
Number of epochs per task 50 50
Number of inner SGD steps in meta-training (k) 5 5
Inner SGD learning rate («) 0.1 0.1
Outer loop optimiser Adam Adam
Outer loop learning rate 0.001 0.001
Number of tasks sampled for meta-evaluation 100 100

Number of inner SGD steps in meta-evaluation (k) 10 10

