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Abstract
We call a finite family of activation functions su-
perexpressive if any multivariate continuous func-
tion can be approximated by a neural network that
uses these activations and has a fixed architecture
only depending on the number of input variables
(i.e., to achieve any accuracy we only need to ad-
just the weights, without increasing the number
of neurons). Previously, it was known that super-
expressive activations exist, but their form was
quite complex. We give examples of very simple
superexpressive families: for example, we prove
that the family {sin, arcsin} is superexpressive.
We also show that most practical activations (not
involving periodic functions) are not superexpres-
sive.

1. Introduction
In the study of approximations by neural networks, an inter-
esting fact is the existence of activation functions that allow
to approximate any continuous function on a given compact
domain with arbitrary accuracy by using a network with a
finite, fixed architecture independent of the function and
the accuracy (i.e., merely by adjusting the network weights,
without increasing the number of neurons). We will refer
to this property as “superexpressiveness”. The existence of
superexpressive activations can be seen as a consequence of
a result of (Maiorov & Pinkus, 1999).
Theorem 1 (Maiorov & Pinkus 1999). There exists an acti-
vation function σ which is real analytic, strictly increasing,
sigmoidal (i.e., limx→−∞ σ(x) = 0 and limx→+∞ σ(x) =
1), and such that any f ∈ C([0, 1]d) can be uni-
formly approximated with any accuracy by expressions∑6d+3
i=1 diσ(

∑3d
j=1 cijσ(

∑d
k=1 wijkxk + θij) + γi) with

some parameters di, cij , wijk, θij , γi.

The proof of this theorem includes two essential steps. In
the first step, the result is proved for univariate functions
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(i.e., for d = 1). The key idea here is to use the separability
of the space C([0, 1]), and construct a (quite complicated)
activation by joining all the functions from some dense
countable subset. In the second step, one reduces the multi-
variate case to the univariate one by using the Kolmogorov
Superposition Theorem (KST).

Though the superexpressive activations constructed in the
proof of Theorem 1 have the nice properties of analyticity,
monotonicity and boundedness, they are nevertheless quite
complex and non-elementary – at least, not known to be
representable in terms of finitely many elementary func-
tions. See the papers (Ismailov, 2014; Guliyev & Ismailov,
2016; 2018a;b) for refinements and algorithmic aspects of
such and similar activations, as well as the papers (Kůrková,
1991; 1992; Igelnik & Parikh, 2003; Montanelli & Yang,
2020; Schmidt-Hieber, 2020) for further connections be-
tween KST and neural networks.

There is, however, another line of research in which some
weaker forms of superexpressiveness have been recently
established for elementary (or otherwise simple) activations.
The weaker form means that the network must grow to
achieve higher accuracy, but this growth is much slower
than the power laws expected from the abstract approxima-
tion theory under standard regularity assumptions (DeVore
et al., 1989). In particular, results of (Yarotsky & Zhevner-
chuk, 2019) imply that a deep network having both sin and
ReLU activations can approximate Lipschitz functions with
error O(e−cW

1/2

), where c > 0 is a constant and W is the
number of weights. Results of (Shen et al., 2020b) (see also
(Shen et al., 2020a)) imply that a three-layer network using
the floor b·c, the exponential 2x and the step function 1x≥0
as activations can approximate Lipschitz functions with an
exponentially small error O(e−cW ).

In the present paper, we show that there are activations su-
perexpressive in the initially mentioned strong sense and yet
constructed using simple elementary functions; see Section
2. For example, we prove that there are fixed-size networks
with the activations sin and arcsin that can approximate any
continuous function with any accuracy. On the other hand,
we show in Section 3 that most practically used activations
(not involving periodic functions) are not superexpressive.
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Figure 1. An example of network architecture with 3 input neurons,
1 output neuron and 7 hidden neurons.

2. Elementary superexpressive families
Throughout the paper, we consider standard feedforward
neural networks. The architecture of the network is defined
by a directed acyclic graph connecting the neurons (see
Fig. 1). A network implementing a scalar d-variable func-
tion has d input neurons, one output neuron and a number
of hidden neurons. A hidden neuron computes the value
σ(
∑n
i=1 wizi + h), where wi and h are the weights asso-

ciated with this neuron, zi are the incoming connections
from other hidden or input neurons, and σ is an activation
function. We will generally allow different hidden neurons
to have different activation functions. The output neuron
computes the value

∑n
i=1 wizi + h without an activation

function.

Some of our activations (in particular, arcsin) are naturally
defined only on a subset of R. In this case we ensure that
the inputs of these activations always belong to this subset.

Throughout the paper, we consider approximations of func-
tions f ∈ C([0, 1]d) in the uniform norm ‖ · ‖∞. We gener-
ally denote vectors by boldface letters; the components of a
vector x are denoted x1, x2, . . ..

We give now the key definition of the paper.
Definition 1. We call a finite family A of univariate acti-
vation functions superexpressive for dimension d if there
exists a fixed d-input network architecture with each hidden
neuron equipped with some fixed activation from the family
A, so that any function f ∈ C([0, 1]d) can be approximated
on [0, 1]d with any accuracy in the uniform norm ‖ · ‖∞ by
such a network, by adjusting the network weights. We call
a family A simply superexpressive if it is superexpressive
for all d = 1, 2, . . . We refer to respective architectures as
superexpressive for A.

Recall that the Kolmogorov Superposition Theorem (KST)
(Kolmogorov, 1957) proves that any multivariate continu-
ous function can be expressed via additions and univariate
continuous functions. The following version of this theorem
is taken from (Maiorov & Pinkus, 1999).
Theorem 2 (KST). There exist d constants λj > 0, j =

1, . . . , d,
∑d
j=1 λj ≤ 1, and 2d + 1 continuous strictly in-

creasing functions χi, i = 1, . . . , 2d+ 1, which map [0, 1]

to itself, such that every f ∈ C([0, 1]d) can be represented
in the form

f(x1, . . . , xd) =

2d+1∑
i=1

g
( d∑
j=1

λjχi(xj)
)

for some g ∈ C([0, 1]) depending on f.

An immediate corollary of this theorem is a reduction of
multivariate superexpressiveness to the univariate one.

Corollary 1. If a family A is superexpressive for dimen-
sion d = 1, then it is superexpressive for all d. Moreover,
the number of neurons and connections in the respective
superexpressive architectures scales as O(d2).

The proof follows simply by approximating the functions χi
and g in the KST by univariate superexpressive networks.

Our main result establishes existence of simple superex-
pressive families constructed from finitely many elementary
functions. The full list of properties of the activations that
we use is relatively cumbersome, so we find it more conve-
nient to just prove the result for a few particular examples
rather than attempt to state it in a general form.

Theorem 3. Each of the following families of activation
functions is superexpressive:

A1 = {σ1, b·c},
A2 = {sin, arcsin},
A3 = {σ3},

where σ1 is any function that is real analytic and non-
polynomial in some interval (α, β) ⊂ R, and

σ3(x) =


− 1
x , x < −1,

1
π (x arcsinx+

√
1− x2) + 3

2x, x ∈ [−1, 1],

7− 3
x + sin x

πx2 , x > 1.

The function σ3 is C1(R), bounded, and strictly monotone
increasing.

The family A1 is a generalization of the family for which
(Shen et al., 2020b) proved a weaker superexpressiveness
property.

The function σ3 is given as an example of an explicit su-
perexpressive activation that is smooth and sigmoidal (see
Fig. 2).

Proof of Theorem 3. We consider the families A1,A2,A3

one by one.

Proof for A1. Given a function f ∈ C([0, 1]d), we will con-
struct the approximation f̃ as a function piecewise constant
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Figure 2. The function σ3 from the statement of Theorem 3.

on a partition of the cube [0, 1] into a grid of smaller cubes.
Following the paper (Shen et al., 2020b), we specify these
cubes by mapping them to integers with the help of function
b·c. Specifically, take some M ∈ N and let

gM (x1, . . . , xd) = 1 +

d∑
k=1

(M + 1)k−1bMxkc. (1)

The function gM is integer-valued and constant on the cubes
IM,m = [m1

M , m1+1
M )×. . .×[md

M , md+1
M ) indexed by integer

multi-indices m = (m1, . . . ,md) ∈ Zd. The cube [0, 1]d

overlaps with (M + 1)d such cubes IM,m, namely those
with 0 ≤ mk ≤M . Each of these cubes is mapped by gM
to a unique integer in the range [1, (M + 1)d].

Consider the periodic function

φ(x) = x− bxc, φ : R→ [0, 1). (2)

We will now seek our approximation in the form

f̃(x) = u(gM (x)), u(y) = (B−A)φ(sσ1(α+β2 +wy))+A,
(3)

where

A = min
x∈[0,1]d

f(x), B = max
x∈[0,1]d

f(x), (4)

α+β
2 is the center of the interval (α, β) where σ1 is ana-

lytic and non-polynomial, and s and w are some weights
to be chosen shortly. Clearly, the computation defined by
Eqs. (1),(2),(3) is representable by a neural network of a
fixed size only depending on d (as O(d)) and using activa-
tions from A1.

Let N = (M + 1)d. Using the uniform continuity of f and
choosing M large so that the size of each cube IM,m is
arbitrarily small, we see that the superexpressiveness will be

established if we show that for any N , any ε > 0, and any
y ∈ [A,B]N there exist some weights s and w such that

|u(n)− yn| < ε for all n = 1, . . . , N. (5)

Recall that a set of numbers a1, . . . , aN is called rationally
independent if they are linearly independent over the field Q
(i.e., no equality

∑N
n=1 λnan = 0 with rational coefficients

λn can hold unless all λn = 0). Our strategy will be:

1. to choose the weight w so as to make the values
an = σ1(α+β2 + wn) with n = 1, . . . , N rationally
independent;

2. use the density of the irrational winding on the torus to
find s ensuring condition (5).

For step 1, we state the following lemma.

Lemma 1. Let σ be a real analytic function in an interval
(α, β) with β > α. Suppose that there is N such that
for all w with sufficiently small absolute value, the values
(σ(α+β2 +wn))Nn=1 are not rationally independent. Then σ
is a polynomial.

Proof. For fixed coefficients λ = (λ1, . . . , λN ), the func-
tion σλ(w) =

∑N
n=1 λnσ(α+β2 + nw) is real analytic for

w ∈ UN = (−β−α2N , β−α2N ). Since there are only countably
many λ ∈ QN , we see that under hypothesis of the lemma
there is some λ such that σλ vanishes on an uncountable sub-
set of UN . Then, by analyticity, σλ ≡ 0 on UN . Expanding
this σλ into the Taylor series at w = 0, we get the identity∑N
n=1 λnn

m = 0 for each m such that d
mσ
dwm (α+β2 ) 6= 0. If

there are infinitely many such m, then all λn = 0 (by letting
m → ∞). It follows that if λ is nonzero, then there are
only finitely many m’s such that d

mσ
dwm (α+β2 ) 6= 0, i.e. σ is a

polynomial.

Applying Lemma 1 to σ = σ1, we see that for any N
there is w such that the values an = σ1(α+β2 + wn) with
n = 1, . . . , N are rationally independent.

For step 2, we use the well-known fact that an irrational
winding on the torus is dense:

Lemma 2. Let a1, . . . , aN be rationally independent real
numbers. Then the set QN = {(φ(sa1), . . . , φ(saN )) : s ∈
R} (where φ is defined in Eq. (2)) is dense in [0, 1)N .

For completeness, we provide a proof in Appendix A.

Lemma (2) implies that for any y ∈ [A,B]N , the
point y−A

B−A ∈ [0, 1]N can be approximated by vectors
(φ(san))Nn=1. This implies condition (5), thus finishing
the proof for A1.
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Figure 3. The functions θ, ν, ψ from the proof of Theorem 3.

Proof forA2. We will only give a proof for d = 1; the claim
then follows for all larger d by Corollary 1.

Consider the piecewise linear periodic function

θ(x) = 1
π arcsin(sinπx)

and the related functions

ν(x) = x+ θ(x),

ψ(x) = ν(θ(x)− 1
2 ) + 1

(see Fig. 3).

We would like to extend the previous proof for A1 to the
present case of A2 using the function ν as a substitute for
b·c, since ν is constant on the intervals [k − 1

2 , k + 1
2 ] with

odd integer k. However, in contrast to the function b·c,
the function ν is continuous and cannot map the whole
segment [0, 1] to a finite set of values, which was crucial
in the proof for A1. For this reason, we use a partition of
unity and represent the approximated function f ∈ C([0, 1])
as a sum of four functions supported on a grid of disjoint
small segments. Specifically, let again M be a large integer
determining the scale of our partition of unity. We define
this partition by

1 ≡
2∑

q=−1
ψq(x), ψq(x) = ψ(Mx− q

2 ), x ∈ R, (6)

and the respective decomposition of the function f by

f =

2∑
q=−1

fq, fq = fψq. (7)

For a fixed q, the function ψq, and hence also fq, vanish
outside of the union of N = M

2 +O(1) disjoint segments
Jq,p = [ 4p−2+q2M , 4p+q2M ], p = 1, . . . , N, overlapping with the
segment [0, 1]. Denote this union by Jq.

We approximate each function fq by a function f̃q using an
analog of the representation (1),(2),(3):

Gq(x) = ν(Mx− q
2 + 1

2 ), (8)
vq(x) = (2 max

x∈[0,1]
|f(x)|)θ(s sin(wGq(x))), (9)

f̃q(x) = vq(x)ψq(x), (10)

f̃ =

2∑
q=−1

f̃q. (11)

The function Gq in Eq. (8) is constant and equal to 2p− 1
on each segment Jq,p. In particular, different segments Jq,p
overlapping with the segment [0, 1] are mapped by Gq to
different integers in the interval [1,M + 1].

The function vq in Eq. (9) is the analog of the expression for
f̃ given in Eq. (3). Like Gq, the function vq is constant on
each interval Jq,p. By Lemma 1, the values (sin(wm))M+1

m=1

are rationally independent for a suitable w. We can then
use again the density of irrational winding on the torus
(Lemma 2) to find s such that for each p the value vq|Jq,p
is arbitrarily close to the value of f at the center xq,p =
4p−1+q

2M of the interval Jq,p. Indeed, θ is a continuous peri-
odic (period–2) function with maxx θ(x) = −minx θ(x) =
1
2 . For each p = 1, . . . , N, we can first find zq,p ∈ R/(2Z)
such that (2 maxx∈[0,1] |f(x)|)θ(zp,q) = f(xq,p), and then,
by Lemma 2, find s such that s sin(w(2p− 1)) is arbitrarily
close to zq,p on the circle R/(2Z) for each p = 1, . . . , N.
As a result, we see that the function vq can approximate
the function f on the whole set Jq. As before, to achieve
an arbitrarily small error, we need to first choose M large
enough and then choose suitable w and s. (By the uniform
continuity of f , one can use here the same w and s for all
q ∈ {−1, 0, 1, 2}.)

At the same time, it makes no difference how the function
vq behaves on the complementary set [0, 1] \ Jq, since ψq
vanishes on this set. It follows that f̃q defined by Eq. (10)
can approximate fq defined by Eq. (7) with arbitrarily small
error on the whole segment [0, 1]. Then, the function f̃ given
by Eq. (11) can approximate f uniformly on [0, 1] with any
accuracy.

The computation (8)-(11) is directly representable by a fixed
size neural network with activations {sin, arcsin}, except
for multiplication step (10). Multiplication, however, can be
implemented with any accuracy by a fixed-size subnetwork:

Lemma 3 (Approximate multiplier). Suppose that an acti-
vation function σ has a point x0 where the second derivative
d2σ
dx2 (x0) exists and is nonzero. Then there is a fixed two-
input network architecture with this activation that allows
to implement the approximate multiplication of the inputs,
x, y 7→ xy, with any accuracy uniformly on any bounded
set of inputs x, y, by suitably adjusting the weights.
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Proof. First note that we can implement the approximate
squaring x 7→ x2 with any accuracy using just a network
with three neurons. Indeed, by the assumption on d2σ

dx2 , for
any C, ε > 0 we can choose δ such that

|(d
2σ
dx2 (x0))−1 1

δ2 (σ(x0+xδ)+σ(x0−xδ)−2σ(x0))−x2| < ε

for all |x| < C. Then, using the polarization identity
xy = 1

2 ((x + y)2 + (x − y)2), we see that the desired
approximate multiplier can be implemented using a fixed
6-neuron architecture.

We can apply this lemma with σ = sin and any x0 6=
πk, k ∈ Z, thus completing the proof for A2.

Proof for A3. We reduce this case to the previous one, A2.
First observe that we can approximate the function arcsin
by a fixed-size σ3-network.

Lemma 4. A superexpressive family of continuous activa-
tions remains superexpressive if some activations are re-
placed by their antiderivatives.

Proof. The claim follows since any continuous activation σ
can be approximated uniformly on compact sets by expres-
sions 1

δ (σ(−1)(x+δ)−σ(−1)(x)), where σ(−1) =
∫
σ.

Our activation σ3 is the antiderivative of 1
π arcsinx+ 3

2 on
the interval [−1, 1].

Observe next that on the interval [1,∞), we can express the
function sinx by multiplying σ3(x) by some polynomials in
x and subtracting constants. By Lemma 3, these operations
can be implemented with any accuracy by a fixed size σ3-
network. By periodicity of sin, we can then approximate it
on any bounded interval.

We conclude that we can approximate any A2-network with
any accuracy by a σ3-network that has the same size up to a
constant factor.

It is an elementary computation that σ3 is C1(R), bounded
and monotone increasing. This completes the proof of the
theorem.

A few remarks are in order.

1. A critical element of the proof is having a piecewise
linear periodic function in the network. If not directly
available, such a function is generated through compo-
sitions, multiplications and differentiations.

2. In the proofs for A2,A3, we could handle the case
d > 1 without invoking the KST, by a direct construc-
tion (as for A1) with a d-dimensional product partition
of unity, but this would require the network size to be
exponential in d instead of just being O(d2).

3. The approximation rates are not limited by standard
bounds (DeVore et al., 1989) because of a highly irreg-
ular choice of the parameter s.

3. Absence of superexpressiveness for
standard activations

In this section we show that most practically used activation
functions (those not involving sinx or cosx) are not super-
expressive. This is an easy consequence of Khovanskii’s
bounds on the number of zeros of elementary functions
(Khovanskii, 1991). We remark that these bounds have been
used previously to bound expressiveness of neural networks
in terms of VC dimension (Karpinski & Macintyre, 1997)
or Betti numbers of level sets (Bianchini & Scarselli, 2014).

First recall the standard definition of Pfaffian functions (see
e.g. (Khovanskii, 1991; Zell, 1999; Gabrielov & Vorobjov,
2004)). A Pfaffian chain is a sequence f1, . . . , fl of real
analytic functions defined on a common connected domain
U ⊂ Rd and such that the equations

∂fi
∂xj

(x) = Pij(x, f1(x), . . . , fi(x)), 1 ≤ i ≤ l, 1 ≤ j ≤ d

hold in U for some polynomials Pij . A Pfaffian func-
tion in the chain (f1, . . . , fl) is a function on U that
can be expressed as a polynomial P in the variables
(x, f1(x), . . . , fl(x)). Complexity of the Pfaffian function f
is the triplet (l, α, β) consisting of the length l of the chain,
the maximum degree α of the polynomials Pij , and the
degree β of the polynomial P.

The importance of Pfaffian functions stems from the fact
that they include all elementary functions when considered
on suitable domains. This is shown by first checking that
the simplest elementary functions are Pfaffian, and then
by checking that arithmetic operations and compositions
of Pfaffian functions produce again Pfaffian functions. We
refer again to (Khovanskii, 1991; Zell, 1999; Gabrielov &
Vorobjov, 2004) for details.

Proposition 1.

1. (Elementary examples) The following functions are
Pfaffian: polynomials on U = Rd, ex on R, lnx on
R+, arcsinx on (−1, 1). The function sinx is Pfaf-
fian on any bounded interval (A,B), with complexity
depending on B −A, but sinx is not Pfaffian on R.

2. (Operations with Pfaffian functions) Sums and products
of Pfaffian functions f, g with a common domain U are
Pfaffian. If the domain of a Pfaffian function f includes
the range of a Pfaffian function g, then the composition
f ◦ g is Pfaffian on the domain of g. The complexity of
the resulting functions f + g, fg, f ◦ g is determined
by the complexity of the functions f, g.
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We state now the fundamental result on Pfaffian functions.
We call a solution x ∈ Rd of a system f1(x) = . . . =
fd(x) = 0 nondegenerate if the respective Jacobi matrix
∂fi
∂xj

(x) is nondegenerate.

Theorem 4 (Khovanskii 1991). Let f1, . . . , fd be Pfaffian
d-variable functions with a common Pfaffian chain on a
connected domain U . Then the number of nondegenerate so-
lutions of the system f1(x) = . . . = fd(x) = 0 is bounded
by a finite number only depending on the complexities of the
functions f1, . . . , fd.

The idea of the proof is to use a generalized Rolle’s lemma
and bound the number of common zeros of the functions fk
by the number of common zeros of suitable polynomials (in
a larger number of variables). The latter number can then
be upper bounded using the classical Bézout theorem. It is
possible to write the bound in Theorem 4 explicitly, but we
will not need that for our purposes.

We will only use the univariate version of Theorem 4. In this
case, it will also be easy to remove the inconvenient nonde-
generacy condition in this theorem. (Note that this condi-
tion is essential in general – for example, if f1(x1, x2) ≡
f2(x1, x2) = x1, then the system f1 = f2 = 0 has infinitely
many degenerate solutions).

Proposition 2. Let f be a univariate Pfaffian function on
an open interval I ⊂ R. Then either f ≡ 0 on I , or the
number of zeros of f is bounded by a finite number only
depending on the complexity of f .

Proof. Suppose f 6≡ 0. Then, by real analiticity of f , any
zero x0 of f in I is isolated, and we can write f(x) =
c(x − x0)k(1 + o(1)) as x → x0, with some c 6= 0 and
k ∈ N. By Sard’s theorem, there is a sequence εn ↘ 0
such that the values ±εn are not critical values of f . The
functions f ± εn are Pfaffian with the same complexity as f ,
and don’t have degenerate zeros. For any zero x0 of f , the
two functions f ± εn will have in total two nondegenerate
zeros in a vicinity of x0, for any εn small enough. It follows
that the total number of all nondegenerate zeros of the two
functions f ± εn, for εn small enough, will be at least twice
as large as the number or zeros of the function f (or can
be made arbitrarily large if f has infinitely many zeros).
Applying Theorem 4 to the functions f ± εn, we obtain the
desired conclusion on the zeros of f .

Now we apply these results to standard activation functions.

Definition 2. We say that an activation function σ is piece-
wise Pfaffian if its domain of definition can be represented
as a union of finitely many open intervals Un and points xk
in R so that σ is Pfaffian on each Un.

By discussion above, this definition covers most practically
used activations, such as tanhx, standard sigmoid σ(x) =

(1+e−x)−1,ReLU σ(x) = max(0, x), leaky ReLU σ(x) =

max(ax, x), binary step function σ(x) =

{
0, x < 0

1, x ≥ 0
,

Gaussian σ(x) = e−x
2

, softplus σ(x) = ln(1 + ex) (Glorot

et al., 2011), ELU σ(x) =

{
a(ex − 1), x < 0

x, x ≥ 0
(Clevert

et al., 2015), etc. Our main result in this section states that
any finite collection of such activations is not superexpres-
sive.

Theorem 5. Let A be a family of finitely many piecewise
Pfaffian activation functions. Then A is not superexpressive.

Proof. Suppose that A is superexpressive, and there is a
fixed one-input network architecture allowing us to approxi-
mate any univariate function f ∈ C([0, 1]). Then for any N
we can choose the network weights so that the function f̃
implemented by the network has at least N sign changes, in
the sense that there are points 0 ≤ a0 < . . . < aN ≤ 1 such
that (−1)nf̃(an) > 0 for all n. Indeed, this follows simply
by approximating the function f(x) = sin((N+1)πx) with
an error less than 1. We will show, however, that this N
cannot be arbitrarily large if the activations are from a finite
piecewise Pfaffian family.

Lemma 5. If the activations belong to a finite piecewise
Pfaffian family A, then any function f̃ implemented by the
network is piecewise Pfaffian. Moreover, the number of
respective intervals Un as well as the complexity of each
restriction f |Un

do not exceed some finite values only de-
pending on the family A and the network architecture.

Proof. This can be proved by induction on the number of
hidden neurons in the network. The base of induction cor-
responds to networks without hidden neurons; in this case
the statement is trivial. Now we make the induction step.
Given a network, choose some hidden neuron whose output
is not used by other hidden neurons (i.e., choose a neuron
in the “last hidden layer”). With respect to this neuron, we
can decompose the network output as

f̃(x) = cσk

( K∑
s=1

csf̃s(x) + h
)

+

K∑
s=1

c′sf̃s(x) + h′. (12)

Here, σk is the activation function residing at the chosen
neuron, f̃s are the signals going out of the other hidden and
input neurons, and c, cs, c′s, h, h

′ are various weights. By
inductive hypothesis, all functions f̃s here are piecewise
Pfaffian. Moreover, by taking intersections, the segment
[0, 1] can be divided into finitely many open intervals Ij
separated by finitely many points xl so that each of the func-
tions f̃s is Pfaffian on each interval Ij . The number of these
intervals Ij and the complexities of fs|Ij are bounded by
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some finite values depending only on the family A and the
network architecture. We see also that the linear combina-
tion F (x) =

∑K
s=1 csf̃s(x) + h appearing in Eq. (12) is

Pfaffian on each interval Ij .

Observe next that the composition σk ◦ F is piecewise Pfaf-
fian on each interval Ij . Indeed, let U (k)

r and x(k)r be the
finitely many open intervals and points associated with the
activation σk as a piecewise Pfaffian function. By Proposi-
tion 2, for each r, the pre-image (F |Ij )−1(x

(k)
r ) is either the

whole interval Ij or its finite subset. In the first case, σk ◦F
is constant and thus trivially Pfaffian on Ij . In the second
case, the interval Ij can be subdivided into sub-intervals
Ij,m such that each image F (Ij,m) belongs to one of the
intervals U (k)

r so that σk◦F is Pfaffian on Ij,m. The number
of these sub-intervals and the complexities of the restric-
tions are bounded by some finite numbers depending on the
activation σk and the complexity of F |Ij .

Returning to representation (12), we see that f̃ is Pfaffian
on each interval Ij,m; moreover, the total number of these
intervals as well as the complexities of the restrictions f̃ |Ij,m
are bounded by finite numbers determined by the family A
and the architecture, thus proving the claim.

The lemma implies that some interval Un in which f̃ is
Pfaffian and has a bounded complexity can contain an ar-
bitrarily large number of sign changes of f̃ . This gives a
contradiction with Proposition 2.

We remark that one can also give a proof of this theorem
expressed in terms of Vapnik-Chervonenkis dimension: first
we note that if A is superexpressive then there must be a
network architecture with an infinite VC-dimension (after
thresholding), and then we note that if the activations in A
are piecewise Pfaffian then the VC-dimension of any fixed
architecture is finite.

4. Discussion
We have given examples of simple explicit activation func-
tions that allow to approximate arbitrary functions using
fixed-size networks (Theorem 3), and we have also shown
that this can not be achieved with the common practical acti-
vations (Theorem 5). We mention two interesting questions
left open by our results.

First, our existence result (Theorem 3) is of course purely
theoretical: though the network is small, a huge approxi-
mation complexity is hidden in the very special choice of
the network weights. Nevertheless, assuming that we can
perform computations with any precision, one can ask if it is
possible to algorithmically find network weights providing
a good approximation. The main difficulty here is to find

a value s such that (φ(san))Nn=1 is close to the given N -
dimensional point. Such a value exists by Lemma 2 on the
density of irrational winding, and the proof of the lemma is
essentially constructive, so theoretically one can perform the
necessary computation and find the desired s. However, the
proof is based on the pigeonhole principle and is very prone
to the curse of dimensionality (with dimensionality here cor-
responding to the number N of fitted data points), making
this computation practically unfeasible even for relatively
small N .

Another open question is whether the function sin alone is
superexpresive. This can not be ruled out by the methods of
Section 3, since sin has an infinite Pfaffian complexity on
R. More generally, one can ask if there are individual super-
expressive activations that are elementary and real analytic
on the whole R. A repeated computation of antiderivatives
using Lemma 4 allows us to construct a piecewise elemen-
tary superexpressive function of any finite smoothness, but
not analytic on R.

A. Proof of Lemma 2
It is convenient to endow the cube [0, 1)N with the topology
of the torus TN = RN/ZN by gluing the endpoints of
the interval [0, 1]. Though the lemma is stated in terms of
the original topology on [0, 1)N , it is clear that a subset is
dense in the original topology if and only if it is dense in
the topology of the torus. Accordingly, when considering
the distance between two points b1,b2 ∈ [0, 1)N , it will be
convenient to use the distance between the corresponding
cosets, i.e. ρ(b1,b2) = minz1,z2∈ZN |b1+z1−(b2+z2)|,
where | · | is the usual euclidean norm. Note that this ρ is a
shift–invariant metric on the torus.

The proof of the lemma is by induction onN . The baseN =
1 is obvious (a single number a1 is rationally independent
iff a1 6= 0). Let us make the induction step from N − 1 to
N , with N ≥ 2.

Given the rationally independent numbers a1, . . . , aN , first
observe that none of them equals 0. Let s0 = 1

aN
. Let

φ(x) = x − bxc as in Eq. (2). If s = ms0 with some
integer m, then φ(ms0aN ) = 0, so that the points bm =
(φ(ms0a1), . . . , φ(ms0aN )) lie in the (N−1)-dimensional
face [0, 1)N−1 of the full set [0, 1)N .

Observe that the points bm are different for different in-
teger m’s. Indeed, if bm1

= bm2
for some integer

m1 6= m2, then there are some integers p1, . . . , pN such that
(m1 −m2)s0an = pn for all n = 1, . . . , N. But then the
numbers a1, . . . , aN are not rationally independent, since,
e.g., (m1 −m2)a1 = p1

s0
= p1aN .

Since the points bm are distinct, they form an infinite
set in [0, 1)N−1. Then for any ε we can find a pair of
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different points bm1
and bm2

separated by a distance
ρ(bm1 ,bm2) < ε. Note that the distance ρ(bm1 ,bm2) only
depends on the difference m2 −m1, so we can assume that
m1 = 0:

ρ(b0,bm2
) = ρ(0,bm2

) < ε.

By definition of ρ, we can then find z ∈ ZN such that for
b′m2

= bm2
− z we have

|b′m2
| = ρ(0,bm2) < ε. (13)

We can write b′m2
in the form

b′m2
= (m2s0a1 − p1, . . . ,m2s0aN−1 − pN−1, 0)

with some integers p1, . . . , pN−1. Observe that the first
N −1 components b′m2,n of b′m2

are rationally independent.
Indeed, if

∑N−1
n=1 λnb

′
m2,n = 0 with some rational λn, then,

by expressing this identity in terms of the original values
an, we get

N−1∑
n=1

λnan − 1
m2

N−1∑
n=1

λnpnaN = 0,

so λn ≡ 0 by the rational independence of an.

Consider now the set

Q′N−1 = {φ(tb′m2,1), . . . , φ(tb′m2,N−1)) : t ∈ R}.

On the one hand, by induction hypothesis, the set Q′N−1
is dense in [0, 1)N−1, because the numbers b′m2,n are ra-
tionally independent. On the other hand, observe that the
points in Q′N−1 corresponding to integer t also belong to
the set QN = {(φ(sa1), . . . , φ(saN )) : s ∈ R}: specif-
ically, the respective s = m2ts0. It follows that for any
b ∈ [0, 1)N−1 we can find a point b̃ of the set QN at a dis-
tance at most 2ε from b: first find a point b̂ ∈ Q′N−1 such
that |b̂− b| < ε, and then, if b̂ corresponds to some t = t0
in Q′N−1, take b̃ corresponding to t = bt0c. The distance
ρ(b̂, b̃) < ε by Eq. (13) and because |t0 − bt0c| < 1:

ρ(b̂, b̃) ≤ |t0b′m2
− bt0cb′m2

| < |b′m2
| < ε.

The above argument shows that the face [0, 1)N−1 = {b ∈
[0, 1)N : bN = 0} can be approximated by points of QN
with s belonging to the set S = {m2ts0}t∈Z. Any other
(N − 1)-dimensional cross-section {b ∈ [0, 1)N : bN = c}
is then approximated by the points of QN with s ∈ S+ cs0:
indeed, s = cs0 gives us one point in this cross-section, and
additional shifts by ∆s ∈ S allow us to approximate any
other point with the same bN .
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