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Abstract
We consider repair tasks: given a critic (e.g.,
compiler) that assesses the quality of an input, the
goal is to train a fixer that converts a bad example
(e.g., code with syntax errors) into a good one (e.g.,
code with no syntax errors). Existing works create
training data consisting of (bad, good) pairs by
corrupting good examples using heuristics (e.g.,
dropping tokens). However, fixers trained on this
synthetically-generated data do not extrapolate
well to the real distribution of bad inputs. To bridge
this gap, we propose a new training approach,
Break-It-Fix-It (BIFI), which has two key ideas:
(i) we use the critic to check a fixer’s output on
real bad inputs and add good (fixed) outputs to
the training data, and (ii) we train a breaker to
generate realistic bad code from good code. Based
on these ideas, we iteratively update the breaker
and the fixer while using them in conjunction to
generate more paired data. We evaluate BIFI on
two code repair datasets: GitHub-Python, a new
dataset we introduce where the goal is to repair
Python code with AST parse errors; and DeepFix,
where the goal is to repair C code with compiler
errors. BIFI outperforms state-of-the-art methods,
obtaining 90.5% repair accuracy on GitHub-
Python (+28.5%) and 71.7% on DeepFix (+5.6%).
Notably, BIFI does not require any labeled data;
we hope it will be a strong starting point for
unsupervised learning of various repair tasks.

1. Introduction
In many domains, one has access to a critic that assesses the
quality of an input, but what is desired is a more constructive
fixer that actually improves bad inputs. For instance, in
programming, while a code analyzer and compiler can tell
if a given code has errors, programmers need to repair the
errors in the bad code. Development of an automatic code
fixer is thus a key to enhancing programming productivity
(Seo et al., 2014) and is an active area of research (Mesbah
et al., 2019; Ding et al., 2020; Dinella et al., 2020). Other
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Task  Fixer

x = analysis.get(ip, None)
if not x:
  print ("PANIC!"
   "No {}".format(ip.strip())

def iterFiles(path):
  return (name
   for name in listdir(path) 
   if isfile(join(path,name)))

x = analysis.get(ip, None)
if not x:
  print ("PANIC!"
   "No {}".format(ip.strip()))
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Figure 1. Problem setup. We are given an unlabeled data (code
snippets) and a critic (e.g., code analyzer, compiler) that assesses
the quality of an input (e.g., bad if the code has errors; good if no
error). Our task is to learn a fixer that can actually repair a bad
example into a good one (e.g., fixing errors in the bad code).

instances of this general setting include molecular design (Jin
et al., 2019) which aims to improve the chemical properties
(e.g., drug-likeness) of molecules given a property evaluator,
and essay editing (Taghipour & Ng, 2016) which aims to
improve a writing given a grade. How to automatically
learn a fixer given a critic (we term critic2fixer remains an
important research problem in machine learning.

In this work, we focus on the domain of code repair. Learning
a fixer is challenging because manual labeling of paired data,
e.g., 〈broken code, fixed code〉, is costly. To this end, we
consider learning from unlabeled data. Specifically, as illus-
trated in Figure 1, we are given (a) a critic (code analyzer or
compiler) that assesses the quality of an input (bad if the code
has errors; good if there are no errors), and (b) unlabeled data
(unpaired good code and bad code, e.g., collected on GitHub);
our goal is to learn a fixer that repairs bad code into good code.
Previous works in code repair apply random or heuristic per-
turbations to good code (e.g., dropping tokens) and prepare
synthetic paired data 〈perturbed code, good code〉 to train a
fixer (Pu et al., 2016; Gupta et al., 2017; Ahmed et al., 2018;
Hajipour et al., 2019; Yasunaga & Liang, 2020). However,
such synthetically generated bad examples do not match the
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Figure 2. Challenge of learning a fixer from unlabeled data. Ex-
isting works randomly perturb good examples into bad examples
and learn to recover. However, such synthetically generated bad
examples do not match the distribution of real bad examples. For
instance, synthetic perturbations may drop parentheses arbitrar-
ily from code (top right), but real human-written bad code misses
parentheses more often in a nested context (top center). In a more ex-
treme case at bottom, to generate the human error (center) from the
corrected code (left), a pair of indent and dedent tokens need to be in-
serted accordingly, which random perturbations generate with very
small probability. Note that indentation is meaningful in Python: in
the tokenized Python code, each 〈I〉 token means indenting the line
by one unit, each 〈D〉 means dedenting the next line by one unit.

distribution of real bad examples. For instance, as shown
in Figure 2, synthetic perturbations may drop parentheses
arbitrarily from code, generating errors that rarely happen
in real programming (Figure 2 top right; synthetic errors); in
contrast, real human-written code misses parentheses more
often in a nested context (Figure 2 top center; human errors).
As we will show in §4, this distribution mismatch between
synthetic data and real data results in low performance.

To bridge this gap, we propose Break-It-Fix-It (BIFI), a new
method to learn a fixer from unlabeled data and a critic (Fig-
ure 3). BIFI is based on two core insights: (i) we can use the
critic to check a fixer’s output on real bad examples and add
good outputs to the training data, and (ii) we train a breaker to
generate realistic bad examples from good examples. Specif-
ically, given an initial fixer trained on synthetic paired data
〈synthetic bad, good〉, BIFI improves the fixer and breaker si-
multaneously through rounds of data generation and training:
(1) apply the fixer to real bad examples and keep fixed outputs
to obtain real paired data, (2) use the resulting data to train the
breaker, (3) use the learned breaker to generate code errors
and obtain more paired data, and (4) train the fixer on the
newly-generated paired data in (1) and (3). Intuitively, this
cycle trains the fixer on increasingly more real or realistically
generated bad code, adapting the fixer from the initial syn-
thetic distributions towards real distributions of code errors.

The BIFI algorithm is related to backtranslation in unsuper-
vised machine translation (Lample et al., 2018a), which uses
a target-to-source model to generate noisy sources and trains

a source-to-target model to reconstruct the targets (e.g., the
bad-side and good-side in our repair task can be viewed as
the source and target). BIFI differs from backtranslation in
two ways: it uses the critic to verify if the generated examples
are actually fixed or broken (step 1 and 3), and it trains the
fixer on real bad examples in addition to examples generated
by the breaker (step 4), which improves the correctness and
distributional match of generated paired data.

We evaluate our proposed approach on two datasets:

• GitHub-Python: We collected a new dataset of 3M
Python code snippets from github.com. The task is to
repair errors caught by the Python AST parser. We set
the initial fixer to be an encoder-decoder Transformer
(Vaswani et al., 2017) trained on random perturbations.
• DeepFix (Gupta et al., 2017): The task is to repair

compiler errors in C code submitted by students in an
introductory programming course. We set the initial fixer
to be the existing best system, DrRepair (Yasunaga &
Liang, 2020), which was trained on manually-designed
heuristic perturbations.

Our approach (BIFI) outperforms the initial fixers, obtaining
90.5% repair accuracy on GitHub-Python (+28.5% absolute)
and 71.7% repair accuracy on DeepFix (+5.6% absolute),
attaining a new state-of-the-art. BIFI also improves on
backtranslation by 10%. Further, we qualitatively show
how the fixer and breaker adapt towards more realistic
distributions of code through the BIFI algorithm (§4.3).

2. Problem statement
Figure 1 illustrates our problem setup, critic2fixer. The
system is given unlabeled dataD (code snippets) and a critic
c (code analyzer or compiler) that returns whether an input
is good or bad: e.g., for a code snippet x∈D,

c(x)=

{
0 if x has errors,
1 if x has no error. (1)

Using the critic c, examples inD can be classified into bad
onesDbad={x |x∈D, c(x)=0} and good onesDgood={y |
y∈D, c(y)=1}. Our task is to learn a fixer f that maps a bad
example x∈Dbad into a good example f(x) such that it is
close1 tox and c(f(x))=1. The evaluation metric is the fixer
f ’s repair accuracy on a held-out set of bad examples,D(test)

bad ,

RepairAcc=
|{x |x∈D(test)

bad , c(f(x))=1}|
|D(test)

bad |
. (2)

3. Approach
The major challenge of learning a fixer is that we need to learn
from unpaired data, i.e.,Dbad andDgood do not form 〈broken,
fixed〉 pairs. Prior works in code repair apply random or

1We constrain the edit distance as described in §4.1. We acknowl-
edge that while we want f(x) to be semantics-preserving, it is non-
trivial to ensure this automatically, so we rely on the edit distance.

https://github.com/
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Figure 3. Overview of our approach. We train the initial fixer on synthetically prepared data as in prior works (top left). In our approach,
BIFI (bottom right), we apply the initial fixer to the real bad examples and add fixed outputs (verified by the critic) to our training data
(Step 1), train a breaker on the resulting paired data (Step 2), use the breaker to generate (intuitively more realistic) code errors (Step 3), and
train the fixer again on the newly-generated paired data (Step 4). We iterate this cycle, improving the fixer and the breaker simultaneously.
Top right: a version of BIFI without the breaker (FixerOnly). Bottom left: comparison of BIFI to backtranslation. The main difference
is that BIFI uses the critic to verify that the fixer produces good code and the breaker produces bad code (annotated with magenta font).

heuristic perturbations to good examples (e.g., dropping to-
kens) and prepare a synthetic paired data 〈perturbed code,
good code〉 to train a fixer (Gupta et al., 2017; Ahmed et al.,
2018; Yasunaga & Liang, 2020). However, such syntheti-
cally generated bad examples do not match the distribution of
real bad examples. For instance, as Figure 2 (top) shows, syn-
thetic perturbations may drop parentheses arbitrarily from
code, generating errors that are rare in real programs; in
contrast, real human-written code misses parentheses often
in a nested context (e.g., 10x more than non-nested in our
collected dataset GitHub-Python). In a more extreme case
(Figure 2 bottom), to make the real human error (center) from
the corrected code (left), multiple tokens (in this case, a pair
of indent and dedent) need to be inserted or dropped accord-
ingly, which random perturbations would generate with ex-
tremely low probability. This distribution mismatch between
synthetic data and real data results in low performance (§4).

To address this challenge, we propose Break-It-Fix-It (BIFI),
an approach that adapts the fixer automatically towards real
distributions of bad examples. Concretely, we first start
from the synthetic paired data 〈synthetic bad, good〉 and
train an initial fixer as in prior works (see Figure 3 top left;
initialization). We then perform the following cycle (see
Figure 3 bottom right): (1) we apply the initial fixer to the real
bad examples and use the critic to assess if the fixer’s output is
good—if good, we keep the pair; (2) we train a breaker on the
resulting paired data—as this data consists of real code errors,

intuitively, the breaker learns to generate realistic code errors;
(3) we apply the breaker to the good examples; (4) we finally
train the fixer on the newly-generated paired data in (1) and
(3). We iterate this cycle to improve the fixer and the breaker
simultaneously in the process. The intuition is that a better
fixer and breaker will be able to generate more realistic paired
data, which in turn helps to train a better fixer and breaker.

Below, we describe the initialization step in §3.1, our main
algorithm BIFI in §3.2, and discuss two baselines of BIFI:
backtranslation (§3.3) and FixerOnly (version of BIFI
without the breaker; §3.4).

3.1. Initialization

Given unlabeled data D= (Dbad,Dgood), we first prepare a
synthetic paired dataPsynthetic by perturbing good examples:

Psynthetic={(bsynthetic(y), y) |y∈Dgood}, (3)

where bsynthetic denotes a pre-defined procedure that corrupts
code. For instance, we will experiment with two choices of
bsynthetic: (i) random noising, which randomly drops/inserts
/replaces tokens in code, and (ii) heuristic noising designed
in Yasunaga & Liang (2020), which aims to generate
common programming errors such as typo, punctuation and
type errors. More details are described in §4.1.

We then train the initial fixer f0 and breaker b0 on the
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synthetic paired data:

b0=TRAINgood→bad(Psynthetic) (4)

f0=TRAINbad→good(Psynthetic) (5)

where TRAINgood→bad(P) denotes training an encoder-
decoder model that maps good-side examples to bad-side
examples in a paired data P , and TRAINbad→good(P) does
the reverse. Note that f0 here corresponds to the fixer learned
in prior works (e.g., Gupta et al. (2017); Yasunaga & Liang
(2020)). We call this initialization step our round 0.

3.2. Break-It-Fix-It (BIFI)

BIFI aims to improve the fixer and breaker simultaneously
through rounds of data generation and training: (1) use
a fixer to create data for a breaker, (2) train a breaker, (3)
use a breaker to create data for a fixer, and (4) train a fixer.
Concretely, after the initialization step, BIFI performs the
following in each round k=1,2,...,K:

P(f)
k ={(x, fk−1(x)) |x∈Dbad, c(fk−1(x))=1} (6)

bk=TRAINgood→bad(P(f)
k ) (7)

P(b)
k ={(bk(y), y) |y∈Dgood, c(bk(y))=0} (8)

fk=TRAINbad→good(P(f)
k ∪P(b)

k ). (9)

For convenience, we call the original examples inDbad real
bad examples. Here Eq 6 applies the current fixer fk−1 to the
real bad examples inDbad, and keeps outputs that are actually
fixed (verified by the critic c; red part). This way, we can ob-
tain new paired dataP(f)

k that is based on real bad examples.
Eq 7 then trains the breaker bk (fine-tunes from the previous
breaker bk−1) on this new paired dataP(f)

k so that intuitively
it can learn to generate realistic bad examples. Next, Eq 8 ap-
plies the breaker bk to the good examples inDgood, and keeps
outputs that are actually broken (verified by the critic c; red
part). This provides an extra paired dataP(b)

k that is based on
bad examples generated by the learned breaker. Finally, Eq
9 trains the fixer fk (fine-tunes from the previous fixer fk−1)
on bothP(f)

k andP(b)
k , so that the fixer sees real and breaker-

generated bad examples. Over time, this cycle adapts the
fixer and breaker towards the distribution of real examples.
Figure 3 (bottom right) provides an illustration of BIFI.

3.3. Comparison with Backtranslation

The BIFI algorithm is related to backtranslation (Lample
et al., 2018b) in unsupervised machine translation. One may
view the bad-side and good-side in our setup as two source/tar-
get languages in machine translation. Backtranslation uses a
target-to-source model to generate noisy sources and trains a
source-to-target model to reconstruct the targets. Specifically,

in each round k, backtranslation performs the following:

P(f)
k ={(x, fk−1(x)) |x∈Dbad} (10)

bk=TRAINgood→bad(P(f)
k ) (11)

P(b)
k ={(bk(y), y) |y∈Dgood} (12)

fk=TRAINbad→good(P(b)
k ). (13)

BIFI differs in two aspects. First, as our task has a critic, BIFI
uses the critic to verify the outputs of the fixer and breaker,
and only keep examples whose outputs are actually fixed
(Eq 6 red part) and whose outputs are broken (Eq 8 red
part) to generate paired data. In contrast, backtranslation
does not verify the generated paired data in Eq 10, 12. This
may blindly include non-fixed code as good-side examples
(consequently, the breaker might learn to output erroneous
code) and non-broken code as bad-side examples, leading
to noisy training data (e.g., Figure 3 bottom left). Secondly,
while backtranslation trains the fixer only on examples
predicted by the breaker (Eq 13), BIFI trains the fixer on the
real bad examples (P(f)

k in Eq 9) in addition to examples
generated by the breaker, which improves the correctness
and distributional match of training data. We will show in our
ablation study (§4.3.3) that both of these two components
improve the learning of a fixer and breaker. Essentially, BIFI
is an augmentation of backtranslation with a critic.

3.4. Version of BIFI without breaker: FixerOnly

The benefit of BIFI is to enable training the fixer on real bad
examples and bad examples generated by a learned breaker.
We consider a version (FixerOnly) that trains the fixer simply
on the real bad examples (prepared in Eq 6) but not the bad
examples generated by the breaker (Eq 8). Specifically,
FixerOnly does the following in each round k:

P(f)
k ={(x, fk−1(x)) |x∈Dbad, c(fk−1(x))=1} (14)

fk=TRAINbad→good(P(f)
k ). (15)

FixerOnly can also be viewed as self-training (Lee, 2013)
with the difference that we only add fixer outputs verified by
the critic to the training data. We will show in §4.3.1 that
FixerOnly is especially useful when the amount of available
bad examples |Dbad| is big, but the gain is smaller compared
to BIFI when |Dbad| is small, because BIFI can use the breaker
to generate additional paired data for training the fixer (Eq 8).

4. Experiments
We evaluate our approach on two code repair datasets: a
common benchmark DeepFix2 (Gupta et al., 2017), and
GitHub-Python, a bigger dataset we collect in this paper.

4.1. Dataset and setup

We first describe the detail and experimental setup for
GitHub-Python and DeepFix.

2https://bitbucket.org/iiscseal/deepfix

https://bitbucket.org/iiscseal/deepfix
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Method
Test accuracy

Total Unbalanced
Parentheses

Indentation
Error

Invalid
Syntax

Initial Round-0 62.0% 87.7% 39.4% 70.5%

FixerOnly Round-1 86.8% 93.3% 79.5% 90.9%
Round-2 88.6% 92.4% 83.7% 92.0%

BIFI Round-1 88.0% 94.1% 81.3% 91.6%
Round-2 90.5% 94.2% 85.9% 93.5%

Table 1. Repair accuracy on the GitHub-Python test set. The
initial fixer is trained on synthetic bad code. Our proposed method
(BIFI) enables the fixer to be fine-tuned on real bad code and bad
code generated by the learned breaker. The result shows that BIFI
outperforms the initial fixer by a large margin.

Method Test accuracy

DeepFix (Gupta et al., 2017) 33.4%
RLAssist (Gupta et al., 2019) 26.6%
SampleFix (Hajipour et al., 2019) 45.3%
DrRepair (Yasunaga & Liang, 2020) 66.1%

Our Initial Round-0 (= DrRepair) 66.1%

Our FixerOnly Round-1 68.6%
Round-2 70.5%

Our BIFI Round-1 70.8%
Round-2 71.7%

Table 2. Repair accuracy on the DeepFix test set. We define our
initial fixer (Round 0) to be the existing best system DrRepair. Note
that DrRepair’s training procedure coincides with the initialization
step of our BIFI algorithm, with heuristic perturbations used in Eq
3. We then apply BIFI on top of it for Round 1, 2. BIFI outperforms
DrRepair, achieving a new state-of-the-art.

4.1.1. Github-Python

Dataset. To obtain an unlabeled dataset of code, we col-
lected Python3 files from GitHub public repositories.3 We
then tokenize each code file using the builtin Python tok-
enizer, and keep code snippets of length 10–128 tokens, re-
sulting in 3M code snippets. As the critic c, we use the Python
AST parser,4 which catches unbalanced parentheses, inden-
tation errors, and other syntax errors. Concretely, we define
c(x)=1 (good) if the AST parser returns no errors for input
codex, and c(x)=0 (bad) otherwise. Using this critic, we ob-
tain 38K snippets of bad code and 3M snippets of good code.
From the 38K bad examples, we holdout 15K as the final test
set, and make the remaining 23K bad examples available for
BIFI. Our goal is to learn a fixer that repairs AST parse errors.
We define that the fixer’s repair is successful if the output code
has no AST parse errors and has Levenshtein edit-distance
(Levenshtein, 1966) less than 5 tokens from the input code.
The evaluation metric is the fixer’s repair accuracy on the test
set (the heldout 15K examples of real bad code).

BIFI implementation details. For the architecture of the
fixer and breaker, we use the encoder-decoder Transformer

3https:github.com
4https://docs.python.org/3/library/ast.html

(Vaswani et al., 2017) with 4 layers, 8 attention heads, and hid-
den states of size 256. The model parameters are optimized
by Adam (Kingma & Ba, 2015), with batch size of 20,000 to-
kens, learning rate 0.0001, and gradient clipping 1.0 (Pascanu
et al., 2013), on one GPU (GTX Titan X). For generation, we
use beam search with beam size 10, and keep predictions with
Levenshtein edit-distance less than 5 tokens from the input.

To train the initial fixer f0, we use random perturbations for
the corruption procedure bsynthetic (Eq 3), which drops, inserts,
or replaces 1–3 tokens in code with uniform distribution. We
apply bsynthetic 8 times to each of the 2.6M good code snippets
to prepare the initial training dataPsynthetic. We holdout 1%
of Psynthetic as our dev set, which we use to perform early
stopping. We then run the BIFI algorithm for K=2 rounds.

4.1.2. DeepFix

Dataset. DeepFix (Gupta et al., 2017) contains C code sub-
mitted by students in an introductory programming course, of
which 37K snippets are good (no compiler error) and 7K are
bad (have compiler errors). Each code snippet has 25 lines on
average. Within the 7K bad examples, we take 20% as a held-
out test set. We make the remaining 80% available for BIFI.
The goal is to learn a fixer that repairs compiler errors. Repair
is successful if the output code has no compiler errors. The
evaluation metric is the fixer’s repair accuracy on the test set.

BIFI implementation details. We define the initial fixer
f0 as DrRepair (Yasunaga & Liang, 2020) (the existing best
system on DeepFix), which is an encoder-decoder model
trained in a procedure that corresponds exactly to the initial-
ization step of BIFI (§3.1). Specifically, to train DrRepair,
Yasunaga & Liang (2020) design heuristic perturbations for
the corruption procedure bsynthetic, which mimics common
code errors beginner and experienced programmers make
(e.g., typos, punctuation, keyword and type errors). We
use the same training / dev data prepared and released by
the authors to train the initial fixer. We then run the BIFI
algorithm for K=2 rounds. Our fixer and breaker have the
same model architecture as DrRepair. At test time, following
the original DrRepair, we repeatedly apply the fixer while
the code still has errors, up to a maximum of 5 times.

4.2. Main results

We study the fixer’s repair accuracy on GitHub-Python
and DeepFix. Here “round k accuracy” means the repair
accuracy of the fixer learned in round k, i.e., fk.

GitHub-Python. Table 1 shows the test results on
GitHub-Python. We show the overall repair accuracy
(“Total”) as well as the breakdown over the error categories
in the Python AST parser (table right). The initial fixer f0
(“Initial”) is trained on randomly perturbed, synthetic bad
code. Our proposed method (BIFI) enables the initial fixer to
be further trained on real bad code and bad code generated by
the learned breaker, which outperforms the initial fixer signif-
icantly (+28.5% in overall repair accuracy, and consistently

https:github.com
https://docs.python.org/3/library/ast.html
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Method
Test accuracy

Bad
100%

Bad
50%

Bad
10%

ref. Synthetic
bad only

Initial Round-0 62.0% 62.0% 62.0% 62.0%
FixerOnly Round-2 88.6% 84.7% 78.5% 62.7%
BIFI Round-2 90.5% 89.0% 86.7% 63.3%

Table 3. Analysis varying the amount of (real) bad code on
GitHub-Python. “Bad 100%” is our original setting (with 23K
real bad examples available for BIFI) and “Bad 50%” means only
50% of them (11.5K) are made available. “Synthetic bad only”
means keeping training the fixer on synthetic bad examples. The
result shows that (i) even when the amount of real bad examples
is small (e.g., “Bad 10%”), they are still useful, allowing FixerOnly
/BIFI to perform better than using synthetic data alone; (ii) when
the amount of real bad examples is small, BIFI exceeds FixerOnly
by a larger margin, highlighting the usefulness of the bad examples
generated by the learned breaker.

Method Test accuracy

Initial Round-0 62.0%

BIFI (ours) Round-2 90.5%
– real bad Round-2 84.6%

– critic Round-2 84.0%

– both
(backtranslation) Round-2 80.1%

Table 4. Performance comparison with backtranslation on
GitHub-Python. Backtranslation is equivalent to removing two
components from BIFI: (i) using the critic to verify fix / break
attempts (“critic”) and (ii) training the fixer on real bad examples
in addition to examples generated by the breaker (“real bad”). The
result suggests that both of these components improve the learning
of a fixer, and consequently BIFI outperforms backtranslation.

across all error categories). This result suggests that even if
we start from a very simple initial fixer trained with random
perturbations, BIFI can automatically turn it into a usable
fixer with high repair accuracy—90.5% accuracy on real bad
code. We also experimented with continuing training the
initial fixer f0 with synthetic perturbations only, for the same
rounds of BIFI (hence, controlling the amount of training
data seen by the fixer); however, this did not provide an
improvement, suggesting that there is a performance ceiling
if we only train on synthetic data.

DeepFix. Table 2 shows the test results on DeepFix, along
with prior works. Here we use the existing best system
DrRepair as our initial fixer (“Initial”). BIFI outperforms
the initial fixer by a substantial margin (+5.6% absolute over
DrRepair), achieving a state-of-the-art accuracy of 71.7%. It
is notable that DrRepair was trained with manually-designed
heuristic perturbations, where the authors (Yasunaga &
Liang, 2020) studied and mimicked various code errors
beginner and experienced programmers make (e.g., typos,
punctuation and type errors); nevertheless, our result
suggests that there is still room for improving the adaptation
to a more realistic distribution of coding errors, and BIFI
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def sanitize(x,start,end):
<I>if x >= start and x < end:
  err = 0
   <I>return err, x<D>
  else:
  <I>err = 1
    return err, x

def sanitize(x,start,end):
<I>if x >= start and x < end:
  <I>err = 0
      <I>return err, x<D>
    else:
    <I>err = 1
      return err, x

def sanitize(x,start,end):
<I>if x >= start and x < end:
  <I>err = 0
      return err, x<D>
  else:
  <I>err = 1
    return err, x

def sanitize(x,r1,r2):
<I>if x >= r1 and x < r2:
  err = 0
   <I>return err, x<D>
  else:
  <I>err = 1
    return err, x

def sanitize(x,r1,r2):
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def sanitize(x,r1,r2):
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No error — fixed! Error! Error!

def del_record(self, desc):
  record = self.find_one(desc)
  records = self.find(desc)
  if [record] != records:
     raise ValueError(
       "duplicate {}".format(
          str(desc)))
  if record:
    self.remove(record) 

def del_record(self, desc):
  record = self.find_one(desc)
  records = self.find(desc)
  if [record] != records:
     raise ValueError, a

       "duplicate {}".format(
          str(desc))
  if record:
    self.remove(record) 

def del_record(self, desc):
  record = self.find_one(desc)
  records = self.find(desc)
  if [record] != records:
     raise ValueError( 
       "duplicate {}".format(
          str(desc))   a

  if record:
    self.remove(record) 

Figure 4. Example of breaker outputs. Given good code on the
left, we sampled two outputs made by the breaker learned in BIFI
round 1 (right). We observe that the breaker places large probability
on errors seen in real bad code (i.e., obsolete usage of raise,
unbalanced parentheses in nested context).
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No error — fixed! Error! Error!

def del_record(self, desc):
  record = self.find_one(desc)
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       "duplicate {}".format(
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  if record:
    self.remove(record) 
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          str(desc))   a

  if record:
    self.remove(record) 

Figure 5. Example of fixer outputs. Given the bad code on the left
(with an indentation error), the initial fixer (center) attempts to fix it
by inserting an indent token (〈I〉) to line 3, but fails to adjust (delete)
the indent token on the next line. The initial fixer commonly makes
this mistake due to the distribution mismatch between real errors and
synthetic perturbations on which the initial fixer was trained (see
§4.3.4). After one round of BIFI, the fixer in round 1 (right) learns
to insert and delete the correct pair of indent tokens, fixing the error.

boosts repair accuracy without additional manual effort.

4.3. Analysis

We now analyze the key insights of BIFI. As the main prop-
erties of BIFI are to (i) add real bad examples to the training
data if the critic accepts the fixer’s output (the FixerOnly
version), and to (ii) train the breaker to generate realistic bad
examples (BIFI), we analyze their effects in §4.3.1 and §4.3.2.
We also compare with backtranslation in §4.3.3. We then
analyze how our fixer adapts towards real code distributions
through quantitative and qualitative studies (§4.3.4).

4.3.1. Effect of real bad examples

FixerOnly enables training the fixer on real bad examples (but
does not use the bad examples generated by the breaker). As
Table 1 and 2 show, FixerOnly outperforms the initial fixer by
a large margin (+27% on GitHub-Python). This result high-
lights the the importance of training on real bad examples.

We further analyze the effect of varying the amount of real
bad examples, shown in Table 3. Here, “Bad 100%” is
our original setting (with 23K real bad examples available
for BIFI and FixerOnly) and “Bad 50%” means only 50%
of them (11.5K) are made available. “Synthetic bad only”
means keeping training the fixer on synthetic bad examples
only. We find that while the repair accuracy drops as we
decrease the amount of available real bad examples, a small
amount of real bad examples (e.g., “Bad 10%”) is still useful,
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Code error category #Examples Initial
Round-0 Acc.

FixerOnly BIFI

Round-1 Acc. Round-2 Acc. Round-1 Acc. Round-2 Acc.

Total 15055 62.0% 86.8% 92.4% 88.0% 90.5%

Unbalanced Parentheses 3999 87.7% 93.3% 92.4% 94.1% 94.2%
Unclosed left parenthesis (not nested) 226 92.5% 94.6% 94.6% 94.7% 94.4%
Unclosed left parenthesis (nested) 3014 85.8% 92.8% 91.7% 93.8% 93.8%
Redundant right parenthesis 759 93.8% 95.3% 94.7% 95.4% 95.7%

Indentation Error 6307 39.4% 79.5% 83.7% 81.3% 85.9%
Expected indent 4311 46.4% 81.2% 84.1% 82.0% 85.3%
Unexpected indent 1966 24.6% 76.8% 83.8% 80.9% 88.4%

Invalid Syntax 4749 70.5% 90.9% 92.0% 91.6% 93.5%
Missing colon 663 98.3% 97.3% 97.4% 98.2% 98.0%
Missing comma (single-line list/tuple/dict) 694 95.4% 98.1% 97.4% 98.4% 98.3%
Missing comma (multi-line list/tuple/dict) 451 88.9% 92.5% 92.0% 94.5% 94.9%
Missing newline 52 84.6% 86.5% 88.5% 86.5% 88.5%
Missing parenthesis pair 634 82.5% 85.0% 86.4% 87.1% 88.3%
Redundant comma 152 73.7% 84.2% 91.4% 84.9% 92.1%
Redundant parenthesis pair 698 13.8% 80.7% 86.1% 80.1% 89.4%
Invalid use of comma

(e.g., “raise OSError, "msg"” → “raise OSError("msg")”) 1138 61.3% 98.8% 99.1% 98.7% 99.4%
Other 267 60.7% 66.3% 64.4% 67.4% 66.7%

Table 5. Code error categories in GitHub-Python, and repair accuracy. Due to the mismatch between real errors and synthetic perturba-
tions used for training, the initial fixer has lower accuracy on “nested” than “not nested” for “unbalanced parentheses” errors, but it catches up
in BIFI round 1, 2. Similarly, the initial fixer’s repair accuracy is very low for “redundant parenthesis pair” and “indentation error”, but it im-
proves significantly in round 1, 2. This result illustrates the effect of BIFI adapting the fixer towards real errors. See §4.3.4 for more analysis.

making FixerOnly perform better than using synthetic data
alone (i.e., 78.5% vs 62.7%).

4.3.2. Effect of bad examples generated by breaker

Recall that BIFI trains the fixer on both real bad examples
and bad examples generated by the learned breaker. As
Table 1 and 2 show, BIFI consistently provides an extra boost
over FixerOnly, suggesting that the use of breaker outputs
improves the fixer. Moreover, another benefit of the breaker
is that one can sample many bad examples from the breaker
to augment real bad examples, if their amount is limited.
In Table 3 we find that BIFI is especially stronger than
FixerOnly when the amount of available real bad examples
is small (e.g., “Bad 10%”).

Figure 4 shows sample outputs made by the learned
breaker b1 given the good code on the left. We observe
that the breaker generates errors seen in real bad code, i.e.,
obsolete usage of raise in Python3 (center) and unbalanced
parentheses in nested context (right). Compared to random
perturbations that arbitrarily drop/insert tokens, the learned
breaker improves the coverage and efficiency of the training
data for the fixer.

4.3.3. Comparison with backtranslation

Table 4 compares our method (BIFI) with backtranslation.
As discussed in §3.3, backtranslation is equivalent to
removing two components from BIFI: (i) using the critic
to verify fix/break attempts in data generation (“critic” in
Table) and (ii) training the fixer on real bad examples besides
examples generated by the breaker (“real bad”). We find that
removing each component from BIFI hurts the performance
(e.g., 90%→84%), which suggests that both components
are important to improve the quality of training data. With
these two innovations, BIFI outperforms backtranslation by

a large margin (+10% absolute on GitHub-Python).

4.3.4. How does the fixer adapt?

We take a closer look at how our fixer performs and adapts
towards the real distribution of bad code. Table 5 shows
fine-grained categories of code errors seen in GitHub-Python,
and their repair accuracy.

In this categorization, we observe two examples of dis-
tribution mismatch between the real errors and synthetic
perturbations: (i) random perturbations can generate this
category of errors with high probability but with a wrong
“sub-distribution” within it (e.g., can generate “unbalanced
parentheses” or “missing comma” errors but do not match
the low-level distribution of real bad code, such as errors
occurring more often in nested parentheses or in a multi-line
list/tuple/dict; recall the Figure 2 top example); (ii) random
perturbations can only generate this category of errors with
very small probability (e.g., “redundant parenthesis pair” and
“indentation error”, for which an exact pair of parentheses
or indents/dedents need to be dropped or inserted; recall
the Figure 2 bottom example). For (i), the result shows that
the initial fixer trained with random perturbations has lower
accuracy on “nested” than “not nested” for “unbalanced
parentheses” errors, and on “multi-line” than “single-line”
for “missing comma” errors; but the performance catches
up in round 1,2, suggesting the effect of BIFI for addressing
the low-level distribution mismatch. For (ii), the result
shows that the initial fixer’s repair accuracy is very low for
“redundant parenthesis pair” and “indentation error”, but it
achieves significantly higher performance in round 1, 2 (e.g.,
39%→85% for indentation errors). A possible explanation
is that as BIFI iteratively adds the successfully repaired cases
to training, the fixer adapts to up-weight this category of
error fixing, leading to improved accuracy.
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Figure 5 provides examples of fixer outputs. Given the
bad code on the left (with an indentation error), the initial
fixer (center) attempts to fix it by inserting an indent token
(〈I〉) to line 3 but fails to adjust (delete) the indent token on
the following line. The initial fixer commonly makes this
mistake for indentation errors, due to the mismatch between
real errors and synthetic perturbations discussed above.
After one round of BIFI, the fixer (Figure 5 right) learns to
insert and delete the correct pair of indents, fixing the error.

5. Related work and discussion
Learning to repair code. Several works learn to repair
code from labeled datasets of source code edits made by
programmers, e.g., error resolution records (Just et al., 2014;
Chen et al., 2019; Mesbah et al., 2019; Bader et al., 2019;
Tarlow et al., 2020; Ding et al., 2020). As labeled data is
costly to prepare, various works study learning code fixers
from unlabeled or synthetic data (Pu et al., 2016; Parihar
et al., 2017; Ahmed et al., 2018; Pradel & Sen, 2018; Wang
et al., 2018; Vasic et al., 2019; Gupta et al., 2019; Hajipour
et al., 2019; Hellendoorn et al., 2020). In particular, Gupta
et al. (2017) is an early work that randomly perturbs good
code to prepare a synthetic paired data and trains a seq2seq
neural network model as a fixer. Yasunaga & Liang (2020)
improve on it by designing heuristic perturbations that mimic
common errors made by programmers. Different from the
above work, our method (BIFI) adapts a naive fixer trained
with synthetic errors towards real errors without manual,
domain-specific effort. For a more comprehensive review of
automatic code repair, we refer readers to Monperrus (2020).

Denoising autoencoding. Denoising autoencoding (Vin-
cent et al., 2008) trains a model that recovers original data
from randomly corrupted versions, and is widely used as
an effective self-supervised representation learning and pre-
training strategy, e.g., in computer vision (Erhan et al., 2010)
and natural language processing (NLP) (Lewis et al. (2020),
which randomly drops / replaces tokens in a sentence and
learns to recover). Our initial fixer trained with random per-
turbations is a denoising autoencoder. Crucially, instead
of using it purely for representation learning, we show that
through the BIFI algorithm, one can turn the vanilla denoising
autoencoder into a usable fixer that repairs real-world bad ex-
amples with high accuracy. On a related note, Lee et al. (2019)
adapt a denoising autoencoder into an autocomplete system.

Domain adaptation. Domain adaptation aims to address
the mismatch in data distribution between training and test
domains (Daume III & Marcu, 2006; Quionero-Candela et al.,
2009; Koh et al., 2021). Such domain shifts typically occur
across related but different datasets (Torralba & Efros, 2011;
Fang et al., 2013; Venkateswara et al., 2017; Yu et al., 2018b;
2019; Peng et al., 2019; Kamath et al., 2020), as well as from
synthetic data to real data (including sim2real) (Wang et al.,
2015; Ganin & Lempitsky, 2015; Richter et al., 2016; Peng
et al., 2018; Hellendoorn et al., 2019; Xu et al., 2020; Belle-
mare et al., 2020), as synthetic data can be easier to obtain

than real data. In our repair task, unpaired real data (code
snippets on GitHub) is available but paired real data is costly
to obtain. Hence we considered adaptation from synthetic
paired data to real paired data. Within domain adaptation, our
task is also related to the setting where unlabeled data in the
test domain is available (Sun & Saenko, 2016; Hoffman et al.,
2018; Sun et al., 2020) (in our case, real bad code). The dif-
ference is that as our outputs are structured, we have a critic
to check if the fixer’s output on the unlabeled data is correct.
Leveraging this property, BIFI takes the correct outputs to cre-
ate training data in the test domain (Eq 6); and trains a breaker
to generate more data that simulates the test domain (Eq 8).

Data augmentation. Data augmentation aims to generate
extra training data. A common approach is to increase the
source side data, for instance by adding modifications or
sampling from generative models (Hannun et al., 2014; Jia &
Liang, 2016; Krizhevsky et al., 2017; Antoniou et al., 2017;
Yasunaga et al., 2018; Yu et al., 2018a; Lee et al., 2019;
Berthelot et al., 2019; Xie et al., 2020). Several works also
study target side augmentation, which keeps multiple (valid)
target predictions made by a model and adds to training.
This is commonly used in structured generation problems
such as semantic parsing, program synthesis and molecule
generation (Liang et al., 2013; Berant et al., 2013; Guu et al.,
2017; Min et al., 2019; Zhong et al., 2020; Yang et al., 2020).
While our method also augments training data, it differs
in two aspects: 1) we use the fixer and breaker to augment
both the source and target sides; 2) our goal is not only to
increase the amount of training data, but also to adapt to the
distribution of interest (real bad examples).

Self-training. Self-training (Lee, 2013; McClosky et al.,
2006; Kumar et al., 2020; Xie et al., 2021) applies a trained
model to unlabeled data, obtains predicted targets (pseudo-
labels), and uses them as extra training examples. Similarly,
co-training (Blum & Mitchell, 1998) and tri-training (Zhou
& Li, 2005) train multiple models and add predicted targets
on which these models agree. Our method also applies
trained models (breaker and fixer) to unlabeled data to
generate targets, with a difference that we use the critic to
verify the predictions and only keep correct ones.

Unsupervised machine translation (MT). Unsupervised
MT learns translators from unpaired corpora (Artetxe et al.,
2018a;b; Lachaux et al., 2020). Backtranslation (Sennrich
et al., 2016; Lample et al., 2018a;b) is a common approach
that uses the target-to-source model to generate noisy sources
and then trains the source-to-target model to reconstruct the
targets (also related to cycle-consistency (Zhu et al., 2017;
Hoffman et al., 2018) and style transfer (Shen et al., 2017;
Yang et al., 2018; Zhang et al., 2019)). One may view the
“bad-side” and “good-side” in our repair task as two source/
target languages in MT and apply backtranslation. The main
difference is that the repair task has a critic, which motivated
our BIFI algorithm: BIFI (i) uses the critic to verify if the
generated examples are actually fixed or broken (Eq 6,
8), and (ii) trains the fixer on real bad examples besides
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examples generated by the breaker (Eq 9). We found these
techniques improve the correctness of the generated training
data (§4.3.3). While we focused on code repair in this work,
we hope that BIFI can be applied to unsupervised MT and
style transfer by introducing a human-based or learned critic.

6. Conclusion
We considered the problem of learning a fixer from unpaired
data and a critic (code analyzer or compiler), and proposed a
new approach, Break-It-Fix-It (BIFI). The idea of BIFI is to
train a breaker and use the critic to amass more realistic and
correct paired data for training the fixer. Using two code re-
pair datasets (GitHub-Python and DeepFix), we showed how
BIFI adapts baseline fixers towards realistic distributions
of code errors, achieving improved repair performance. We
note that BIFI is not about simply collecting more training
data, but rather turning raw unlabeled data into usable paired
data with the help of a critic. This is a potentially powerful
and general framework applicable to many areas such as
molecular design, text editing, and machine translation.

Acknowledgments
We thank Michael Xie, members of the Stanford P-Lambda,
SNAP and NLP groups, as well as our anonymous reviewers
for valuable feedback. This work was supported in part by
Funai Foundation Fellowship and NSF CAREER Award
IIS-1552635.

Reproducibility
Code and data are available at https://github.com/
michiyasunaga/bifi. Experiments are available at
https://worksheets.codalab.org/worksheets/
0xfddb2ef01a9f4dc0b5d974a5a97174be.

References
Ahmed, U. Z., Kumar, P., Karkare, A., Kar, P., and Gulwani,

S. Compilation error repair: for the student programs,
from the student programs. In International Conference
on Software Engineering (ICSE), pp. 78–87, 2018.

Antoniou, A., Storkey, A., and Edwards, H. Data augmen-
tation generative adversarial networks. arXiv preprint
arXiv:1711.04340, 2017.

Artetxe, M., Labaka, G., and Agirre, E. Unsupervised statisti-
cal machine translation. arXiv preprint arXiv:1809.01272,
2018a.

Artetxe, M., Labaka, G., Agirre, E., and Cho, K. Unsu-
pervised neural machine translation. In International
Conference on Learning Representations (ICLR), 2018b.

Bader, J., Scott, A., Pradel, M., and Chandra, S. Getafix:
Learning to fix bugs automatically. Proceedings of the
ACM on Programming Languages, 3(OOPSLA):1–27,
2019.

Bellemare, M. G., Candido, S., Castro, P. S., Gong, J.,
Machado, M. C., Moitra, S., Ponda, S. S., and Wang, Z.
Autonomous navigation of stratospheric balloons using
reinforcement learning. Nature, 588, 2020.

Berant, J., Chou, A., Frostig, R., and Liang, P. Semantic
parsing on freebase from question-answer pairs. In
Empirical Methods in Natural Language Processing
(EMNLP), 2013.

Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N.,
Oliver, A., and Raffel, C. A. Mixmatch: A holistic
approach to semi-supervised learning. In Advances in
Neural Information Processing Systems (NeurIPS), 2019.

Blum, A. and Mitchell, T. Combining labeled and unlabeled
data with co-training. In Conference on computational
learning theory, 1998.

Chen, Z., Kommrusch, S. J., Tufano, M., Pouchet, L.-N.,
Poshyvanyk, D., and Monperrus, M. Sequencer:
Sequence-to-sequence learning for end-to-end program
repair. IEEE Transactions on Software Engineering, 2019.

Daume III, H. and Marcu, D. Domain adaptation for
statistical classifiers. Journal of artificial Intelligence
research, 2006.

Dinella, E., Dai, H., Li, Z., Naik, M., Song, L., and Wang,
K. Hoppity: Learning graph transformations to detect
and fix bugs in programs. In International Conference
on Learning Representations (ICLR), 2020.

Ding, Y., Ray, B., Devanbu, P., and Hellendoorn, V. J.
Patching as translation: the data and the metaphor. In
Automated Software Engineering (ASE), 2020.

Erhan, D., Courville, A., Bengio, Y., and Vincent, P. Why
does unsupervised pre-training help deep learning?
In Artificial Intelligence and Statistics (AISTATS), pp.
201–208, 2010.

Fang, C., Xu, Y., and Rockmore, D. N. Unbiased metric
learning: On the utilization of multiple datasets and web
images for softening bias. In International Conference
on Computer Vision (ICCV), 2013.

Ganin, Y. and Lempitsky, V. Unsupervised domain adap-
tation by backpropagation. In International Conference
on Machine Learning (ICML), 2015.

Gupta, R., Pal, S., Kanade, A., and Shevade, S. K. Deepfix:
Fixing common C language errors by deep learning. In
Association for the Advancement of Artificial Intelligence
(AAAI), 2017.

Gupta, R., Kanade, A., and Shevade, S. Deep reinforcement
learning for programming language correction. In
Association for the Advancement of Artificial Intelligence
(AAAI), 2019.

https://github.com/michiyasunaga/bifi
https://github.com/michiyasunaga/bifi
https://worksheets.codalab.org/worksheets/0xfddb2ef01a9f4dc0b5d974a5a97174be
https://worksheets.codalab.org/worksheets/0xfddb2ef01a9f4dc0b5d974a5a97174be


Break-It-Fix-It: Unsupervised Learning for Program Repair

Guu, K., Pasupat, P., Liu, E. Z., and Liang, P. From
language to programs: Bridging reinforcement learning
and maximum marginal likelihood. In Association for
Computational Linguistics (ACL), 2017.

Hajipour, H., Bhattacharya, A., and Fritz, M. Samplefix:
Learning to correct programs by sampling diverse fixes.
arXiv preprint arXiv:1906.10502, 2019.

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G.,
Elsen, E., Prenger, R., Satheesh, S., Sengupta, S., Coates,
A., et al. Deep speech: Scaling up end-to-end speech
recognition. arXiv preprint arXiv:1412.5567, 2014.

Hellendoorn, V. J., Proksch, S., Gall, H. C., and Bacchelli, A.
When code completion fails: A case study on real-world
completions. In International Conference on Software
Engineering (ICSE), 2019.

Hellendoorn, V. J., Sutton, C., Singh, R., Maniatis, P., and
Bieber, D. Global relational models of source code. In
International Conference on Learning Representations
(ICLR), 2020.

Hoffman, J., Tzeng, E., Park, T., Zhu, J.-Y., Isola, P., Saenko,
K., Efros, A., and Darrell, T. Cycada: Cycle-consistent ad-
versarial domain adaptation. In International Conference
on Machine Learning (ICML), 2018.

Jia, R. and Liang, P. Data recombination for neural semantic
parsing. In Association for Computational Linguistics
(ACL), 2016.

Jin, W., Yang, K., Barzilay, R., and Jaakkola, T. Learning
multimodal graph-to-graph translation for molecular
optimization. In International Conference on Learning
Representations (ICLR), 2019.

Just, R., Jalali, D., and Ernst, M. D. Defects4j: A database
of existing faults to enable controlled testing studies for
java programs. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis, pp.
437–440, 2014.

Kamath, A., Jia, R., and Liang, P. Selective question
answering under domain shift. In Association for
Computational Linguistics (ACL), 2020.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations (ICLR), 2015.

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang,
M., Balsubramani, A., Hu, W., Yasunaga, M., Phillips,
R. L., Beery, S., et al. Wilds: A benchmark of in-the-wild
distribution shifts. In International Conference on
Machine Learning (ICML), 2021.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Communications of the ACM, 2017.

Kumar, A., Ma, T., and Liang, P. Understanding self-
training for gradual domain adaptation. In International
Conference on Machine Learning (ICML), 2020.

Lachaux, M.-A., Roziere, B., Chanussot, L., and Lample,
G. Unsupervised translation of programming languages.
In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Lample, G., Conneau, A., Denoyer, L., and Ranzato, M.
Unsupervised machine translation using monolingual
corpora only. In International Conference on Learning
Representations (ICLR), 2018a.

Lample, G., Ott, M., Conneau, A., Denoyer, L., and Ranzato,
M. Phrase-based & neural unsupervised machine
translation. In Empirical Methods in Natural Language
Processing (EMNLP), 2018b.

Lee, D.-H. Pseudo-label: The simple and efficient semi-
supervised learning method for deep neural networks. In
Workshop on challenges in representation learning, Inter-
national Conference on Machine Learning (ICML), 2013.

Lee, M., Hashimoto, T. B., and Liang, P. Learning
autocomplete systems as a communication game. In
Advances in Neural Information Processing Systems
(NeurIPS) Workshop on Emergent Communication, 2019.

Levenshtein, V. I. Binary codes capable of correcting
deletions, insertions, and reversals. In Soviet physics
doklady, 1966.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed,
A., Levy, O., Stoyanov, V., and Zettlemoyer, L. Bart:
Denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension. In
Association for Computational Linguistics (ACL), 2020.

Liang, P., Jordan, M. I., and Klein, D. Learning dependency-
based compositional semantics. Computational
Linguistics, 2013.

McClosky, D., Charniak, E., and Johnson, M. Effective
self-training for parsing. In North American Association
for Computational Linguistics (NAACL), 2006.

Mesbah, A., Rice, A., Johnston, E., Glorioso, N., and
Aftandilian, E. Deepdelta: learning to repair compilation
errors. In Proceedings of the 2019 27th ACM Joint Meet-
ing on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering,
pp. 925–936, 2019.

Min, S., Chen, D., Hajishirzi, H., and Zettlemoyer, L. A
discrete hard em approach for weakly supervised question
answering. In Empirical Methods in Natural Language
Processing (EMNLP), 2019.

Monperrus, M. The living review on automated program
repair. Technical Report hal-01956501. HAL/archives-
ouvertes.fr., 2020.



Break-It-Fix-It: Unsupervised Learning for Program Repair

Parihar, S., Dadachanji, Z., Praveen Kumar Singh, R. D.,
Karkare, A., and Bhattacharya, A. Automatic grading
and feedback using program repair for introductory
programming courses. In ACM Conference on Innovation
and Technology in Computer Science Education, 2017.

Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty of
training recurrent neural networks. In International confer-
ence on machine learning (ICML), pp. 1310–1318, 2013.

Peng, X., Usman, B., Kaushik, N., Wang, D., Hoffman, J.,
and Saenko, K. Visda: A synthetic-to-real benchmark for
visual domain adaptation. In Computer Vision and Pattern
Recognition (CVPR), 2018.

Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., and Wang,
B. Moment matching for multi-source domain adaptation.
In International Conference on Computer Vision (ICCV),
2019.

Pradel, M. and Sen, K. Deepbugs: A learning approach to
name-based bug detection. Proceedings of the ACM on
Programming Languages, 2(OOPSLA):1–25, 2018.

Pu, Y., Narasimhan, K., Solar-Lezama, A., and Barzilay, R.
sk p: a neural program corrector for moocs. In Companion
Proceedings of the 2016 ACM SIGPLAN International
Conference on Systems, Programming, Languages and
Applications: Software for Humanity, pp. 39–40, 2016.

Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., and
Lawrence, N. D. Dataset shift in machine learning. The
MIT Press, 2009.

Richter, S. R., Vineet, V., Roth, S., and Koltun, V. Playing
for data: Ground truth from computer games. In European
conference on computer vision, 2016.

Sennrich, R., Haddow, B., and Birch, A. Improving neural
machine translation models with monolingual data. In
Association for Computational Linguistics (ACL), 2016.

Seo, H., Sadowski, C., Elbaum, S., Aftandilian, E., and
Bowdidge, R. Programmers’ build errors: A case study
at google. In International Conference on Software
Engineering (ICSE), 2014.

Shen, T., Lei, T., Barzilay, R., and Jaakkola, T. Style transfer
from non-parallel text by cross-alignment. In Advances in
Neural Information Processing Systems (NeurIPS), 2017.

Sun, B. and Saenko, K. Deep coral: Correlation alignment
for deep domain adaptation. In European Conference on
Computer Vision (ECCV), 2016.

Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A. A., and
Hardt, M. Test-time training for out-of-distribution
generalization. In International Conference on Machine
Learning (ICML), 2020.

Taghipour, K. and Ng, H. T. A neural approach to automated
essay scoring. In Empirical Methods in Natural Language
Processing (EMNLP), 2016.

Tarlow, D., Moitra, S., Rice, A., Chen, Z., Manzagol, P.-A.,
Sutton, C., and Aftandilian, E. Learning to fix build errors
with graph2diff neural networks. In Proceedings of the
IEEE/ACM 42nd International Conference on Software
Engineering Workshops, pp. 19–20, 2020.

Torralba, A. and Efros, A. A. Unbiased look at dataset bias. In
Computer Vision and Pattern Recognition (CVPR), 2011.

Vasic, M., Kanade, A., Maniatis, P., Bieber, D., and Singh,
R. Neural program repair by jointly learning to localize
and repair. In International Conference on Learning
Representations (ICLR), 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In Advances in Neural Information
Processing Systems (NeurIPS), 2017.

Venkateswara, H., Eusebio, J., Chakraborty, S., and
Panchanathan, S. Deep hashing network for unsupervised
domain adaptation. In Computer Vision and Pattern
Recognition (CVPR), pp. 5018–5027, 2017.

Vincent, P., Larochelle, H., Bengio, Y., , and Manzagol, P.-A.
Extracting and composing robust features with denoising
autoencoders. In International Conference on Machine
Learning (ICML), 2008.

Wang, K., Singh, R., and Su, Z. Dynamic neural program
embeddings for program repair. In International
Conference on Learning Representations (ICLR), 2018.

Wang, Y., Berant, J., and Liang, P. Building a semantic parser
overnight. In Association for Computational Linguistics
(ACL), 2015.

Xie, Q., Dai, Z., Hovy, E., Luong, M.-T., and Le, Q. V.
Unsupervised data augmentation for consistency training.
In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Xie, S. M., Kumar, A., Jones, R., Khani, F., Ma, T., and
Liang, P. In-n-out: Pre-training and self-training using
auxiliary information for out-of-distribution robustness.
In International Conference on Learning Representations
(ICLR), 2021.

Xu, S., Semnani, S. J., Campagna, G., and Lam, M. S.
Autoqa: From databases to qa semantic parsers with only
synthetic training data. In Empirical Methods in Natural
Language Processing (EMNLP), 2020.

Yang, K., Jin, W., Swanson, K., Barzilay, R., and Jaakkola, T.
Improving molecular design by stochastic iterative target
augmentation. In International Conference on Machine
Learning (ICML), 2020.



Break-It-Fix-It: Unsupervised Learning for Program Repair

Yang, Z., Hu, Z., Dyer, C., Xing, E. P., and Berg-Kirkpatrick,
T. Unsupervised text style transfer using language models
as discriminators. In Advances in Neural Information
Processing Systems (NeurIPS), 2018.

Yasunaga, M. and Liang, P. Graph-based, self-supervised
program repair from diagnostic feedback. In International
Conference on Machine Learning (ICML), 2020.

Yasunaga, M., Kasai, J., and Radev, D. Robust multilingual
part-of-speech tagging via adversarial training. In North
American Association for Computational Linguistics
(NAACL), 2018.

Yu, T., Yasunaga, M., Yang, K., Zhang, R., Wang, D., Li, Z.,
and Radev, D. Syntaxsqlnet: Syntax tree networks for com-
plex and cross-domaintext-to-sql task. In Empirical Meth-
ods in Natural Language Processing (EMNLP), 2018a.

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D.,
Li, Z., Ma, J., Li, I., Yao, Q., Roman, S., et al. Spider:
A large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task. In
Empirical Methods in Natural Language Processing
(EMNLP), 2018b.

Yu, T., Zhang, R., Yasunaga, M., Tan, Y. C., Lin, X. V.,
Li, S., Er, H., Li, I., Pang, B., Chen, T., et al. Sparc:
Cross-domain semantic parsing in context. In Association
for Computational Linguistics (ACL), 2019.

Zhang, Z., Ren, S., Liu, S., Wang, J., Chen, P., Li, M.,
Zhou, M., and Chen, E. Style transfer as unsupervised
machine translation. In Association for the Advancement
of Artificial Intelligence (AAAI), 2019.

Zhong, V., Lewis, M., Wang, S. I., and Zettlemoyer, L.
Grounded adaptation for zero-shot executable semantic
parsing. In Empirical Methods in Natural Language
Processing (EMNLP), 2020.

Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled
data using three classifiers. IEEE Transactions on
knowledge and Data Engineering, 2005.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. Unpaired
image-to-image translation using cycle-consistent
adversarial networks. In International Conference on
Computer Vision (ICCV), 2017.


