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Abstract

Gradient regularization is a neural network de-
fense technique that requires no prior knowledge
of an adversarial attack and that brings only lim-
ited increase in training computational complex-
ity. A form of complex-valued neural network
(CVNN) is proposed to improve the performance
of gradient regularization on classification tasks
of real-valued input in adversarial settings. The
activation derivatives of each layer of the CVNN
are dependent on the combination of inputs to
the layer, and locally stable representations can
be learned for inputs the network is trained on.
Furthermore, the properties of the CVNN param-
eter derivatives resist decrease of performance on
the standard objective that is caused by compe-
tition with the gradient regularization objective.
Experimental results show that the performance
of gradient regularized CVNN surpasses that of
real-valued neural networks with comparable stor-
age and computational complexity. Moreover,
gradient regularized complex-valued networks ex-
hibit robust performance approaching that of real-
valued networks trained with multi-step adversar-
ial training.

1. Introduction

Recent deep learning (DL) models can outperform humans
on image classification tasks (He et al., 2016). While the
exceptional performance of DL on tightly controlled classi-
fication tasks is a remarkable achievement, we would like
for DL’s high performance to be robust to all forms of noise
that a deployed DL model might encounter. Adversarial
examples (Szegedy et al., 2013) provide evidence that this
is not the case for standard DL models. Szegedy et al.
(2013) showed that neural networks can be fooled reliably
by adding adversarially crafted noise to clean DL inputs,
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and that these inputs are difficult to distinguish from nor-
mal inputs. Subsequent investigation by Goodfellow et al.
(2014) and Papernot et al. (2016) further demonstrate that
adversarial examples generalize across DL models trained
on disjoint subsets of the dataset, and transfer well across
different machine learning algorithms. Computationally
cheap yet effective gradient-based “White-box™ attacks (at-
tacks which have knowledge of the network parameters)
such as FGSM (Goodfellow et al., 2014), I-FGSM (Ku-
rakin & Bengio, 2017), PGD (Madry et al., 2017), and MIM
(Dong et al., 2018) have since been developed. Carlini &
Wagner (2017) develop an attack that is extremely difficult
to detect by significantly improving the attack optimization
process.

For situations in which the DL model parameters are not
known to the attacker (“Black-box”), perturbed inputs are
often crafted using surrogate networks and later provided
to the black-box model. Several works have observed that
black-box attacks transfer more effectively if perturbations
are designed to alter neuron activations in the feature ex-
traction layers (Inkawhich et al., 2019; Zhou et al., 2018).
The existence of adversarial examples and their high trans-
ferability questions the fitness of current DL models for
security-sensitive applications (Eykholt et al., 2018; Ku-
rakin & Bengio, 2017).

Methods of providing security to neural networks tend to
not be as effective as the methods to attack them. One of
the most well known and successful security methods is
adversarial training (Goodfellow et al., 2014), which incor-
porates single-step adversarial example generation into the
standard training procedure. Subsequent works developed
more powerful multi-step attacks to circumvent adversarial
training (Kurakin et al., 2016). Madry et al. (2017) reformu-
lated adversarial training as a multi-step dual optimization
problem to make it resistant to more powerful white-box
attack, at the cost of greatly increasing the computational
complexity of the training procedure. Although adversarial
training is the best empirical defense to date, it requires
prior knowledge of an attack to defend against. This leaves
the possibility for an adversary to develop a new attack to
circumvent the network’s security.

Other security methods rely on promoting some measure
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of information diversity between ensembled networks and
taking a group vote during inference (Yang et al., 2020;
Pang et al., 2019) to reduce the transferability of adver-
sarial examples generated by a surrogate network. While
ensembling methods tend to successfully reduce attack trans-
ferability, they typically do not confer significant resistance
to white-box attacks. The success of ensemble-based secu-
rity methods often relies on the number of networks which
compose the ensemble, which significantly impacts the com-
putational and storage requirements for both training and
inference.

A common theme among these security techniques is that
they add much computational complexity to the standard
training procedure, making secure networks unobtainable
and difficult to deploy without access to significant comput-
ing resources (Kurakin et al., 2016). It is therefore necessary
to develop new methods of producing robust networks that
are less computationally expensive to train and implement.

Gradient regularization is a promising defense method that
meets these criteria. Introduced by “Double Backpropaga-
tion” by Drucker & Le Cun (1992), gradient regularization
is implemented by maintaining the gradient computational
graph and minimizing the input gradient with respect to
model parameters. It has been shown to improve model
generalization, interpretability, and adversarial robustness
(Ross & Doshi-Velez, 2018; Lyu et al., 2015; Finlay & Ober-
man, 2021). Furthermore, the gradient regularization ob-
jective can be approximated with just two passes of regular
backpropagation, making it scalable to very large networks
(Finlay & Oberman, 2021). While this general method im-
proves adversarial resistance without prior knowledge of
an attack, the need for an inner optimization loop, or an
ensemble, in practice, the method has not performed as well
as multi-step adversarial training.

One reason for this is that networks require strong gradi-
ent regularization to have local stability on inputs the net-
work is trained on, but the strong regularizer leads to de-
crease in performance on the standard objective (Finlay &
Oberman, 2021; Ross & Doshi-Velez, 2018). This work
introduces a complex-valued neural network (CVNN) to
resist decrease of performance on the standard objective
that is due to competition with the gradient regularized ob-
jective. We hereafter refer to any neural network with at
least one complex-valued layer as a complex-valued neural
network, or CVNN. The CVNN exhibits improved gradient
regularized performance over real-valued networks, while
using comparable parameter and multiply-and-accumulate
(MAC) operation counts. Code is available at: https:
//github.com/ericyeats/cvnn-security.

The contributions of the paper are summarized below:

¢ We introduce a new form of complex-valued convolu-

tional neural networks for real-valued image classifi-
cation applications that has better robust performance
than real-valued networks with similar parameter and
and MAC counts.

* We analyze the activation derivatives and Jacobian
derivatives of each layer with respect to model pa-
rameters for real-valued and complex-valued networks,
and demonstrate why complex-valued networks trained
with gradient regularization perform better than real-
valued networks.

* We provide empirical evidence that complex-valued
networks trained with gradient regularization are more
capable of satisfying both the standard and gradient
regularized objectives.

* We evaluate the robustness of real-valued and complex-
valued networks trained with gradient regularization
on popular image classification benchmarks and com-
pare the result with that of state-of-the-art adversarial
training.

2. Background
Complex-Valued Networks

Complex-valued networks for real-valued classification
problems have been explored in a small collection of pre-
vious works. Amin & Murase (2009) find that single-layer
complex-valued networks can solve linearly inseparable
problems and can converge faster than real-valued networks
when trained with gradient descent. Amin & Murase (2009)
introduce an input transformation from real to complex
numbers, and they develop a set of complex-valued activa-
tion functions with real-valued outputs. They consider just
single-layer complex-valued networks and compare their
training and performance with that of real-valued networks
on toy classification tasks.

Forms of convolutional complex-valued networks for real-
valued classification tasks have been proposed. Worrall et al.
(2017) exploit the properties of complex numbers to pro-
vide rotation-invariant classification of digits. Trabelsi et al.
(2018) introduce a formulation of complex-valued batch
normalization and weight initialization for deep complex
networks, and they evaluate the performance of different
nonlinear activation functions for complex-valued networks
on computer vision tasks, reaching comparable performance
to standard (real) deep networks with the same number of pa-
rameters. The convolutional networks described in Trabelsi
et al. (2018) use a fully complex representation whereas our
convolutional network described (in Section 2) employs a
hybrid real- and complex-valued representation.
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Gradient Regularization

To demonstrate how gradient regularization interacts with
the standard objective, consider the forward pass of an n-
layer neural network f and input vector z represented as
a composition of functions, where each function output
represents a linear combination of inputs followed by a
nonlinear activation function,

f@) = fa(foaa (- fa(fi(2))))- (1)

Some scalar-valued loss function £(f,z,y) is defined on
f(z) and desired output 3. The network is trained using
stochastic gradient descent by computing the gradient of
L(f,z,y) with respect to the parameters of f. Backpropa-
gation of the loss (Rumelhart et al., 1985) provides an input
gradient
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where 2, = z,z,,, = fi(z;), and the output logit vector of
the network is z,,. In equation (2), the rightmost term rep-
resents a vector of loss gradient with respect to the outputs
of the final layer, and each function derivative represents a
transposed Jacobian matrix. Gradient regularization adds a

squared norm penalty to the input gradient
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where (8 is a hyperparameter controlling the strength of
regularization and || - ||,, is some p-norm. Substituting (2)
and differentiating (3), a second pass of backpropagation,
called double backpropagation (Drucker & Le Cun, 1992),
computes the gradient of the norm of the input gradient with
respect to the parameters of f. Hence, the derivative of
each Jacobian % from (2) with respect to the model
parameters f is used to minimize (3). For a standard real-
valued network, the Jacobian is the weight matrix W of
each layer, and the element-wise derivative of the Jacobian
with respect to model parameter W is simply a matrix of
ones. Therefore, the gradient for a weight parameter W; can

be expressed as
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where e; - and e;r are the backpropagated standard loss er-
ror and double-backpropagated gradient regularization loss
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Figure 1. Two example complex-valued feature responses defined
over bounded two-dimensional input. The magnitude of each
complex-valued weights in these examples are the same.

error vectors and z; is the input vector at layer ¢, respec-
tively. Note that prior to reaching W;, backpropagated e; .
is modified element-wise by the derivative of the nonlinear
activation function. Since the gradient regularization objec-
tive does not necessarily share a relationship with the input
to a given layer, gradient regularization will compete with
the standard training objective, decreasing the network’s
performance on the standard training objective.

Proposed Complex-Valued Network

Contrary to the standard neural network layer, we show
that the numerical properties of the CVNN protect the net-
work from competition between L(f, z,y) and R(f, z,y).
Consider the forward pass of a complex-valued layer g;
for element-wise transformed complex-valued inputs xp =
cos (z;) and z; = sin (z;):

gi(gi) = (WRﬁR — Wiz + QR>2+

1
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where 2, ;, Wr, W1, b, b;, 2, 2 are the real and imag-
inary part inputs, weights, biases, and activations, respec-
tively. The magnitude of the complex activation z + jz;
is taken as the real-valued result g;(z;).

Figure 1 depicts an example g;(z;), defined over bounded
two-dimensional input z;. One complex-valued feature
results in a distinct maximum and minimum, where the
derivatives for the bounded input are near zero. Summing
two or more complex-valued features can result in several
maxima and minima, which can promote feature response
stability to natural variations in an input distribution. One
can show that the derivatives of g;(z;) with respect to the
weight parameters are

zpah 4+ z2T
gi(z;)
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The constraint (6) implies that when one gradient term is
large, the other must be minimal. Further, the Jacobian can
be expressed as
dgi(z;) ~ Whzr — Wizp Whzr+ Wiz
= QR _
Oz, gi(z;) gi(z;)
and that the derivatives of the Jacobian with respect to the
model parameters are simply
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Considering (7) and (8), we show that the derivatives of the
Jacobian with respect to model parameters also follow the
constraint. This relationship provides a degree of mutual ex-
clusivity between the parameter updates for the competing
loss objectives. In other words, for a given parameter, when
the magnitude of the activation derivative (used to minimize
standard loss) is large, the magnitude of the Jacobian deriva-
tive (used to minimize gradient regularization loss) must be
small, and vice-versa.
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Equations (9) and (10) summarize the gradient of the real
and imaginary part weights for the combined objective.
The combined objective gradients for the complex-valued
weights contrast with that of real-valued weights due to
the constraint on the activation and Jacobian derivatives.
For each complex-valued layer, the constraint (6) provides
separation between the standard and gradient regularized
objectives. In other words, the constraint implies that when
changing a parameter is important for one objective, that
same change is unimportant for the other objective. We
hypothesize that this gradient constraint is the core rea-
son why complex-valued networks have superior gradient
regularized training characteristics than that of real-valued
networks. We provide empirical evidence supporting the
hypothesis in the following section.
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Figure 2. Convl1 Filters for gradient regularized complex-valued
networks trained with (a) and without (b) a small amount of ad-
ditive Gaussian noise. Both networks are trained on the Fashion-
MNIST training set with 5 = 64, and the activations of all filters
along a column are summed together, for an output channel count
of 8. Hue and value represent the relative angle and magnitude of
each weight, respectively.

3. Evaluation
Experiment Setup

All experiments are conducted using the PyTorch library
(Paszke et al., 2019). We evaluate the training character-
istics, white-box adversarial robustness, and black-box ro-
bustness of gradient regularized CVNN. We compare these
results with those of real-valued NN trained with gradient
regularization or adversarial training. We consider the addi-
tional parameter and MAC requirement of complex numbers
over real numbers. In general, we consider each complex-
valued parameter to be the same size as two real-valued
parameters, and we consider each complex-complex MAC
to be equivalent to 4 real-real MAC operations. Using the
same basic convolutional neural network architecture as the
complex-valued networks, we increase output filter count
and fully-connected layer width of each real-valued net-
work such that its parameter and MAC count is similar to or
surpasses that of the complex-valued network. We tried a va-
riety of convolution and fully-connected configurations for
real-valued networks with similar baseline architecture, and
in all experiments, real-valued networks with higher param-
eter and MAC count outperformed the smaller real-valued
networks.

White-box attacks are crafted against the networks on four
popular image classification benchmark tasks: MNIST (Le-
Cun, 1998), FashionMNIST (Xiao et al., 2017), SVHN (Net-
zer et al., 2011), and CIFAR-10 (Krizhevsky et al., 2009).
The MNIST, FashionMNIST, and CIFAR-10 benchmarks
consist of 50000 training images and 10000 test images.
The SVHN benchmark consists of 73,257 training images
and 26,032 test images. The networks are trained on the
standard and gradient regularization objectives using the
training set, and the networks are evaluated with adversarial
examples crafted from the test set.
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Figure 3. Comparison of identity (blue) mapping with the sinu-
soidal contrast enhancement (red) for complex-valued networks
for CIFAR-10.

The standard objective for all networks is cross-entropy
loss, optimized using SGD with Nesterov momentum of
pu = 0.875 and weight decay of I = 10~*. Networks
for MNIST, SVHN, and FashionMNIST are trained for 30
epochs with a minibatch size of 64 and an initial learning
rate of v = 0.005, and networks for CIFAR-10 are trained
for 80 epochs with a minibatch size of 128 and an initial
learning rate of v = 0.01. Learning rate is decayed by
~v = 0.2 after 20 epochs for MNIST, SVHN, and FashionM-
NIST networks, and epochs 40, 60, and 72 for CIFAR-10
networks. We apply no data augmentation to networks
trained on MNIST. For SVHN, we take a centered 28x28
crop of the luminance band of each image and apply global
contrast normalization onto the range [0, 1]. For the Fashion-
MNIST training set, we apply a random horizontal flip and
a random crop to 28x28 with a padding of 1. When training
complex-valued networks with gradient regularization on
the FashionMNIST dataset, we noticed that the convl1 filters
would overfit the solid black backgrounds of the images,
causing gradient descent to become unstable. Adding a
small amount of Gaussian noise N'(u = 0,0 = 0.05) to
each training image increased training stability. Figure 2 de-
picts the learned convl filters with and without the additive
noise. When using real-valued networks on CIFAR-10, we
normalize each input image using the mean and standard
deviation of the training set. For complex-valued networks,
we perform no normalization. Instead, we apply an element-
wise nonlinear mapping function ¢(x) = x — w dur-
ing the forward pass of each input, depicted in Figure 3.
Adversarial examples for both real- and complex-valued
networks are crafted using the original test set images.

We employ squared L1 norm of the input gradient as the
gradient regularization objective, as suggested by Finlay &
Oberman (2021). Hyperparameter S controls the strength
of regularization. Real-valued image inputs are converted to
complex-valued inputs via the method described by Amin &
Murase (2009), where each real-valued element z € [0, 1]
is linearly transformed to the phase of a complex number 2

Table 1. Model Parameter and Total MAC Count

NETWORK TOTAL PARAMETERS TOTAL MACS
REAL NETS

MNIST 421,642 4,241,152
SVHN 421,642 4,241,152
FASHIONMNIST 421,642 4,241,152
CIFAR, 620,810 10,848,768
CIFAR» 1,423,114 40,569,344
COMPLEX NETS

MNIST 208,718 2,664,448
SVHN 208,718 2,664,448
FASHIONMNIST 107,114 3,612,672
CIFAR;, 1,241,662 41,814,528

such that Zz € [0, 7] and |z| = 1. Real-valued weights are

initialized via He et al. (2015) and complex-valued weights

SN VCURT] . . 1
are initialized with magnitude TFanin and random angle

uniformly distributed on [—, 7).

Table 1 lists the equivalent storage and MAC requirement of
each network, considering the additional storage and com-
putational requirement of implementing complex numbers.
The number of convolutions and size of the fully-connected
layers were typically less for the complex-valued networks
in order to make parameter and MAC count more fair. Addi-
tional experiments using identical architecture are presented
at the end of the evaluation section.

(R) denotes a real-valued layer, and (C) denotes a complex-
valued layer. ReLU activation function is used as the non-
linearity for real-valued layers (when appropriate) and no
activation function (identity mapping) is used for complex-
valued layers. 3x3C16 denotes a convolutional layer with
kernel size 3x3 and output channel count 16, 16FC denotes
a fully-connected layer with 16 outputs, 16BN denotes a
batch norm layer (Ioffe & Szegedy, 2015) for 16 output
channels, and 2x2AP denotes an average pooling layer
with receptive field 2x2. The same network architecture
is used for real-valued networks for the MNIST, SVHN,
and FashionMNIST benchmarks: 3x3C32(R), 2x2AP(R),
3x3C64(R), 2x2AP(R), 128FC(R), 10FC(R). Complex-
valued networks for MNIST and SVHN have architecture:
3x3C16(C), 2x2AP(R), 3x3C32(C), 2x2AP(R), 128FC(C),
10FC(C). In the convolutions of this network, the response
of every two complex-valued output channel is summed to-
gether, cutting the dimensionality of each output channel in
half and increasing filter response stability. Complex-valued
networks for FashionMNIST have architecture 3x3C64(C),
2x2AP(R), 3x3C32(C), 2x2AP(R), 64FC(R), and 10FC(R).
Every 8 output channels in the first complex-valued convo-
lution channel are summed together, cutting output channel
dimensionality down to 8. The CIFAR; architecture con-
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Figure 4. Standard Objective Training and Validation Loss on the
FashionMNIST Dataset

sists of 3x3C32, 32BN(R), 2x2AP(R), 3x3C64, 64BN(R),
2x2AP(R), 3x3C128, 128BN(R), 2x2AP(R), 256FC, 10FC.
The CIFAR; architecture is the CIFAR; architecture, but
with all output channels of convolutions and batch norms
doubled. Real-valued networks have real-valued convolu-
tions and fully-connected layers, whereas complex-valued
networks have complex-valued convolutions and fully-
connected layers.

Training Behavior with Gradient Regularization

Figure 4 depicts the training and validation losses of
complex-valued and real-valued networks with and with-
out strong gradient regularization for the FashionMNIST
dataset. Despite having far more parameters and MACs,
the real-valued network cannot reach the same clean per-
formance as the complex-valued network. When trained
with the same level of strong gradient regularization, the
complex-valued network retains higher classification per-
formance on the training and validation sets. We define
a metric, parameter update similarity, to measure a neural
network’s resistance to erosion of standard objective per-
formance. For a network with parameters f, parameter
update similarity () is defined as the cosine similarity be-
tween the vectors of parameter gradients for the standard
and combined objectives (Equation 11).

T
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Intuitively, a parameter update similarity closer to one indi-
cates that a neural network is learning parameters that are
locally optimal for the standard objective. Parameter update
similarity is recorded for each minibatch and the average
for each epoch is plotted against the average training loss
of each epoch in Figure 5. When no gradient regulariza-

tion is applied, both the complex-valued and real-valued
neural networks have parameter update similarities of 1.
When the same level of gradient regularization is applied,
the complex-valued networks tend to exhibit lower parame-
ter update similarity, indicating that their gradient descent
takes a path more biased towards the gradient regularized
objective. However, the training loss value of the complex-
valued networks is strictly lower than that of the real-valued
networks. These results suggest that the complex-valued
networks are more capable of satisfying both the standard
and gradient regularized objectives. As mentioned previ-
ously, we hypothesize that this observation is due to the
constraint in equation (6) modulating the combined objec-
tive parameter update summarized in equations (9) and (10).

White-Box Attacks

Each network was subjected to a White-Box PGD(8) ad-
versarial examples (Madry et al., 2017) with random initial
jump and with varying L., bound. The accuracy of the
networks at each e bound is recorded and shown. At e = 0,
the images are equal to the clean test set. Undefended net-
works without gradient regularization or adversarial training
tend to have the highest accuracy on these clean examples.
However, as € is increased, the performance of undefended
networks erodes swiftly.

Figure 6 depicts the White-Box attack results on MNIST.
Both real-valued and complex-valued networks were able
to obtain 99% accuracy on the clean MNIST test set. As
B is increased, all networks tend to perform better against
PGD(8) examples with larger L., perturbation bound. How-
ever, as 3 is increased to 512, all complex-valued networks
are capable of maintaining 99% clean accuracy, whereas the
clean accuracy of the real-valued network is 78% and 62%
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Figure 5. Standard Objective (Classification) Loss vs. Parameter
Update Similarity (¢) of each epoch for the last 25 epochs of train-
ing on the FashionMNIST and SVHN training sets. We abbreviate
FashionMNIST as FMNIST.
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Figure 6. White-Box PGD(8) Attack of varying L, bound (¢) on
the MNIST test set.

for § = 384 and g = 512, respectively. The 5 = 384 and
B = 512 real-valued networks have the highest accuracy
of all gradient regularized real-valued networks when the
L bound is large, however their clean accuracy is not ac-
ceptable. The 5 = 512 complex-valued network attains a
robust accuracy comparable to that of the PGD(4)-trained
real-valued network, without having been trained on any
adversarial examples.

Similar trends are observed with the FashionMNIST dataset,
depicted in Figure 7. As 3 is increased, all networks im-
prove in robustness. Increased [ also decreases clean ac-
curacy, and we find that both complex- and real-valued
networks attain a clean accuracy of 79% when 5 = 64.
Given the same clean accuracy, the complex-valued network
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Figure 7. White-Box PGD(8) Attack of varying L., bound (¢) on
the FashionMNIST test set.
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Figure 8. White-Box PGD(8) Attack of varying L., bound (¢) on
the SVHN test set.

is more robust to adversarial examples than the real-valued
network, maintaining an accuracy of 50% when ¢ = 0.16,
compared to the real-valued network’s 41%. There is a steep
drop in performance for the adversarially trained real-valued
network when e exceeds the L, bound used in training. We
observe that complex-valued networks come closer to the
performance of adversarial training.

Likewise, in Figure 8, complex-valued networks close the
performance gap between gradient regularization and adver-
sarial training on SVHN. Complex-valued networks trained
with gradient regularization achieve the same clean accuracy
as the adversarially trained real-valued network, 80%. The
complex-valued network retains more adversarial accuracy
than the larger real-valued network trained with gradient reg-
ularization, approaching the performance of the real-valued
network when it has been adversarially trained.

Complex-valued networks trained on the CIFAR-10 datset
(Figure 9) did not reach the same clean accuracy as the real-
valued networks did. We observed that the complex-valued
networks overfit the training set and did not generalize as
well. When a white-box attack is conducted, undefended
network accuracy approaches zero when the L., bound of
the attack approaches %. Gradient regularized and adver-
sarially trained networks are more robust to attack, and the
performance margin between the two security methods is
not as significant as the other datasets. While the larger
real-valued network (CIFARj) attains highest accuracy, its
gradient regularized version is less robust to attack. The
smaller real-valued network (CIFAR;) provides a lower
bound on the performance of the gradient regularized net-
works. Although the clean accuracy of the complex-valued
network is not highest, it is more robust to white box adver-
sarial examples, approaching the robust performance of the
large, adversarially trained real-valued network.
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Figure 9. White-Box PGD(8) Attack of varying L., bound (¢) on

the CIFAR-10 test set. € values are measured in fractions of pixel
values, e.g. €(4) is equivalent to 52 € [0, 1].

Black-Box Transfer Attacks

In preparation for the black-box transfer attack experiment,
we conduct white-box FGSM attacks (Goodfellow et al.,
2014) on independently trained real- and complex-valued
networks on the MNIST, SVHN, and FashionMNIST bench-
marks. For each network type, we train a network on just
the standard objective and another with gradient regular-
ization. For fair comparison, we train both the real- and
complex-valued gradient regularized networks with 8 = 64
on MNIST, # = 32 on SVHN, and 5 = 64 on FashionM-
NIST. The FGSM attack is used because of its higher trans-
ferability (Kurakin et al., 2016); FGSM examples crafted
from each network use ¢ = 0.16 for MNIST, ¢ = 0.10 for
SVHN, and € = 0.16 for FashionMNIST. The examples are
then transferred to other real- and complex-valued networks
trained with or without gradient regularization. The transfer
results are summarized in Table 2.

In general, FGSM attack was most effective on the white
box network and was less effective when transferred to other
models. This suggests that the success of the gradient regu-
larized defense of either real- or complex-valued networks
is not due to gradient masking (Athalye et al., 2018); this
finding agrees with the result of Finlay & Oberman (2021).

We observe that attacks tend to be more transferable between
networks of like-type (R to R, C to C), and that gradient
regularized networks are more susceptible to attacks crafted
by other gradient regularized networks, similar to the finding
by Ross & Doshi-Velez (2018). The gradient regularized
networks are the most resistant to transfer attack from any
source. However, the complex-valued gradient regularized
network is consistently the most resistant. This trend holds
whether the complex-valued network is attacked by a real- or

Table 2. Classification accuracy (%) of various real- (R) and
complex-valued (C) networks on FGSM examples transferred
from independently trained networks. Entries on the left and right
are the classification accuracy of a victim network on adversar-
ial examples transferred from independently trained standard and
gradient regularized networks, respectively. We abbreviate Fash-
ionMNIST as FMNIST. The “self” row lists the resulting accuracy
of the network from which the examples were generated.

TRANSFER MNIST SVHN FMNIST
TO e =0.16 e =0.10 e =0.16
NETWORK: [3=0/64 B=0/32 B=0/64
FGSM FrROM REAL-VALUED NETWORK (STD./G.R.)
SELF 22.5/86.6 4.1/32.5 2.2 /53.1
R (STD.) 36.2/74.0 10.3/32.0 3.9 /283
C (StD.) 93.7/93.1 22.8/40.5 12.6 /33.7
R (G.R)) 93.0/91.5 52.9/34.9 63.9/53.8
C(G.R. 95.3/95.8 55.7/41.9 68.5/60.4
FGSM FrROM COMPLEX-VALUED NETWORK (STD./G.R.)
SELF 58.4/93.9 10.4/36.7 1.7 /53.4
R (STD.) 86.5/88.0 50.1/31.5 32.4/30.7
C (StD.) 93.1/95.7 35.5/36.3 159/31.2
R (G.R)) 97.1/95.8 63.0/37.8 70.2/57.6
C(G.R) 97.3/96.4 65.4/41.5 74.7 / 58.4

complex-valued network, gradient regularized, or standard-
trained.

Comparisons using Identical Architecture

We run additional attacks on real- and complex-valued net-
works using the CNN structure of Ross & Doshi-Velez
(2018). The architecture is: 5x5C32, 32BN(R), ActFunc(R),
2x2AP(R), 5x5C64, 64BN(R), ActFunc(R), 2x2AP(R),
1024FC(R), 1024BN(R), ReLU(R), 10FC(R). For the real-
valued CNN, we employ real-valued convolutions, and the
activation function (ActFunc) is ReLU; for the complex-
valued CNN, we employ complex-valued convolutions and
no activation function (ActFunc is the identity function)
following the convolutions. Note that both CNNs have
real-valued fully-connected layers with ReLU activation
function. Hence, the only difference between the complex-
and real-valued networks for this experiment are the type of
convolution and use of ReLU non-linearity. All networks
have the same input preprocessing (no Gaussian noise), and
there is no “summing of features” for the complex-valued
convolutions. During training, we employ dropout (p = 0.5)
on the 1024FC(R) layer, cross-entropy loss, and the Adam
optimizer (8; = 0.9, Bz = 0.999, ¢ = 10™%).

Robustness to White-Box Attacks

Like the previous white-box experiments, we generate
PGD(8) attacks against each of the networks. Starting with
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Figure 10. White-box PGD(8) attack results on the test sets of MNIST (left), FashionMNIST (center), and SVHN (right). All networks
share the same architecture inspired from Ross & Doshi-Velez (2018).

the unaltered testing dataset, the accuracy of the real- and
complex-valued networks is recorded as attack strength e is
increased. Figure 10 depicts the white-box attack result.

On MNIST, the CVNNs trained with gradient regular-
ization display increased resistance to decrease in perfor-
mance on the classification objective: CVNNs trained with
B = 2048 gradient regularization maintain 96% clean ac-
curacy, whereas real-valued networks achieve an accuracy
of 83%. On FashionMNIST, the CVNNSs and gradient reg-
ularization have increased resistance to PGD(8) examples,
with CVNNs and real-valued networks maintaining 47%
and 35% accuracy, respectively, for e = 0.16 examples. On
SVHN, the CVNNSs maintain 10% higher accuracy on the
clean test set.

Robustness to Black-Box Query-based Attacks

We evaluate the robustness of the networks to the black-
box query-based NES attack (Ilyas et al., 2018). This is
a gradient-free method to construct adversarial examples:
adversarial perturbations are crafted by querying classifier
inputs and estimating the direction of change of the decision
function. For an 8-step NES attack on 1000 FashionMNIST
test images with an L, bound of ¢ = 0.16 and query bud-
get of 4000 queries per image, real-valued networks attain
accuracies of 0%, 62.3%, and 76.3% for no defense, 5 = 64
gradient regularization, and € = 0.2 adversarial training,
respectively. Complex networks attain accuracies of 0% and
68.4% for no defense and 5 = 64 gradient regularization, re-
spectively. Gradient regularization, especially when paired
with a CVNN, provides resistance to the gradient-free NES
attack.

4. Discussion

Initially, we experienced training instability when crafting
deeper complex-valued networks with stacked convolutions,
which was significantly reduced by using batch normaliza-

tion (Ioffe & Szegedy, 2015) along the output dimension
of each convolution (after summing features). However,
simpler, wide architectures for real- and complex-valued
tended to have the best gradient regularized training perfor-
mance, and we used them for our experiments. There is a
need for further exploration of deep network architectures
and optimization techniques that can take advantage of the
complex-valued features.

While the complex-valued network’s robust performance
approaches that of the state-of-the-art empirical defense, ad-
versarial training, more investigation of attack-independent
defense techniques with low storage and computation over-
head is needed. We hope that the complex-valued network
described in this work will promote ideation of new forms
of neural network computation that are better suited to solve
the machine learning security problem.

5. Conclusion

We have developed and analyzed a new form of complex-
valued multi-layer neural network for secure computer vi-
sion applications. The complex-valued network can learn
locally stable feature representations for inputs it is trained
on, and its gradient update properties make it more able to
satisfy both the standard and gradient regularized objectives.
With comparable storage and computational requirement,
the proposed complex-valued network can outperform real-
valued networks trained with gradient regularization on a
variety of image classification benchmarks. The robust
performance of the gradient regularized complex-valued
network approaches that of adversarially trained real-valued
networks, without having prior knowledge of an attack.
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