From Local Structures to Size Generalization in Graph Neural Networks

Gilad Yehudai' Ethan Fetaya’ Eli Meirom' Gal Chechik '> Haggai Maron '

Abstract

Graph neural networks (GNNs) can process
graphs of different sizes, but their ability to gen-
eralize across sizes, specifically from small to
large graphs, is still not well understood. In
this paper, we identify an important type of data
where generalization from small to large graphs
is challenging: graph distributions for which the
local structure depends on the graph size. This
effect occurs in multiple important graph learn-
ing domains, including social and biological net-
works. We first prove that when there is a dif-
ference between the local structures, GNNs are
not guaranteed to generalize across sizes: there
are ”bad” global minima that do well on small
graphs but fail on large graphs. We then study
the size-generalization problem empirically and
demonstrate that when there is a discrepancy in
local structure, GNNs tend to converge to non-
generalizing solutions. Finally, we suggest two
approaches for improving size generalization, mo-
tivated by our findings. Notably, we propose a
novel Self-Supervised Learning (SSL) task aimed
at learning meaningful representations of local
structures that appear in large graphs. Our SSL
task improves classification accuracy on several
popular datasets.

1. Introduction

Graphs are a flexible representation, widely used for repre-
senting diverse data and phenomena. In recent years, graph
neural networks (GNNs), deep models that operate over
graphs, have become the leading approach for learning on
graph-structured data (Bruna et al., 2013; Kipf & Welling,
2016a; Velickovic et al., 2017; Gilmer et al., 2017).

In many domains, graphs vary significantly in size. This is
the case in molecular biology, where molecules are repre-
sented as graphs and their sizes vary from few-atom com-

'NVIDIA 2Bar-Ilan University. Correspondence to: Gilad
Yehudai <gilad.yehudai@weizmann.ac.il>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Training set Test set
/ ‘\ \ (o @ ° /
° X \‘\ / ° \
o Generalize X\
® (] —l @ 00 Y
N 2 N

|

\
\

Degree distribution - Degree distribution

Frequency
Frequency

Degree Degree

Figure 1. We study the ability of GNNs to generalize from small
to large graphs, focusing on graphs in which the local structure
depends on the graph size. The figure shows two graph distri-
butions that differ in size and degree distribution. We show that
when the local structures in the test set are different from the local
structures in the training set, it is difficult for GNNs to generalize.
Additionally, we suggest ways to improve generalization.

pounds to proteins with thousands of nodes. Graph sizes are
even more heterogeneous in social networks, ranging from
dozens of nodes to billions of nodes. Since a key feature
of GNN:ss is that they can operate on graphs regardless of
their size, a fundamental question arises: ’When do GNNs
generalize to graphs of sizes that were not seen during
training?”’.

Aside from being an intriguing theoretical question, the
size-generalization problem has important practical impli-
cations. In many domains, it is hard to collect ground-truth
labels for large graphs. For instance, many combinatorial
optimization problems can be represented as graph classifi-
cation problems, but labeling large graphs for training may
require solving large and hard optimization problems. In
other domains, it is often very hard for human annotators
to correctly label complex networks. It would therefore be
highly valuable to develop techniques that can train on small
graphs and generalize to larger graphs. This first requires
that we develop an understanding of size generalization.

In some cases, GNNs can naturally generalize to graphs
whose size is different from what they were trained on,
but it is largely unknown when such generalization occurs.
Empirically, several papers report good size-generalization
performance (Li et al., 2018; Luz et al., 2020; Sanchez-
Gonzalez et al., 2020). Other papers (Velickovic et al.,

From Local Structures to Size Generalization in Graph Neural Networks

2019; Khalil et al., 2017; Joshi et al., 2020) show that size
generalization can be hard. Recently, Xu et al. (2020) pro-
vided theoretical evidence of size generalization capabilities
in one-layer GNNS.

The current paper characterizes an important type of
graph distributions where size generalization is challenging.
Specifically, we analyze graphs for which the distribution of
local structures (defined formally in Sec. 4) depends on the
size of the graph. See Fig. 1 for an illustrative example. This
dependency is prevalent in a variety of graphs, including for
instance, the preferential attachment (PA) model (Barabdsi
& Albert, 1999), which captures graph structure in social
networks (Barabasi et al., 2002), biological networks (Eisen-
berg & Levanon, 2003; Light et al., 2005) and internet link
data (Capocci et al., 2006). In PA, the maximal node de-
gree grows with the graph size. As a second example, in a
graph representation of dense point clouds, the node degree
grows with the cloud density, and hence with the graph size
(Hermosilla et al., 2018).

To characterize generalization to new graph sizes, we first
formalize a representation of local structures that we call
d-patterns, inspired by (Weisfeiler & Lehman, 1968; Morris
etal., 2019; Xu et al., 2018). d-patterns generalize the notion
of node degrees to a d-step neighborhood of a given node,
capturing the values of a node and its d-step neighbors, as
seen by GNNs. We then prove that even a small discrepancy
in the distribution of d-patterns between the test and train
distributions may result in weight assignments that do not
generalize well. Specifically, it implies that when training
GNNs on small graphs there exist "bad” global minima that
fail to generalize to large graphs.

We then study empirically the relation between size gen-
eralization and d-pattern discrepancy in synthetic graphs
where we control the graph structure and size. We find that
as d-pattern discrepancy grows, the generalization of GNNs
to new graph sizes deteriorates.

Finally, we discuss approaches for improving size general-
ization. We take a self-supervised learning approach and
propose a novel pretext task aimed at learning useful d-
pattern representations from both small and large graphs.
We show that when training on labeled small graphs and
with our new self-supervised task on large graphs, classifi-
cation accuracy increases on large graphs by 4% on average
on real datasets.

This paper makes the following contributions: (1) We iden-
tify a family of important graph distributions where size
generalization is difficult, using a combination of theoretical
and empirical results. (2) We suggest approaches for improv-
ing size generalization when training on such distributions
and show that they lead to a noticeable performance gain.
The ideas presented in this paper can be readily extended

to other graph learning setups where there is a discrepancy
between the local structures of the train and test sets.

2. Preliminaries

Notation. We denote by {(a1,mqg,), .., (an,Ma,)} a
multiset, that is, a set where we allow multiple instances
of the same element. Here a1, ..., a, are distinct elements,
and m,, is the number of times a; appears in the multiset.
Bold-face letters represent vectors.

Graph neural networks. In our theoretical results, we
focus on the message-passing architecture from (Morris
etal., 2019). Let G = (V, E) be a graph, and for each node
v € Vieth!” € R% be a node feature vector and A (v)
its set of neighbors. The ¢-th layer of first-order GNN is
defined as follows for ¢ > 0:

hff) — WQ(t)hgt—l)_’_ Z Wl(t)hgt—l)_,'_b(t)
ueN (v)

Here, W', W{" € Rdxdi-1 b(®) ¢ R% denotes the
parameters of the ¢-th layer of the GNN, and ¢ is some non-
linear activation (e.g ReLU). It was shown in (Morris et al.,
2019) that GNNs composed from these layers have maximal
expressive power with respect to all message-passing neu-

ral networks. For node prediction, the output of a T-layer
GNN for node v is hq(JT). For graph prediction tasks an addi-
tional readout layer is used: g(7) = > wev hS,T), possibly
followed by a fully connected network.

Graph distributions and local structures. In this paper
we focus on graph distributions for which the local structure
of the graph (formally defined in Sec. 4) depends on the
graph size. A well-known distribution family with this
property is G(n, p) graphs, also known as ErdGs-Rényi. A
graph sampled from G(n, p) has n nodes, and edges are
drawn i.i.d. with probability p. The mean degree of each
node is n - p; hence fixing p and increasing n changes the
local structure of the graph, specifically the node degrees.

As a second example, we consider the preferential attach-
ment model (Barabasi & Albert, 1999). Here, n nodes are
drawn sequentially, and each new node is connected to ex-
actly m other nodes, where the probability to connect to
other nodes is proportional to their degree. As a result, high
degree nodes have a high probability that new nodes will
connect to them. Increasing the graph size, causes the maxi-
mum degree in the graph to increase, and thus changes its
local structure. We also show that, in real datasets, the local
structures of small and large graphs differ. This is further
discussed in Sec. 7 and Appendix G.5.

From Local Structures to Size Generalization in Graph Neural Networks

3. Overview
3.1. The size-generalization problem

We are given two distributions over graphs P;, P, that con-
tain small and large graphs accordingly, and a task that can
be solved for all graph sizes using a GNN. We train a GNN
on a training set S sampled i.i.d. from P; and study its
performance on P». In this paper, we focus on distributions
that have a high discrepancy between the local structure of
the graphs sampled from P; and P».

Size generalization is not trivial. Before we proceed with
our main results, we argue that even for the simple regres-
sion task of counting the number of edges in a graph, which
is solvable for all graph sizes by a 1-layer GNN, GNNs do
not naturally generalize to new sizes. Specifically, we show
that training a 1-layer GNN on a non-diverse dataset reaches
a non-generalizing solution with probability 1 over the ran-
dom initialization. In addition, we show that, in general, the
generalizing solution is not the least L1 or L2 norm solu-
tion, hence cannot be reached using standard regularization
methods. See full derivation in Appendix A.

3.2. Summary of the main argument

This subsection describes the main flow of the next sections
in the paper. We explore the following arguments:

(i) d-patterns are a correct notion for studying the ex-
pressivity of GNNs. To study size generalization, we intro-
duce a concept named d-patterns, which captures the local
structure of a node and its d-step neighbors, as captured by
GNNs. This notion is formally defined in Section 4. For
example, for graphs without node features, a 1-pattern of a
node represents its degree, and its 2-pattern represents its
degree and the set of degrees of its immediate neighbors.
We argue that d-patterns are a natural abstract concept for
studying the expressive power of GNNGs: first, we extend a
result by (Morris et al., 2019) and prove that d-layer GNNs
(with an additional node-level network) can be programmed
to output any value on any d-pattern independently. Con-
versely, as shown in (Morris et al., 2019), GNNs output a
constant value when given nodes with the same d-pattern,
meaning that the expressive power of GNNs is limited by
their values on d-patterns.

(ii) d-pattern discrepancy implies the existence of bad
global minima. In Section 5, we focus on the case where
graphs in the test distribution contain d-patterns that are not
present in the train distribution. In that case, we prove that
for any graph task solvable by a GNN, there is a weight
assignment that succeeds on training distribution and fails
on the test data. In particular, when the training data contains
small graphs and the test data contains large graphs, if there
is a d-pattern discrepancy between large and small graphs,
then there are ”bad” global minima that fail to generalize to

larger graphs.

(iii) GNNs converge to non-generalizing solutions. In
Section 6 we complement these theoretical results with a
controlled empirical study that investigates the generaliza-
tion capabilities of the solutions that GNNs converge to. We
show, for several synthetic graph distributions in which we
have control over the graph structure, that the generaliza-
tion of GNNSs in practice is correlated with the discrepancy
between the local distributions of large and small graphs.
Specifically, when the d-patterns in large graphs are not
found in small graphs, GNNs tend to converge to a global
minimum that succeeds on small graphs and fail on large
graphs. This happens even if there is a ”good” global min-
imum that solves the task for all graph sizes. This phe-
nomenon is also prevalent in real datasets as we show in
Section 7.

(iv) Size generalization can be improved. Lastly, In Sec-
tion 7, we discuss two approaches for improving size gen-
eralization, motivated by our findings. We first formulate
the learning problem as a domain adaptation (DA) prob-
lem where the source domain consists of small graphs and
the target domain consists of large graphs. We then sug-
gest two learning setups: (1) Training GNNs on a novel
self-supervised task aimed at learning meaningful repre-
sentations for d-patterns from both the target and source
domains. (2) A semi-supervised learning setup with a lim-
ited number of labeled examples from the target domain.
We show that both setups are useful in a series of exper-
iments on synthetic and real data. Notably, training with
our new SSL task increases classification accuracy on large
graphs in real datasets.

4. GNNs and local graph patterns

We wish to understand theoretically the conditions where
a GNN trained on graphs with a small number of nodes
can generalize to graphs with a large number of nodes. To
answer this question, we first analyze what information is
available to each node after a graph is processed by a d-layer
GNN. It is easy to see that every node can receive informa-
tion from its neighbors which are at most d hops away. We
note, however, that nodes do not have full information about
their d-hop neighborhood. For example, GNNs cannot de-
termine if a triangle is present in a neighborhood of a given
node (Chen et al., 2020).

To characterize the information that can be found in each
node after a d-layer GNN, we introduce the notion of d-
patterns, motivated by the structure of the node descriptors
used in the Weisfeiler-Lehman test (Weisfeiler & Lehman,
1968): a graph isomorphism test which was recently shown
to have the same representational power as GNNs ((Xu et al.,
2018; Morris et al., 2019)).

From Local Structures to Size Generalization in Graph Neural Networks

—

0 -pattern 1 -pattern
g (0,{0,0})
2 -pattern

(@00} {(0{®0,0}) 0@ 001}

Figure 2. Top: A graph with 4 nodes. Each color represent a
different feature. Bottom: The 0,1 and 2-patterns of the black
node.

Definition 4.1 (d-patterns). Let C' be a finite set of node
features, and let G = (V, E) be a graph with node feature
¢y € C for every node v € V. We define the d-pattern
of anode v € V for d > 0 recursively: For d = 0, the
0-pattern is c,. For d > 0, the d-pattern of v is p =
(Po, {(Piy s Mpyy) I (pil7mpig)}) iff node v has (d — 1)-
pattern p, and for every j € {1,...,L} the number of
neighbors of v with (d — 1)-pattern p;; is exactly My, -
Here, { is the number of distinct neighboring d — 1 patterns

of v.

In other words, the d-pattern of a node is an encoding of
the (d — 1)-patterns of itself and its neighbors. For example,
assume all the nodes in the graphs start with the same node
feature. The 1-pattern of each node is its degree. The 2-
pattern of each node is for each possible degree ¢ € N
the number of neighbors with degree ¢, concatenated with
the degree of the current node. In the same manner, the 3-
pattern of a node is for each possible 2-pattern, the number
of its neighbors with this exact 2-pattern.

Fig. 2. illustrates 0, 1 and 2-patterns for a graph with three
categorical node features, represented by three colors (yel-
low, grey, and black). For this case, which generalizes the
uniform node feature case discussed above, the O-pattern is
the node’s categorical feature; 1-patterns count the number
of neighbors with a particular feature. The same definition
applies to high-order patterns.

We claim that the definition of d-patterns gives an exact
characterization to the potential knowledge that a d-layer
GNN has on each node. First, Theorem 4.2 is a restatement
of Theorem 1 in (Morris et al., 2019) in terms of d-patterns:

Theorem 4.2. Any function that can be represented by a
d-layer GNN is constant on nodes with the same d-patterns.

The theorem states that any d-layer GNN will output the
same result for nodes with the same d-pattern. Thus, we can
refer to the output of a GNN on the d-patterns themselves.
We stress that these d-patterns only contain a part of the

information regarding the d-neighborhood (d hops away
from the node), and different neighborhoods could have the
same d-patterns. The full proof can be found in Appendix B
and follows directly from the analogy between the iterations
of the WL algorithm and d-patterns.

Next, the following theorem shows that given a set of d-
patterns and the desired output for each such pattern, there
is an assignment of weights to a GNN with d + 2 layers that
perfectly fits the output for each pattern.

Theorem 4.3. Let C be a finite set of node features, P be
a finite set of d-patterns on graphs with maximal degree
N €N, and for each pattern p € P let y, € R be some tar-
get label. Then there exists a GNN with d + 2 layers, width

bounded by max {(N + 1?0, 2\/|P|} and ReLU acti-

vation such that for every graph G with nodes v1, . .., v,
and corresponding d-patterns p1, . ..,p, C P, the output
of this GNN on v; is exactly y,,,.

The full proof is in Appendix B. This theorem strengthens
Theorem 2 from (Morris et al., 2019) in two ways: (1) We
prove that one can specify the output for every d-pattern
while (Morris et al., 2019) show that there is a d-layer GNN
that can distinguish all d-patterns; (2) Our network construc-
tion is more efficient in terms of width and dependence on
the number of d-patterns (2+/]P] instead of | P|).

We note that the width of the required GNN from the the-
orem is not very large if d is small, where d represents the
depth of the GNN. In practice, shallow GNNs are very com-
monly used and are empirically successful. The d + 2 layers
in the theorem can be split into d message-passing layers
plus 2 fully connected layers that are applied to each node
independently. Thm. 4.3 can be readily extended to a vector
output for each d-pattern, at the cost of increasing the width
of the layers.

Combining Thm. 4.2 and Thm. 4.3 shows that we can inde-
pendently control the values of d-layer GNNs on the set of
d-patterns (possibly with an additional node-wise function)
and these values completely determine the GNN’s output.

5.”’Bad” global minima exist

We now consider any graph-prediction task solvable by a
d-layer GNN. Assume we have a training distribution of
(say, small) graphs and a possibly different test distribution
of (say, large) graphs. We show that if the graphs in the test
distribution introduce unseen d-patterns, then there exists a
(d + 3)-layer GNN that solves the task on the train distri-
bution and fails on the test distribution. We will consider
both graph-level tasks (i.e. predicting a single value for
the entire graph, e.g., graph classification) and node-level
tasks (i.e. predicting a single value for each node, e.g., node
classification).

From Local Structures to Size Generalization in Graph Neural Networks

Theorem 5.1. Let P; and P; be finitely supported distribu-
tions of graphs. Let P{ be the distribution of d-patterns over
Py and similarly Pg for Py. Assume that any graph in P,
contains a node with a d-pattern in P \ P{. Then, for any
graph regression task solvable by a GNN with depth d there
exists a GNN with depth at most d + 3 that perfectly solves
the task on Py and predicts an answer with arbitrarily large
error on all graphs from Ps.

The proof directly uses the construction from Thm. 4.3, and
can be found in Appendix C. The main idea is to leverage the
unseen d-patterns from P§ to change the output on graphs
from Ps.

As an example, consider the task of counting the number of
edges in the graph. In this case, there is a simple GNN that
generalizes to all graph sizes: the GNN first calculates the
node degree for each node using the first message-passing
layer and then uses the readout function to sum the node
outputs. This results in the output 2| E|, which can be scaled
appropriately. To define a network that outputs wrong an-
swers on large graphs under our assumptions, we can use
Thm. 4.3 and make sure that the network outputs the node
degree on patterns in P{! and some other value on patterns
in P§\ P{.

Note that although we only showed in Thm. 4.3 that the
output of GNNs can be chosen for nodes, the value of GNNs
on the nodes has a direct effect on graph-level tasks. This

happens because of the global readout function used in
GNNs, which aggregates the GNN output over all the nodes.

Next, we prove a similar theorem for node tasks. Here,
we show a relation between the discrepancy of d-pattern
distributions and the error on the large graphs.

Theorem 5.2. Let P; and Ps be finitely supported distribu-
tions on graphs, and let P{ be the distribution of d-patterns
over Py and similarly P for Py. For any node prediction
task which is solvable by a GNN with depth d and € > (
there exists a GNN with depth at most d+ 2 that has 0-1 loss
(averaged over the nodes) smaller then € on Py and 0-1 loss
A(e) on Py, where A(€) = max . pa(a)<c P (A). Here, A
is a set of d-patterns, and P(A) is the total probability mass
for that set under P.

This theorem shows that for node prediction tasks, if there is
a large discrepancy between the graph distributions (a set of
d-patterns with small probability in P{ and large probability
in Pzd), then there is a solution that solves the task on P,
and generalizes badly for P,. The full proof can be found
in Appendix C.

Examples. The above results show that even for simple
tasks, GNNs may fail to generalize to unseen sizes, here are
two examples. (i) Consider the task of counting the number
of edges in a graph. From Thm. 5.1 there is a GNN that

successfully outputs the number of edges in graphs with
max degree up to N, and fails on graphs with larger max
degrees. (ii) Consider some node regression task, when
the training set consists of graphs sampled i.i.d from an
ErdGs-Rényi graph G(n, p), and the test set contains graphs
sampled i.i.d from G(2n, p). In this case, a GNN trained on
the training set will be trained on graphs with an average
degree np, while the test set contains graphs with an average
degree 2np. When n is large, with a very high probability,
the train and test set will not have any common d-patterns,
for any d > 0. Hence, by Thm. 5.2 there is a GNN that
solves the task for small graphs and fails on large graphs.

The next section studies the relation between size general-
ization and local graph structure in controlled experimental
settings on synthetic data.

6. A controlled empirical study

The previous section showed that there exist bad global min-
ima that fail to generalize to larger graphs. In this section,
we study empirically whether common training procedures
lead to bad global minima in practice. Specifically, we
demonstrate on several synthetic graph distributions, that
reaching bad global minima is tightly connected to the dis-
crepancy of d-pattern distributions between large and small
graphs. We identify two main phenomena: (A) When there
is a large discrepancy between the d-pattern distributions of
large and small graphs, GNNSs fail to generalize; (B) As the
discrepancy between these distributions gets smaller, GNNs
get better at generalizing to larger graphs.

Tasks. In the following experiments, we use a controlled
regression task in a student-teacher setting. In this setting,
we sample a “teacher” GNN with random weights (drawn
iid from U([-0.1,0.1])), freeze the network, and label
each graph in the dataset using the output of the “teacher”
network. Our goal is to train a “student” network, which
has the same architecture as the “teacher” network, to fit
the labels of the teacher network. The advantages of this
setting are twofold: (1) A solution is guaranteed to exist:
We know that there is a weight assignment of the student
network which perfectly solves the task for graphs of any
size. (2) Generality: It covers a diverse set of tasks solvable
by GNNSs. As the evaluation criterion, we use the squared
loss.

Graph distribution. Graphs were drawn from a G(n,p)
distribution. This distribution is useful for testing our hy-
pothesis since we can modify the distribution of d-patterns
simply by changing either p or n. For example, 1-patterns
represent node degrees, and in this model, the average de-
gree of graphs generated from G(n, p) is np. We provide
experiments on additional graph distributions like PA in
Appendix D.

From Local Structures to Size Generalization in Graph Neural Networks

8’ 6 = three layers 8’ 6

= — two layers =

Q4 — onelayer a4

K=l o

- 2 o 2

g o

© @©

3 0 =] 0

7, ?_,

g 2

<-4 "60 80 100 120 140 T60 <-4 100 150 200 250

Test graph size Test graph size
(@) (b)

S 6 S 6
o o 5

w4 o 4

%] %)

o o 3

- - 2

1S Qo

g ° g o

7 -2 F-1

2 g2

<4660 80 100 120 140 160 < %050, 100.150.200.250. 300. 350,400,450 50

Train graph size p of test G(n,p)
(© (d)

Figure 3. The effect of graph size and d-pattern distribution on generalization in G(n, p) graphs in a student-teacher graph regression task.
The y-axis represents the squared loss in log,, scale. (a) Bounded training size n € [40, 50] and varying test size with constant p = 0.3
(b) Bounded training training size n € [40, 50] and varying test size while keeping node degrees constant by changing p € [0.15,0.3] .
(c) Varying train size with constant test size. We train on graphs with n nodes and constant p = 0.3. Here, n is drawn uniformly from
[40, x] and z varies; test on n = 150, p = 0.3. (d) Train on n drawn uniformly from [40, 50] and p = 0.3 test on n = 100 and varying p.

See discussion in the text.

Architecture and training protocol. We use a GNN as
defined in (Morris et al., 2019) with ReLU activations. The
number of GNN layers in the network we use is either 1, 2
or 3; the width of the teacher network is 32 and of the
student network 64, providing more expressive power to the
student network. We obtained similar results when testing
with a width of 32, the same as the teacher network. We
use a summation readout function followed by a two-layer
fully connected suffix. We use ADAM with a learning rate
of 1073, We added weight decay (L, regularization) with
A = 0.1. We performed a hyper-parameters search on the
learning rate and weight decay and use validation-based
early stopping on the source domain (small graphs). The
results are averaged over 10 random seeds. We used Pytorch
Geometric (Fey & Lenssen, 2019) on NVIDIA DGX-1.

Experiments We conducted four experiments, shown in
Figure 3 (a-d). We note that in all the experiments, the loss
on the validation set was effectively zero. First, we study
the generalization of GNNs by training on a bounded size
range n € [40, 50] and varying the test size in [50, 150].

Figure 3 (a) shows that when p is kept constant while in-
creasing the test graph sizes, size generalization degrades.
Indeed, in this case, the underlying d-pattern distribution
diverges from the training distribution. In Appendix D we
demonstrate that this problem persists to larger graphs with
up to 500 nodes.

On the flip side, Figure 3 (b) shows that when p is properly
normalized to keep the degree np constant while varying the
graph size then we have significantly better generalization to
large graphs. In this case, the d-pattern distribution remains
similar.

In the next experiment, shown in Figure 3 (c) we keep
the test size constant n = 150 and vary the training size
n € [40,x] where x varies in [50,150] and p = 0.3 re-
mains constant. In this case we can see that as we train on
graph sizes that approach the test graph sizes, the d-pattern

discrepancy reduces and generalization improves.

In our last experiment shown in Figure 3 (d), we trainonn €
[40, 50] and p = 0.3 and test on G(n,p) graphs with n =
100 and p varying from 0.05 to 0.5. As mentioned before,
the expected node degree of the graphs is np, hence the
distribution of d-patterns is most similar to the one observed
in the training set when p = 0.15. Indeed, this is the value
of p where the test loss is minimized.

Conclusions. First, our experiments confirm phenomena
(A-B). Another conclusion is that size generalization is more
difficult when using deeper networks. This is consistent
with our theory since in these cases the pattern discrepancy
becomes more severe: for example, 2-patterns divide nodes
into significantly more d-pattern classes than 1-patterns.
Further results on real datasets appear in Sec. 7.

Additional experiments. in Appendix D, We show that
the conclusions above are consistent along different tasks
(max clique, edge count, node regression), distributions (PA
and point cloud graphs), and architectures (GIN (Xu et al.,
2018)). We also tried other activation functions (tanh and
sigmoid). Additionally, we experimented with generaliza-
tion from large to small graphs. Our previous understanding
is confirmed by the findings of the present experiment: gen-
eralization is better when the training and test sets have
similar graph sizes (and similar d-pattern distribution).

7. Towards improving size generalization

The results from the previous sections imply that the prob-
lem of size generalization is not only related to the size of
the graph in terms of the number of nodes or edges but to
the distribution of d-patterns. Based on this observation, we
now formulate the size-generalization problem as a domain
adaptation (DA) problem. We consider a setting where we
are given two distributions over graphs: a source distribution
Dg (say, for small graphs) and a target distribution Dr (say,

From Local Structures to Size Generalization in Graph Neural Networks

for large graphs). The main idea is to adapt the network to
unseen d-patterns appearing in large graphs.

We first consider the unsupervised DA setting, where we
have access to labeled samples from the source Dg but the
target data from Dr is unlabeled. Our goal is to infer labels
on a test dataset sampled from the target Dp. To this end, we
devise a novel SSL task that promotes learning informative
representations of unseen d-patterns. We show that this
approach improves the size-generalization ability of GNNs.

Second, we consider a semi-supervised setup, where we
also have access to a small number (e.g., 1-10) of labeled
examples from the target Dr. We show that such a setup,
when feasible, can lead to equivalent improvement, and
benefits from our SSL task as well.

7.1. SSL for DA on graphs

In SSL for DA, a model is trained on unlabeled data to learn
a pretext task, which is different from the main task at hand.
If the pretext task is chosen wisely, the model learns useful
representations (Doersch et al., 2015; Gidaris et al., 2018)
that can help with the main task. Here, we train the pretext
task on both the source and target domains, as was done
for images and point clouds (Sun et al., 2019; Achituve
et al., 2020). The idea is that the pretext task aligns the
representations of the source and target domains leading to
better predictions of the main task for target graphs.

Pattern-tree pretext task. We propose a novel pretext task
which is motivated by sections 5-6: one of the main causes
for bad generalization is unseen d-patterns in the test set.
Therefore, we design a pretext task to encourage the network
to learn useful representations for these d-patterns.

AN

(1too 020 222 2102)
000 0600 000 000
Layer 1

Our pretext task is a
node prediction task in
which the output node
label is specifically de-
signed to hold important
information about the
node’s d-pattern. For
an illustration of a label
see Figure 4. The con-
struction of those labels
is split into two proce-
dures.

Layer O Layer2 Layer 3

Figure 4. Top left: a graph with
node features represented by col-
ors. Top right: A tree that repre-
sents the d-patterns for the black
node. Bottom: The tree descrip-
tor is a vector with each coordinate
containing the number of nodes
from each class in each layer of
the tree.

First, we construct a
tree that fully represents
each node’s d-pattern.
The tree is constructed
for a node v in the fol-
lowing way: we start by creating a root node that represents
v. We then create nodes for all v’s neighbors and connect
them to the root. All these nodes hold the features of the

nodes they represent in the original graph. We continue to
grow the tree recursively up to depth d by adding new nodes
that represent the neighbors (in the original graph) of the
current leaves in our tree.

This is a standard construction, see e.g., (Xu et al., 2018).
For more details about the construction of the pattern tree
see Appendix E.

We then calculate a descriptor of the tree that will be used
as the SSL output label for each node. The descriptor is a
concatenation of histograms of the different node features
in each layer of the tree. The network is then trained in a
node regression setup with a dedicated SSL head to predict
this descriptor.

7.2. Experiments

Baselines. We compare our new pretext task to the follow-
ing baselines: (1) Vanilla: standard training on the source
domain; (2) HomoGNN (Tang et al., 2020) a homogeneous
GNN without the bias term trained on the source domain; (3)
Graph autoencoder (GAE) pretext task (Kipf & Welling,
2016b); (4) Node masking (NM) pretext task from (Hu
et al., 2019) where at each training iteration we mask 10%
of the node features and the goal is to reconstruct them. In
case the graph does not have node features then the task was
to predict the degree of the masked nodes. (5) Node metric
learning (NML): we use metric learning to learn useful
node representations. We use a corruption function that
given a graph and corruption parameter p € [0, 1], replaces
p|E| of the edges with random edges, and thus can generate
positive (p = 0.1) and negative (p = 0.3) examples for all
nodes of the graph. We train with the triplet loss (Wein-
berger & Saul, 2009). (6) Contrastive learning (CL): In
each iteration, we obtain two similar versions of each graph,
which are used to compute a contrastive loss (Qiu et al.,
2020; You et al., 2020a) against other graphs. We follow the
protocol of (You et al., 2020a), using a corruption function
of edge perturbation that randomly adds and removes 5% of
the edges in the graph.

Datasets. We use datasets from (Morris et al., 2020) and
(Rozemberczki et al., 2020) (Twitch egos and Deezer egos).
We selected datasets that have a sufficient number of graphs
(more than 1,000) and with a non-trivial split to small and
large graphs as detailed in Appendix G.4. In total, we used
7 datasets, 4 from molecular biology (NCI1, NCI109, D&D,
Proteins), and 3 from social networks (Twitch ego nets,
Deezer ego nets, IMDB-Binary). In all datasets, 50% small-
est graphs were assigned to the training set, and the largest
10% of graphs were assigned to the test set. We further split
arandom 10% of the small graphs as a validation set.

Architecture and training protocol. The setup is the same
as in Sec. 6 with a three-layer GNN in all experiments.

From Local Structures to Size Generalization in Graph Neural Networks

DATASETS DEEZER IMDB - B NCI1 NCI109 PROTEINS TWITCH DD AVERAGE
TOTAL-VAR. DISTANCE 1 0.99 0.16 0.16 0.48 1 0.15 -
SMALL GRAPHS 56.5+0.8 63.2+£33 755+16 784+14 754+£31 69.7+0.2 71.1+44 70.0%
VANILLA 41.1+£6.8 55.9+7.8 659+4.3 68.9+38 76.0+£85 605+3.6 76.3£32 63.5%
HoMo0-GNN 40.5+6.6 56.3+7.0 66.0E£3.7 68.8+32 77.1+10.0 60.8+23 76.8+3.0 63.8%
NM MTL 51.6+8.5 55.6+6.8 49.9+7.8 61.7+57 788+84 495+28 674154 59.2%
NM PT 50.1£75 549+6.7 51.7+6.6 55.8+£50 782+£82 484+4.0 60.3£159 57.1%
GAE MTL 49.44+11.0 55.5+6.0 51.24+9.9 576+9.4 79.5+11.7 62.5+51 67.8+£10.0 60.5%
GAE PT 47.14+10.0 54.1+£6.8 589+7.6 67.2+£56 70.5+£94 53.6+£4.7 69+7.1 60.1%
NML MTL 46.4+9.5 54.4+70 523+£6.3 56.2+£6.5 78.7+6.8 57.4+41 64.7£11.9 58.6%
NML PT 48.4+10.7 53.8+6.1 54.6+6.2 56.1+£81 76.3£8.0 549+4.7 61.4+£15.1 57.9%
CL MTL 48.24+109 54.6+6.6 522+6.8 55.7+58 T76.6+7.7 59.4+35 63.6+15.0 58.6%
CL PT 476+9.7 53.6+75 574+£81 57.3+6.1 77.6+47 53.9+£7.1 692455 59.5%
PATTERN MTL (OURS) 45.6 +8.8 56.8+9.2 60.5+7.5 67.9+7.2 75.8+11.1 61.6+3.5 76.8+3.0 63.6%
PATTERN PT (OURS) 44.0+7.7 61.9+3.2 67.8+11.7 748+5.7 84.7+51 645+33 749152 67.5%

Table 1. Test accuracy of compared methods in 7 binary classification tasks. The Pattern tree method with pretraining achieves the highest
accuracy in most tasks and increases the average accuracy from 63% to 67% compared with the second-best method. High variance is due

to the domain shift between the source and target domain.

Il Pattern PT
Vanilla

66.28 675
65.0

5 63.5

41.6

Average accuracy over all datasets

10% 40%

Split gap

65%

Figure 5. Average accuracy on different size splits in the unsuper-
vised setup for (i) d-pattern pretraining and (ii) no SSL (Vanilla).
Accuracy is averaged over all the datasets in table 1.

Given a pretext task we consider two different training
procedures: (1) Multi-task learning (MTL) (You et al.,
2020b); (2) Pretraining (PT) (Hu et al., 2019). For MTL
we use equal weights for the main and SSL tasks. In the
semi-supervised setup, we used equal weights for the source
and target data. More details on the training procedures and
the losses can be found in Appendix F.

d-pattern distribution in real datasets. In Appendix G.5
we study the discrepancy between the local patterns be-
tween small and large graphs on all the datasets mentioned
above. The second row of Table 1 summarizes our findings
with the total variation (T'V") distances between d-pattern
distributions of small and large graphs. The difference be-
tween these distributions is severe for all social network
datasets (I'V =~ 1), and milder for biological datasets
(TV € [0.15,0.48]).

Next, we will see that a discrepancy between the d-patterns
leads to bad generalization and that correctly representing

the patterns of the test set improves performance.

Results for unsupervised DA setup. Table 1 compares the
effect of using the Pattern-tree pretext task to the baselines
described above. The small graphs row presents vanilla
results on a validation set with small graphs for comparison.
The small graph accuracy on 5 out of 7 datasets is larger by
7.3%-15.5% than on large graphs, indicating that the size-
generalization problem is indeed prevalent in real datasets.

Pretraining with the d-patterns pretext task outperforms
other baselines in 5 out 7 datasets, with an average 4%
improved accuracy on all datasets. HOMO-GNN slightly
improves over the vanilla while other pretext tasks do not
improve average accuracy. Specifically, for the datasets
with high discrepancy of local patterns (namely, IMDB,
Deezer, Proteins, and Twitch), pretraining with our SSL task
improves nicely over vanilla training (by 5.4% on average).
Naturally, the accuracy here is lower than SOTA on these
datasets because the domain shift makes the problem harder.

Fig. 5 shows two additional experiments, conducted on all
datasets using different size splits. First, using a gap of 65%
(training on the 30% smallest graphs and testing on the 5%
largest graphs), and second, using a gap of 10% (training
on the 50% smallest graphs and testing on graphs in the
60-70-percentile). The results are as expected: (1) When
training without SSL, larger size gaps hurt more (2) SSL
improves over Vanilla training with larger gaps.

Results for semi-supervised DA setup. Figure 6 compares
the performance of vanilla training versus pretraining with
the pattern-tree pretext task in the semi-supervised setup. As
expected, the accuracy monotonically increases with respect
to the number of labeled examples in both cases. Still, we
would like to highlight the improvement we get by training
on only a handful of extra examples. Pretraining with the
pretext task yields better results in the case of 0,1,5 labeled
examples and comparable results with 10 labeled examples.

Additional experiments We provide additional experi-

From Local Structures to Size Generalization in Graph Neural Networks

N

Bl Pattern PT 70.47 70.62

Vanilla

o

68.9 68.74

9]

N B

Average accuracy over all datasets
a O O 8 o NN

10

Figure 6. Average classification results in the semi-supervised
setup for (i) d-pattern pretraining and (ii) no SSL (Vanilla). Results
were averaged over all the datasets in table 1.

67.03 oo
66.47
]6357
0 1 5

Num of labeled large graph examples

o

ments on the synthetic tasks discussed in Sec. 6 in Appendix
G. We show that the pattern-tree pretext task improves gen-
eralization in the student-teacher setting (while not solving
the edge count or degree prediction tasks). In addition,
adding even a single labeled sample from the target distri-
bution significantly improves performance. We additionally
tested our SSL task on a combinatorial optimization prob-
lem of finding the max clique size in the graph, our SSL
improves over vanilla training by a factor of 2, although not
completely solving the problem. Also, we tested on sev-
eral tasks from the “ogbg-molpcba” dataset (see (Hu et al.,
2020)), although the results are inconclusive. This is further
discussed in Sec. 9.

8. Related work

Size generalization. Several papers observed successful
generalization across graph sizes, but the underlying reasons
were not investigated (Li et al., 2018; Maron et al., 2018;
Luz et al., 2020). More recently, (Velickovi¢ et al., 2019)
showed that when training GNNs to perform simple graph
algorithms step by step they generalize better to graphs
of different sizes. Unfortunately, such training procedures
cannot be easily applied to general tasks. (Knyazev et al.,
2019) studied the relationship between generalization and
attention mechanisms. (Bevilacqua et al., 2021) study graph
extrapolation using causal modeling. On the more practical
side, (Joshi et al., 2019; 2020; Khalil et al., 2017), study the
Traveling Salesman Problem (TSP), and show empirically
that size generalization on this problem is hard. (Corso
et al., 2020) study several multitask learning problems on
graphs and evaluate how the performance changes as the
size of the graphs change. In another line of work, Tang
et al. (2020); Nachmani & Wolf (2020) considered adaptive
depth GNNs. In our paper, we focus on the predominant
GNN architecture with a fixed number of message-passing
layers. Several works also studied size generalization and

expressivity when learning set-structured inputs (Zweig &
Bruna, 2020; Bueno & Hylton, 2020). In (Santoro et al.,
2018) the authors study generalization in abstract reasoning.

Generalization in graph neural networks. Several works
studied generalization bounds for certain classes of GNNs
(Garg et al., 2020; Puny et al., 2020; Verma & Zhang, 2019;
Liao et al., 2020; Du et al., 2019), but did not discuss size
generalization. (Sinha et al., 2020) proposed a benchmark
for assessing the logical generalization abilities of GNNs.

self-supervised and unsupervised learning on graphs.
One of the first papers to propose an unsupervised learning
approach for graphs is (Kipf & Welling, 2016b), which re-
sulted in several subsequent works (Park et al., 2019; Salha
et al., 2019). (Velickovic et al., 2019) suggested an un-
supervised learning approach based on predicting global
graph properties from local node descriptors. (Hu et al.,
2019) suggested several unsupervised learning tasks that
can be used for pretraining. More recently, (Jin et al., 2020;
You et al., 2020b) proposed several self-supervised tasks
on graphs, such as node masking. These works mainly fo-
cused on a single graph learning setup. (You et al., 2020a;
Qiu et al., 2020) applied contrastive learning techniques for
unsupervised representation learning on graphs. The main
difference between our SSL task and contrastive learning
is that following our theoretical observation, our SSL task
focuses on representing the local structure of each node,
rather than a representation that takes into account the entire
graph.

9. Conclusion and Discussion

This work is a step towards gaining an understanding of the
size-generalization problem in graph neural networks. We
showed that for important graph distributions, GNNs do not
naturally generalize to larger graphs even on simple tasks.
We started by defining d-patterns, a concept that captures the
expressivity of GNNs. We then characterized how the failure
to generalize depends on d-patterns. Lastly, we suggested
two approaches that can improve generalization. Although
these approaches are shown to be useful for multiple tasks,
there are still some tasks where generalization could not be
improved.

A limitation of our approach is that it assumes categorical
node features and bidirectional edges with no features. We
plan to expand our approach in the future to address these
important use cases. As a final note, our characterization
of d-patterns, as well as the methods we proposed, can be
applied to other cases where generalization is hindered by
distribution shifts, and may also be able to improve results
in these situations.

From Local Structures to Size Generalization in Graph Neural Networks

References

Achituve, 1., Maron, H., and Chechik, G. Self-supervised
learning for domain adaptation on point-clouds. arXiv
preprint arXiv:2003.12641, 2020.

Barabési, A.-L. and Albert, R. Emergence of scaling in
random networks. science, 286(5439):509-512, 1999.

Barabasi, A.-L., Jeong, H., Néda, Z., Ravasz, E., Schubert,
A., and Vicsek, T. Evolution of the social network of
scientific collaborations. Physica A: Statistical mechanics
and its applications, 311(3-4):590-614, 2002.

Bevilacqua, B., Zhou, Y., Murphy, R. L., and Ribeiro,
B. On single-environment extrapolations in graph clas-
sification and regression tasks, 2021. URL https:
//openreview.net/forum?id=wXBt-7VM2JE.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spec-
tral networks and locally connected networks on graphs.
arXiv preprint arXiv:1312.6203, 2013.

Bueno, C. and Hylton, A. G. Limitations for learning from

point clouds, 2020. URL https://openreview.

net/forum?id=rl1x63grFvH.

Capocci, A., Servedio, V. D., Colaiori, F., Buriol, L. S.,
Donato, D., Leonardi, S., and Caldarelli, G. Preferential
attachment in the growth of social networks: The internet
encyclopedia wikipedia. Physical review E, 74(3):036116,
2006.

Chen, Z., Chen, L., Villar, S., and Bruna, J. Can graph
neural networks count substructures? arXiv preprint
arXiv:2002.04025, 2020.

Corso, G., Cavalleri, L., Beaini, D., Lio, P., and Velickovié,
P. Principal neighbourhood aggregation for graph nets.
arXiv preprint arXiv:2004.05718, 2020.

Doersch, C., Gupta, A., and Efros, A. A. Unsupervised
visual representation learning by context prediction. In
Proceedings of the IEEE international conference on com-
puter vision, pp. 1422—-1430, 2015.

Du, S. S., Hou, K., Péczos, B., Salakhutdinov, R., Wang,
R., and Xu, K. Graph neural tangent kernel: Fusing
graph neural networks with graph kernels. arXiv preprint
arXiv:1905.13192, 2019.

Eisenberg, E. and Levanon, E. Y. Preferential attachment in
the protein network evolution. Physical review letters, 91
(13):138701, 2003.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with pytorch geometric. arXiv preprint arXiv:1903.02428,
2019.

Garg, V. K., Jegelka, S., and Jaakkola, T. Generalization and
representational limits of graph neural networks. arXiv
preprint arXiv:2002.06157, 2020.

Gidaris, S., Singh, P., and Komodakis, N. Unsupervised rep-
resentation learning by predicting image rotations. arXiv
preprint arXiv:1803.07728, 2018.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. arXiv preprint arXiv:1704.01212, 2017.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249-256. JMLR
Workshop and Conference Proceedings, 2010.

Hermosilla, P., Ritschel, T., Vazquez, P.-P., Vinacua, A.,
and Ropinski, T. Monte carlo convolution for learning on
non-uniformly sampled point clouds. ACM Transactions
on Graphics (TOG), 37(6):1-12, 2018.

Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V.,
and Leskovec, J. Strategies for pre-training graph neural
networks. arXiv preprint arXiv:1905.12265, 2019.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020.

Jin, W., Derr, T., Liu, H., Wang, Y., Wang, S., Liu,
Z., and Tang, J. Self-supervised learning on graphs:
Deep insights and new direction. arXiv preprint
arXiv:2006.10141, 2020.

Joshi, C. K., Laurent, T., and Bresson, X. An efficient
graph convolutional network technique for the travelling
salesman problem. arXiv preprint arXiv:1906.01227,
2019.

Joshi, C. K., Cappart, Q., Rousseau, L.-M., Laurent, T., and
Bresson, X. Learning tsp requires rethinking generaliza-
tion. arXiv preprint arXiv:2006.07054, 2020.

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song,
L. Learning combinatorial optimization algorithms over
graphs. In Advances in neural information processing
systems, pp. 6348—-6358, 2017.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016a.

Kipf, T. N. and Welling, M. Variational graph auto-encoders.
arXiv preprint arXiv:1611.07308, 2016b.

https://openreview.net/forum?id=wXBt-7VM2JE
https://openreview.net/forum?id=wXBt-7VM2JE
https://openreview.net/forum?id=r1x63grFvH
https://openreview.net/forum?id=r1x63grFvH

From Local Structures to Size Generalization in Graph Neural Networks

Knyazev, B., Taylor, G. W.,, and Amer, M. Understanding
attention and generalization in graph neural networks. In

Advances in Neural Information Processing Systems, pp.
42024212, 2019.

Li, Z., Chen, Q., and Koltun, V. Combinatorial optimization
with graph convolutional networks and guided tree search.
In Advances in Neural Information Processing Systems,
pp. 539-548, 2018.

Liao, R., Urtasun, R., and Zemel, R. A pac-bayesian ap-
proach to generalization bounds for graph neural net-
works. arXiv preprint arXiv:2012.07690, 2020.

Light, S., Kraulis, P., and Elofsson, A. Preferential at-
tachment in the evolution of metabolic networks. Bmc
Genomics, 6(1):1-11, 2005.

Luz, 1., Galun, M., Maron, H., Basri, R., and Yavneh, 1.
Learning algebraic multigrid using graph neural networks.
arXiv preprint arXiv:2003.05744, 2020.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y.
Invariant and equivariant graph networks. arXiv preprint
arXiv:1812.09902, 2018.

Morris, C. and Mutzel, P. Towards a practical k-
dimensional weisfeiler-leman algorithm. arXiv preprint
arXiv:1904.01543,2019.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman go
neural: Higher-order graph neural networks. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 4602-4609, 2019.

Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel,
P., and Neumann, M. Tudataset: A collection of bench-
mark datasets for learning with graphs. In ICML 2020
Workshop on Graph Representation Learning and Beyond

(GRL+ 2020), 2020. URL www.graphlearning.

10.

Nachmani, E. and Wolf, L. Molecule property predic-
tion and classification with graph hypernetworks. arXiv
preprint arXiv:2002.00240, 2020.

Park, J., Lee, M., Chang, H. J., Lee, K., and Choi, J. Y.
Symmetric graph convolutional autoencoder for unsuper-
vised graph representation learning. In Proceedings of

the IEEFE International Conference on Computer Vision,
pp- 6519-6528, 2019.

Puny, O., Ben-Hamu, H., and Lipman, Y. From graph
low-rank global attention to 2-fwl approximation. arXiv
preprint arXiv:2006.07846, 2020.

Qiu, J., Chen, Q., Dong, Y., Zhang, J., Yang, H., Ding, M.,
Wang, K., and Tang, J. Gcece: Graph contrastive coding
for graph neural network pre-training. In Proceedings
of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1150-1160,
2020.

Rozemberczki, B., Kiss, O., and Sarkar, R. Karate Club:
An API Oriented Open-source Python Framework for
Unsupervised Learning on Graphs. In Proceedings of the
29th ACM International Conference on Information and
Knowledge Management (CIKM °20), pp. 3125-3132.
ACM, 2020.

Salha, G., Hennequin, R., and Vazirgiannis, M. Keep it
simple: Graph autoencoders without graph convolutional
networks. arXiv preprint arXiv:1910.00942, 2019.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. W. Learning to simu-
late complex physics with graph networks. arXiv preprint
arXiv:2002.09405, 2020.

Santoro, A., Hill, F., Barrett, D., Morcos, A., and Lillicrap,
T. Measuring abstract reasoning in neural networks. In

International Conference on Machine Learning, pp. 4477—
4486, 2018.

Sinha, K., Sodhani, S., Pineau, J., and Hamilton, W. L. Eval-
uating logical generalization in graph neural networks.
arXiv preprint arXiv:2003.06560, 2020.

Sun, Y., Tzeng, E., Darrell, T., and Efros, A. A. Unsuper-
vised domain adaptation through self-supervision. arXiv
preprint arXiv:1909.11825, 2019.

Tang, H., Huang, Z., Gu, J., Lu, B.-L., and Su, H. Towards
scale-invariant graph-related problem solving by itera-
tive homogeneous graph neural networks. ICML 2020
Workshop on Graph Neural Networks & Beyond, 2020.

Velickovié, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Velickovic, P., Fedus, W., Hamilton, W. L., Lio, P., Bengio,
Y., and Hjelm, R. D. Deep graph infomax. In /ICLR
(Poster), 2019.

Velickovié, P., Ying, R., Padovano, M., Hadsell, R., and
Blundell, C. Neural execution of graph algorithms. arXiv
preprint arXiv:1910.10593, 2019.

Verma, S. and Zhang, Z.-L.. Stability and generalization
of graph convolutional neural networks. In Proceedings
of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 15391548,
2019.

www.graphlearning.io
www.graphlearning.io

From Local Structures to Size Generalization in Graph Neural Networks

Weinberger, K. Q. and Saul, L. K. Distance metric learning
for large margin nearest neighbor classification. Journal
of Machine Learning Research, 10(2), 2009.

Weisfeiler, B. and Lehman, A. A. A reduction of a graph
to a canonical form and an algebra arising during this
reduction. Nauchno-Technicheskaya Informatsia, 2(9):
12-16, 1968.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How
powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018.

Xu, K., Li, J., Zhang, M., Du, S. S., Kawarabayashi, K.-i.,
and Jegelka, S. How neural networks extrapolate: From
feedforward to graph neural networks. arXiv preprint
arXiv:2009.11848, 2020.

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen, Y.
Graph contrastive learning with augmentations. Advances
in Neural Information Processing Systems, 33, 2020a.

You, Y., Chen, T., Wang, Z., and Shen, Y. When does self-
supervision help graph convolutional networks? arXiv
preprint arXiv:2006.09136, 2020b.

Yun, C., Sra, S., and Jadbabaie, A. Small relu networks are
powerful memorizers: a tight analysis of memorization
capacity. In Advances in Neural Information Processing
Systems, pp. 15558-15569, 2019.

Zweig, A. and Bruna, J. A functional perspective on learning
symmetric functions with neural networks. arXiv preprint
arXiv:2008.06952, 2020.

