Improved OOD Generalization via Adversarial Training and Pre-training

A. Proofs for Section 3

A.1. Proofs for Section 3.1

A.l1.1. PROOF OF THEOREM 1

To start the proof of Theorem 1, we need the following lemma.

Lemma 1. For any w and r, we have

sup Rp(w):Ep0|: sup f(w,xz+9)]. (16)

PeBy, (Po,r) [[8llcc <7

Proof. Let T} (x) = x + arg maxys,|5||..<r} f(w, x + &) with a is an input data. The existence of T}* (x) is guaranteed
by the continuity of f(w,x). P, is the distribution of T, (x) with © ~ Py. Then

Er, [ swp  fw,@+8)| = Ep, [f(w,a)]. a7
18llco<r
Since
Weo (Po, Pr) < Epy ([l — T2 ()| o] <1, (18)
we have
Ep, | sup f(w,xz+9)| < sup Rp(w). (19)
18llco <7 PeBw,, (Por)

On the other hand, let P € argmaxpep,,__(py,r) 1 p(w). Due to Kolmogorov’s theorem, P;* can be distribution of some
random vector z, due to the definition of W ,-distance, we have ||z — ||, < r holds almost surely. Then we conclude

sup  Rp(w) = Rpz(w) =Ep;[f(w, 2)] <Ep, [ sup f(w,z+9)|. (20)
PeBy,, (Po,r) [18]loo <7
Thus, we get the conclusion. O

This lemma shows that the distributional perturbation measured by W, -distance is equivalent to input perturbation. Hence
we can study Wiy ¢-distributional robustness through ¢;, ¢-input-robustness. The basic tool for our proof is the covering
number, which is defined as follows.

Definition 2. (Wainwright, 2019) A r-cover of (X, || - ||) is any point set {u;} C X such that for any uw € X, there exists
w; satisfies ||w — w; ||, < r. The covering number N'(r, X, || - ||,) is the cardinality of the smallest r-cover.

Now we are ready to give the proof of Theorem 1 which is motivated by (Xu & Mannor, 2012).

Proof of Theorem 1. We can construct a r-cover to (X, || - [|2) then N'(r, X, || - ||2) < (2do)@P/™*+1) = N, because the
X can be covered by a polytope with /5-diameter smaller than 2D and 2d, vertices, see (Vershynin, 2018) Theorem 0.0.4
for details. Due to the geometrical structure, we have N (r, X, || - [|o0) < (2d0)(2D/T2+1). Then, there exists (Cy,--- ,Cn)
covers (X, || - ||so) where C; is disjoint with each other, and ||u — v||o < 7 for any u,v € C;. This can be constructed

by C; = CiN (U;;ll C’j) with (C1,---,Cy) covers (X, ]| - ||o), and the diameter of each C; is smaller than 7 since
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N, X, ||+ |lo) < N.Let A; = {x; : «; € C;}, and | A;| is the cardinality of A;. Due to Lemma 1, we have

sup Rp(w)an('w)’ = |Ep, [ sup f(w,x+9)

PeBw,, (Po,r0) 18]l o0 <70

- Rp, (w)'

N
= ZJEPO[ sup  f(w,xz+96) |z € Cj
j=1

Py(Cy) — RPn(w)‘

[16]lcc <7r0
3 41
< Ep sup f(w,z+8)|xzeC;| —L — = fw, ;)
JZ_‘Z ’ [|6||x<ro |'n T nis
3 14
+ ZEPU |: sSup f(w,w+5) ‘wGCj (nj—Po(CJ)>’ Q1)
— [16]lcc <ro
j=1
Ly 144
<|— sup |f(w, ) — f(w,z:)|| + M il py(oy)
n ;m;] 2EC;+Boo(0,70) ; n J
a 1 <& N 14|
< ﬁZWTuz |f(w, @ + 8) — f(w, @)+ MY TJ — Py(Cy)
i=1 l8llec<2r =

N
Se—!—MZ

j=1

A
il _ |

Here a is due to Cj + B (0,7) € Boo (24, 2r) when ; € Cj, since ¢, -diameter of C; is smaller than r. The last inequality
is due to (2r, €, P, c0)-robustness of f(w,x). On the other hand, due to Proposition A6.6 in (van der Vaart & Wellner,

2000), we have
2
> 9) < 2V exp (*’;9 ) . 22)

Combine this with (21), due to the value of N, we get the conclusion. O

A
)

p&

j=1

A.1.2. PROOF OF THEOREM 2

There is a little difference of proving Theorem 2 compared with Theorem 1. Because the out-distribution P constrained
in Bw_ (Pp,r) only correspond with OOD data that contained in a {.-ball of in-distribution data almost surely, see
Lemma 1 for a rigorous description. Hence, we can utilize ¢, -robustness of model to derive the OOD generalization under
W o-distance by Theorem 1. However, in the regime of Ws-distance, roughly speaking, the transformed OOD data T, ()
is contained in a ¢5-ball of x in expectation. Thus, Lemma 1 is invalid under W5-distance.

To discuss the OOD generalization under W5-distance, we need to give a delicate characterization to the distribution
P € Bw, (P, ). First, we need the following lemma.

Lemma 2. For any r and w, let P! € argmaxpep,, (p,,r) Rp(w). Then, there exists a mapping T (x) such that
TY(x) ~ P’ withx ~ Py.

Proof. The proof of Theorem 6 in (Sinha et al., 2018) shows that

Rp:(w) = sup  Rp(w)=inf sup (/ f(w, ) = Nz — z|°dn(x, z) + )\7") . (23)
XxX

PEBw, (Po,r) A20 p re(P,Py)

We next show that the supremum over 7 in the last equality is attained by the joint distribution (7* (), &), which implies
our conclusion. For any A > 0, we have

sup ( / f(w,w>—x|\w—z||2dw<m,z>) < [ sw (tw.2) = Az - =) dR(2) %)
XXX X @

P,me(P,Pg)
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due to the supremum in the left hand side is taken over P and 7. On the other hand, let P(- | z) and «(-) respectively be the
regular conditional distribution on X’ with z given and the function on X. Since P(- | z) is measurable,

sup ( / XXf(m)fxumfznzdw(w,a) > sup ( / XXf(w,w%Aumsz?dP(m|z>dPo<z>)

P,me(P,Py) P(-|z)
2 sup ([ fw,a(z) - Alez) - lFanz) ) 25)
x(-) X
> / sup (f(w, @) — A — z|2) dPo(z).
X =
Thus, we get the conclusion. O
Proof of Theorem 2. Similar to the proof of Theorem 1, we can construct a disjoint cover (Cy,--+ ,Cpy) to (X, ]| - ||2) such

that N' < (2dy)2<"P/™*+1) and the ly-diameter of each C; is smaller than r/e. Let P € arg MAaXpe By, (Py.r) Lip (W), by
Lemma 2, we have

sup  Rp(w) = Rp: (w)
PEBy, (Po.r)

=Ep, [f(w, T;"(x))]
=Ep, [f(w, T (@) (Irp @)epa@,r/0) + 110 @)¢Ba(air/o))] (26)
< Ep, [ sup  f(w,z+9)| + MP(T}(x) ¢ Bz(z,r/e)).
18ll2<r/e
Due to the definition of 7 (x), by Markov’s inequality, we have
(£) P72 (@) ¢ Ba(@,v/e)) < / I (@) — @||*dPo (@) = Wa(Po, Py) < 1. 27)
X
Plugging this into (26), and due to the definition of Wasserstein distance, we have
Ep, | sup f(w,z+9)| < sup Rp(w) <Ep, | sup f(w,z+3d)|+ Me. (28)
I8ll2<r/e PeBw, (Po,r) I8ll2<r/e
Similar to the proof of Theorem 1, due to the model is (27 /¢, €, P,,, 2)-robust, we have
(2¢2D/r2+1)
Ep, | sup f(w,z+9)| — Rp,(w)| < 6+M\/(2d0) log 2 + 210g (1/0) (29)
18]l2<r/e n
holds with probability at least 1 — . Combining this with (28), we get the conclusion. O

A.2. Proofs for Section 3.2

The proof of Theorem 3 is same for p € {2, 00}, we take p = oo as an example. Before providing the proof, we first give a
lemma to characterize the convergence rate of the first inner loop in Algorithm 1.

Lemma 3. For any w, € {x;}, and 1, there exists §" € argmaxys.|s|..<r} f(w, T + &) such that
K
s =8 < (1= 4= ) 6y = 07| 60)
Lo2

when §j1 = Projp_ g ) (0 + 1aVa f(w, T + i) withng = 1/Las.
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Proof. The existence of §* is due to the continuity of f(w,-). Then

flw,z+8") = flw, @+ k1) = flw, @ +87) — fw,z+ 8k) + f(w, @ + 8x) — f(w,z + Skt1)
S (Vaf(w,m+80),8" — 8) — 126 — 57

L
+ (Vo f(w, @ + &), 8 — 6ki1) + %Hakﬂ — 812

. - L (31)
= (VoS (w,@ +8¢),8" = 1) = 57106 = 8°[1° + =2 |41 — S
b y z L
< Lon(Bps1 — 64,0 —mn—”—na =8|+ 21k — 8l
* L
= Loo (k11 — 05, 8" — 83) — uak—a 12 —ﬁuml Skl1?,

where a is due to the Laa-Lipschitz continuity of V f (w, ) and strongly convexity, b is because the property of projection
(see Lemma 3.1 in (Bubeck, 2014)). Then we get

18511 — 81> = I18k41 — 8k* + 165 — 8" [|* + 2(8x41 — 8k, 8 — 67)
32
<(1-£2) 1o - o o

by plugging (31) into the above equality and f(w,x + §*) — f(w,® + dx+1) > 0. Thus, we get the conclusion. O

This lemma shows that the inner loop in Algorithm 1 can efficiently approximate the worst-case perturbation for any w; and
x;. Now we are ready to give the proof of Theorem 3.

We need the following lemma, which is Theorem 6 in (Rakhlin et al., 2012).

Lemmad. Let {&,- - , &} be a martingale difference sequence with a uniform upper bound b. Let V; = Z;Zl Var(&; |
Fj_1) with Fj is the o-field generated by {1, - - - ,&;}. Then for every a and v > 0,

(L<Jt <{Z£] > a} NV < v})) < exp (ﬁ) . -

This is a type of Bennett’s inequality which is sharper compared with Azuma-Hoeffding’s inequality when the variance v is
much smaller than uniform bound b.
A.2.1. PROOF OF THEOREM 3

Proof. With a little abuse of notation, let r(p) = r and define g(w,x) = sups,5|.. <, f(w, T + §). Lemma A.S in
(Nouiehed et al., 2019) implies g(w, ) has L1 + %—Lipschitz continuous gradient with respect to w for any specific
x. Then Rp, (w) has L = Ly; + %-Lipsohitz continuous gradient. Let £* € x + arg maxs.|5)..<r} (W, T + 6),
due to the Lipschitz gradient of Rp, (w),

~ . ~ L
Rp, (wit1) — Rp, (wi) < (VRp, (W), wer1 — we) + §||wt+1 — w, |

= 1wy (VR (w1), Voo (w1, @i, + 0x)) + ”‘"f Vo f (w2, @5, + O50)|I?

= 1w, [V Rp, (we)|* + 1w, (VRp, (wr), wa(wt, ©,) = Vo [(wi, @i, + 6x))

(34)

+ 1w, (VRp, (we), VRp, (we) = Vo f(we, 7)) + m‘” IV f (we, @i, + 85)|*.

Here the last equality is due to V,g(w, &) = V4, f(w, *) (Similar to Danskin’s theorem, see Lemma A.5 in (Nouiehed
etal., 2019)), and x;, is the local maxima approximated by x;, + dx in Lemma 3. By taking expectation to w1 with w;
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given in the both side of the above equation, Jesen’s inequality, combining Lemma 3 and 7, = 1/ pwt,

E[Rp, (wi1)] — Rp, (w") < Rp, (wi) — Rp, (w") — 0w, [|[VRp, (w)|?
ey, G*L

B [1u [V R, () [V (w1, @3,) = Voo f (w, i, + 850 + 2222

K
< R (00 = R () = [V (01 + 1 [V R, (00 (1= 22 ) 8 (161 - 851 +
B D, * 2 2
< (1= 2ptmn,) (R, (we) = R, (w)) + 1%, GL

2 - ~ . G*L
= (1 - ;) (RP” (w:) — Rp, (w )) + IRz

(35)
Here the third inequality is because
K K 2 2
D, T * @ w G“L
eIV R, (wo) | (1= H2) (181 = 67,12 < 1, G (1 2 ) ador? < e T2 (36)
Loy Los 2
for any d;, , since
P js GL
K1 1-— | <-K-—=<1 — . 7
Og< L22> - Los — 8 (BTuwd0T2) (3 )
Then by induction,
- - o GPL1 2
Blftr, (wenn)] - fir,(w7) < SE S TT (1-%)
Jj=2 k=j+1
_GL i 1(G-1) (38)
w2, g2 (t—1)t
Jj=2
2
< G°L
Tt

Thus we get the first conclusion of convergence in expectation by taking ¢ = T" for ¢ > 2. For the second conclusion, let us
define & = (VRp, (w;), VRp, (w;) — Vo f(we, z7,)). Then Schwarz inequality implies that

&| < IVRp, (wo)||[VRp, (wi) = Ve f (we, 25,)|| < 2G™. (39)
Similar to (35), fort > 2,
R, (i) = Re, (") < (1= 2pun,) (R, (wi) = R, (7)) 4+ 1000, G L+ 2000, €1
G’L 2 & T 2
< [ i
TR ’ Hl (1 k>

L, 2 1
B e 2 (- )t

G°L 2 ~(-1
td e =5 (6 1)1

(40)

Since the second term in the last inequality is upper bonded by Zé‘:g &; which is a sum of martingale difference, and
|€;] < 2G?, a simple Azuma-Hoeffding’s inequality based on bounded martingale difference (Corollary 2.20 in (Wainwright,
2019)) can give a O(1/+/) convergence rate in the high probability. However, we can sharpen the convergence rate via a
Bennett’s inequality (Proposition 3.19 in (Duchi, 2016)), because the conditional variance of &; will decrease across training.
We consider the conditional variance of Z;ZQ(j — 1)¢;, let F; be the o-field generated by {w1,--- ,w;}, since E[¢;] =0

nfthQL
2
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we have
Var <Z(]’ 1§ | ]—}1) => (G —1)*Var(& | Fj-1)
j=2 Jj=2

t

(= DE[& | Fii]

Jj=2

41
< 4022 VIVRp, (w;)|?

< 8Ly (G- 1) (Re, (w;) ~ Re, (w")),

Jj=2

where first inequality is from Schwarz’s inequality and the last inequality is because

L H 1 (42)

for any w. By applying Lemma 4, as long as 7' > 4 and 0 < 6 < 1/e, then with probability at least 1 — 0, for all t < T,

Rp, (wi1) — Rp, (w”)

) % max{\j QLi(j 1 (R () = R 00 G0 - 1)\/log (IOET) } \/log (loiT) + ij%f @3)

Jj=2

leg(tling/@ JZLZ (an (w;) — an(w*))+ (8pwCG log(liit(uT/@)JrG L)

Then, an upper bound to the first term in the last inequality can give our conclusion. Note that if R p, (w;) — R p, (W*) is
smaller than O(1/j — 1), the conclusion is full-filled. To see this, we should find a large constant a such that an (wig1) —
Rp, (w*) < a/t. This is clearly hold when a > G2 /21, for t = 1 due to the PL inequality and bounded gradient. For
t > 2, we find this a by induction. Let b = 8G'v/2Llog (log (T/0)) /i and ¢ = (81,G? log (log (T'/0)) + G*L) /2, A

satisfactory a yields
a b L c b at(t—1) ¢ _ 1 a
@5 0 _ ¢ N ¢s 2 a . 44
t = (- 1)\ a;(] D+ == 2 +t—t(b 2+C> “

By solving a quadratic inequality, we conclude that a — by/a/2 — ¢ > 0. Then

3 2
a> (b—’_zi Vf/;—gc) . (45)
By taking
2 2
a22(2b ;86>2<b+2\/j§‘86> , (46)
we get
- 64G> L log (log (T'/9)) N (16140 G? log (log (T/6)) + G*L) _ G?log (log (T/6))(64L + 16414) + G*L )

w2 o Mo

due to the value of b and c. Hence, we get the conclusion by taking ¢t = 7. O
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A.2.2. PROOF OF PROPOSITION 1
Proof. From the definition of R p, (w), for any r > 0, we have

n

1

— 2 sup (f(w,@i +6) - f(w,x)) < Rp, (w) < e (48)
i=1 H‘SHPS”’
On the other hand
= Z sup (f(w, =) — f(w,x; +6)) < Rp, (w) < Rp, (w) <. (49)
=1 |I5|\p<7

Take a sum to the two above inequalities, we get

n

1 1<

- su w,x; +0) — f(w,x;))] < — su w,x; + 0 inf w,x; + 6 < 2e. 50

w2 s I ) = flw,z))| < — g (uﬁ L )= dnt_ S ))) ¢ (50)
Then the conclusion is verified. O

B. Proofs for Section 4
B.1. Proof of Theorem 4

Proof. We have r(co) = r in this theorem.  The key is to bound the |suppep, (p,r) 2P (Wpe) —
SUPQe By__ (Qo,r) 11@(Wpre)|, then triangle inequality and Hoeffding’s inequality imply the conclusion. Let P €
arg Max(pe gy, _(Py,r)} 1tP(Wpe). For any given x, due to the continuity of f(wpe,-), similar to Lemma 1, we can
find the 7, (x) = x + arg mMaxys:((5)|..<r} f (Wpre, T + ). Then due to Lemma 1,

Rp; (wpee) = Ep, [ sup  f(Wpre, ® + 6) (5D

[18llco <7

Thus, 7" () ~ P* when & ~ Py. We can find z ~ Qg due to the Kolmogorov’s Theorem, and let 7, ™ (z) ~ Q7. By the
definition of W -distance, one can verify W, (Qo, Q;) < 7 as well as R+ (wpre) < €pre. Note that 0 < f(wpre, -) < M,
then

|RP* wp[e) — RQ wpre | - ‘/ f wpre7 )dp / f wpr67 )dQ ((E)

[ e T @)y / F e, T (2))dQo ()

< /X | (e, T (@) [dPo () — dQo ()] G2

<1 [ |aPo() - dQu(e)
x
= 2MTV(Po, Qo).
The last equality is from the definition of total variation distance (Villani, 2008). Thus a simple triangle inequality implies

that
Rps (wpe) < |Rpy (wpre) — R (Wpre) | + R (wpre) < €pre + 2M TV (Po, Qo). (53)

Next we give the concentration result of R P, (Wpre). Due to the definition of R P, (Wpre), it can be rewritten as Rpx (Wpre)
where P is the empirical distribution on {77 (x;)}. Since 0 < f(wpe, ) < M and {T," (x;)} are i.i.d draws from P
Azuma-Hoeffding’s inequality (Corollary 2.20 in (Wainwright, 2019)) shows that with probability at least 1 — 6,

log(l/@).

Rp, (Wye) — Rp; (wpee) = Zf Wpre, T(@:)) — Ry (wpre) < My —

(54)

Hence we get our conclusion. O



Improved OOD Generalization via Adversarial Training and Pre-training

B.2. Proof of Theorem 5

With a little abuse of notation, let 7(2) = r/€y. denoted by r in the proof, and P’ € argmaxpep,, (p,,r) Bp(w). By
Lemma 2, there exists Ty ™ (x) ~ P’ with x ~ Py. Then we can find z ~ @, due to Kolmogorov’s Theorem. Let
T (z) ~ QF, we see

Wa(Qo, Q0)? < /X 2 — T2 (2)|?dQo()

< /X 2 — T (2)]2 [dQo(z) — dPo(2)| + /X Iz — T2 (2)[2dPo(2)

(55)
< 0* [ 1dQu(z) - dy()| +1°
x
=2D*TV(Py, Qo) +r°.
Thus Rq+ (Wpre) < €pre- Similar to (52) and (53) we get the conclusion.
C. Hyperparameters
Table 4: Hyperparameters of adversarial training on Table 5: Hyperparameters of adversarial training on
CIFARI1O. ImageNet.
Hyperparam Std  Adv-ly  Adv-ly Hyperparam Std  Adv-ly  Adv-ly
Learning Rate 0.1 0.1 0.1 Learning Rate 0.1 0.1 0.1
Momentum 0.9 0.9 0.9 Momentum 0.9 0.9 0.9
Batch Size 128 128 128 Batch Size 512 512 512
Weight Decay Se-4  Se-4 Se-4 Weight Decay Se-4  Se-4 Se-4
Epochs 200 200 200 Epochs 100 100 100
Inner Loop Steps - 8 8 Inner Loop Steps - 3 3
Perturbation Size - 2/12 2/255 Perturbation Size - 0.25 2/255
Perturbation Step Size - 1724 1/510 Perturbation Step Size - 0.05 1/510

Table 6: Hyperparameters of adversarial training on BERT base model.

Hyperparam Std Adv-ly  Adv-lo
Learning Rate 3e-5 3e-5 3e-5
Batch Size 32 32 32
Weight Decay 0 0 0
Hidden Layer Dropout Rate 0.1 0.1 0.1
Attention Probability Dropout Rate 0.1 0.1 0.1
Max Epochs 10 10 10
Learning Rate Decay Linear Linear  Linear
Warmup Ratio 0 0 0
Inner Loop Steps - 3 3
Perturbation Size - 1.0 0.001
Perturbation Step Size - 0.1 0.0005

D. Ablation Study
D.1. Effect of Perturbation Size

We study the effect of perturbation size r in adversarial training in bounds (5) and (6). We vary the perturbation size r
in {275/12,274/12,273/12,272/12,271/12,20/12,21 /12,22 /12,23 /12,24 /12,25 /12,26 /12,27 /12} for Adv-f5 and
in {274/255,273 /255,272 /255,271 /255,20 /255 21 /255,22 /255, 23 /255, 24 /255} for Adv-£,. The perturbation step
size 1, in Algorithm 1 is set to be r/4 (Salman et al., 2020a). Experiments are conducted on CIFAR10 and the settings
follow those in Section 5.1.1.

The results are shown in Figures 3 and 4. In the studied ranges, the accuracy on the OOD data from all categories exhibits
similar trend, i.e., first increases and then decreases, as r increases. This is consistent with our discussion in Section 5.1.1
that there is an optimal perturbation size r for improving OOD generalization via adversarial training. For data corrupted
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under types Fog, Bright and Contrast, adversarial training degenerates the performance in Table 1. We speculate this is
because the three corruption types rescale the input pixel values to smaller values and the same perturbation size r leads to
relatively large perturbation. Thus according to the discussion in Section 5.1.1 that there is an optimal r for improving OOD
generalization, we suggest conducting adversarial training with a smaller perturbation size to defend these three types of
corruption. Figures 3 and 4 also show that smaller optimal perturbation sizes have better performances for these three types
of corruption.

D.2. Effect of the the Number of Training Samples

We study the effect of the number of training samples, as bounds (5) and (6) suggest that more training samples lead to
better OOD generalization. We split CIFAR10 into 5 subsets, each of which has 10000, 20000, 30000, 40000 and 50000
training samples. The other settings follow those in Section 5.1.1. The results are in shown Figures 5 and 6.

(a) Clean. (b) Gauss. (c) Shot. (d) Impulse.

(e) Defocus. (f) Glass. (g) Motion. (h) Zoom.

(i) Snow. . (j) Frost. (k) Fog. (1) Bright.

(m) Contrast. (n) Elastic. (o) pixel. (p) JPEG.
Figure 2: 15 types of artificially constructed corruptions from four categories: Noise, Blur, Weather, and Digital from
the ImageNet—C dataset (Hendrycks & Dietterich, 2018). Each corruption has five levels of severity with figures under
severity 5 are shown here.
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Figure 3: Accuracy of Adv-{5 on CIFAR10-C over various perturbation sizes. The z-axis means the perturbation size is

27 /12.

Shot Impulse
R 80 .
80 o - o _—
S S
=70 =
s a60 E
O 60 ; © 50
a e a &
& 50 g% -
30 P
40 - L
. 0
5-4-32-1012345°€6 54321012345
Perturbation Size Perturbation Size
Glass Motion
80 —
" '!_‘ 76
75 ",
3 & . oL
=7 ’ = g
S s 9 72
é # é 70
g 60 & ]
L < 68
55 s S
—_ 661 .
so L7 .
5-4-32-101234567 543210123456
Perturbation Size Perturbation Size
Snow Frost
85 W e . .
gof v " 80 e T
Rs{ " ., S "
> >701 . *
g’ ._ g |
= 5 =} 'a,‘
g 65 g 60
60
55 . 50
5432101234567 543210123456
Perturbation Size Perturbation Size
Bright Contrast
00] w e, 325{ .
.. 30.0 '
) : L5 Yy
& &
© © 25.0
5 70 ; 5
[ kY 0 225 iy
% & ¥ .
60 200 o *.
> 17.5 e
5432101234567 54321012 34S5
Perturbation Size Perturbation Size
Pixel JPEG
i 920 [
"-,_ ."” T
80 - ., S
—_ R * —_ .
S s £ 85 * x
370 : 0 ,
I © ke
3 5 80
g 60 ] :
< <
> *
s0] 75
5432101234567 543210123456

Perturbation Size

Perturbation Size



Improved OOD Generalization via Adversarial Training and Pre-training

Gauss

Accuracy(%)

2 1 0 1 2

Perturbation Size

Defocus

Accuracy(%)

2 1 0 1 2
Perturbation Size

Zoom

2 1 0 1 2
Perturbation Size

Fog

Accuracy(%)
S

a4

2 1 0 1 2

Perturbation Size

Accuracy(%)
~ ©
w o

~
o

Elastic

P

4

Figure 4: Accuracy of Adv-{,, on CIFAR10-C over various perturbation sizes. The xz-axis means the perturbation size is

27 /255,

2 1 0 1 2
Perturbation Size

Perturbation Size

Impulse
80 Ay
60 N
&7 L 50
% a0 9
g vl ed
50 -
< <3 ’
0 S
2 -1 0 1 2 4 3 2 -1 0 1 2
Perturbation Size Perturbation Size
Glass Motion
80 "
- 75.0
75 - N
~ y ~ 725
g0 g
> > 70.0
E 65 E
g 60 - 3 6731 i
< 55 < 65.0
50 62.5
2 -1 0 1 2 4 3 2 -1 0 1 2
Perturbation Size Perturbation Size
Snow Frost
. A, e
R 80 o
80 J— )
S SRE
> 75 = "
© © ¥
570 5
8 g ®
< 65 <
60
60 55
-4 2 1 0 1 2 4 3 2 1 0 1 2
Perturbation Size Perturbation Size
Bright Contrast
%0 T 261
L g0 ) 24
z Y,
© ©
5 5
8 70 8 20
<< < g -
60 16 - "
-4 2 1 0 1 2 4 3 2 1 0 1 2
Perturbation Size Perturbation Size
Pixel 0 JPEG
* ) - i -
80 o . .
270 -~ >
@ ® 80 .
c © ;
> ] >
[} 60 [}
o O
< <75
501 -
70
-4 2 1 0 1 2

4 3 2 1 0 1 2
Perturbation Size



Improved OOD Generalization via Adversarial Training and Pre-training

Gauss
714 .
* - .
= 70 '
s
>
0769 1
o
3
O 681
<
674 :
F
10000 20000 30000 40000 50000
Number of Training Samples
Defocus
-
370
> .
o »
C 651 '
=}
)
<
60 {
¥
10000 20000 30000 40000 50000
Number of Training Samples
Zoom
80 . -
R 751 "
>
o
o
5 704
)
<
65
10000 20000 30000 40000 50000
Number of Training Samples
Fog
o R .
<
S 451
>
[}
o
§ 40
<
351
10000 20000 30000 40000 50000
Number of Training Samples
Elastic
82.5] - :
= 80.01 g
g
> 77.5 N
o
5 75.01
3
< 72.59
70.09
10000 20000 30000 40000 50000

Number of Training Samples

Shot
74 oo *
. .‘*.. :
o
7
>
[}
e
g 70
<
681
10000 20000 30000 40000 50000
Number of Training Samples
Glass
FU—— N
70 *
9
o
;68
3
5 66
3
< 64
621 ¢
10000 20000 30000 40000 50000
Number of Training Samples
Snow
82.5 e *
= 80.0 )
X *
X775
1)
S 750
3
g 72,5
<
70.0
67.51¢
10000 20000 30000 40000 50000
Number of Training Samples
Bright
90.0 9
e
87.5 -
850
3825
o
§ 80.0
< 775
75.01 .
10000 20000 30000 40000 50000
Number of Training Samples
Pixel

80 -

~
o

Accuracy(%)
~
o

~
N

10000 20000 30000 40000 50000
Number of Training Samples

Impulse
45.50
—~45.25 .
E\i L
>, 45.00
19 w
o
5 44.75
3
< 44.50
44.254 ;
10000 20000 30000 40000 50000
Number of Training Samples
Motion
e -
725 )
9 70.0 o
X 67.5 ;
) >
C 65.0 :
]
O 62.5
60.01
5754 ¢
10000 20000 30000 40000 50000
Number of Training Samples
Frost
80 S . i
3 *
75
>
19
I\
g 70
<
651
10000 20000 30000 40000 50000
Number of Training Samples
Contrast
i S—
X
> 18
e s
@©
I .
317
O
<
16{
10000 20000 30000 40000 50000
Number of Training Samples
JPEG
90 -
88 *
R .
o
£ g6 _
) I
© 84
3
O 82
<
80
10000 20000 30000 40000 50000

Number of Training Samples

Figure 5: Accuracy of Adv-f5 on CIFAR10-C over various numbers of training samples.
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Figure 6: Accuracy of Adv-{, on CIFAR10-C over various numbers of training samples.



