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S1. Technical Discussion
S1.1. The Form of the Differential Function

For notational convenience, we defined the problem as a
first-order ODE system:

ṡ(t) =
ds(t)

dt
= f(s(t),a(t)).

We now explain possible extensions to this formulation to
inject problem-specific prior knowledge.

Linearity w.r.t. action In many Newtonian systems, the
action affects the time differential linearly, a widespread
assumption in CT control literature (Doya, 2000). Estimat-
ing such systems with an arbitrary function of state and
action would tie the action and the dynamics in a nonlinear
way, which would render the learning problem unnecessar-
ily complicated. Therefore, we propose to decompose the
differential function as follows (Vamvoudakis and Lewis,
2010):

ds(t)

dt
= f(s(t)) + h(s(t)) · a(t).

where h : Rd 7→ Rd×m and · denotes the standard matrix-
vector product. Above formulation assumes an additive
differential function of dynamics and control component.
The former aims to learn the evolution of the system un-
der zero force whereas h defines a manifold the action is
projected onto. Since we approximate these functions with
neural networks, both the dynamics and the manifold can
be arbitrarily complicated.

Second-order dynamics Most dynamical systems can be
expressed in terms of position s ∈ Rd and velocity v ∈
Rd components. Such decomposition of the state space is
shown to better explain the phenomena of interest if the
underlying physics is indeed second-order (Yildiz et al.,
2019). Formally, a second-order dynamical system with
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control is defined as follows:
ds(t)

dt
= v(t),

dv(t)

dt
= f(s(t),v(t),a(t)).

Here, f : R2d+m → Rd is referred to as acceleration field.

Hamiltonian dynamics Zhong et al. (2020) already de-
scribes Hamiltonian dynamics in RL context very clearly;
however, we include this subsection for completeness.
Hamiltonian mechanics reformulate classical physical sys-
tems in terms of canonical coordinates (q,p) with q,p ∈
Rd, where q denotes generalized coordinates and p is their
conjugate momenta. The time evolution of a Hamiltonian
system is defined as

dq

dt
=
dH
dp

,
dp

dt
= −dH

dq

where H(q,p) : R2d → R denotes the Hamiltonian. For
simplicity, we assume a time-invariant Hamiltonian, which
also corresponds to the total energy of the system. Typically,
Hamiltonian is decomposed into a sum of kinetic energy T
and potential energy V :

H = T + V, T =
pTM−1(q)p

2m
, V = V (q)

wherem denotes the mass. In simple systems such as pendu-
lum, the mass matrix M(q) is an identity matrix, implying
Euclidean geometry. More complicated systems like cart-
pole requires learning the geometry. Given a Hamiltonian
decomposing like above, the dynamics become

dq

dt
=
M−1(q)p

m
,

dp

dt
= −dV

dq

The dynamics learning problem reduces to learning a poten-
tial energy function V(q) : Rd → R, whose derivative gives
the time evolution of momentum, and estimating the geome-
try through its Cholesky decomposition L, i.e., LL−1 =M ,
via an additional neural network.

S1.2. Greedy policy

A greedy policy is defined as the one that minimizes the
Hamilton–Jacobi–Bellman equation:

V ∗(s) = min
a

[
dV (s)

ds
· f(st,a) + r(s,a)

]
(1)



Continuous-Time Model-Based Reinforcement Learning Supplementary Material

The greedy policy can be expressed in closed form if (i)
the reward is of the form r(s,a) = rs(s) + ra(a) with
an invertible action reward and (ii) the system dynamics
is linear with respect to the action as in eq. (S1.1) (Doya,
2000; Tassa and Erez, 2007):

a∗t = −dr
−1
a

da

(
f(st,a)

da

T
dV (s)

ds

T
)

(2)

Consequently, given the above assumptions are satisfied, the
optimal policy can be expressed in closed form for a given
value function, which would obviate the need for an actor.
We leave the investigation of model-based greedy policy as
an interesting future work.

S2. Experiment Details
This section consists of experimental details which are not
included in the main text.

S2.1. Environments

The environment-specific parameters are given in Table S1.
In all environments, the actions are continuous and restricted
to a range [−amax, amax]. Similar to Zhong et al. (2020), we
experiment with the fully actuated version of the Acrobot
environment since no method was able to solve the under-
actuated balancing problem.

S2.2. Reward Functions

Assuming that each observation s = (q,p) consists of state
(position) q and velocity (momentum) p components, the
differentiable reward functions have the following form:

r(q,p,a) = exp
(
−||q− sgoal||22 − cp||p||22

)
− ca||a||22

where cp and ca denote environment-specific constants. The
exponential function aims to restrict the reward in a range
[0,1] minus the action cost, which aids learning (Deisenroth
and Rasmussen, 2011). The constants cp and ca are set so
that they (i) penalize large values, and (ii) do not enforce
the model to stuck at trivial local optima such as the initial
state.

Goal states The goal state [0, `] in Pendulum environment
corresponds to x and y coordinates of pole’s tip, with ` being
the length of the pole. The reward is maximized when the
pole is fully upright. In CartPole, this state is concatenated
with 0, which represents the cart’s target location. Finally
in Acrobot, the goal state involves the x and y coordinates
of the second link only (hence 2D).

S2.3. Dataset

Initial dataset Each experiment starts with collecting an
initial dataset of N0 trajectories at observation time points

with length T = 50. In all environments, the initial state is
distributed uniformly:

s0 ∼ U [−sbox, sbox].

Initial random actions are drawn from a Gaussian process:

at ∼ GP(0,K(t, t′)).

The inputs to the GP are the observation time points. We
opt for a squared exponential kernel function with σ = 0.5
and ` = 0.5. The output of the GP is followed by a TANH
function and multiplied with amax.

Data collection After each round, the policy is executed
once in the environment starting from an initial state drawn
from the environment. This is followed by the execution
of Nexp exploring policy functions. Similar to the idea of
perturbing policies with an Ornstein–Uhlenbeck process
for exploration (Lillicrap et al., 2016), we add draws from
a zero-mean Gaussian process to the policy for smoother
perturbations:

πexplore (s(t), t) := π (s(t)) + z(t)

z(t) ∼ GP(0, k(t, t′))

where the input to the GP is a set of time points. We again
use a squared exponential kernel function with σ = 0.1 and
` = 0.5. We choose the initial values for the exploring data
sequences from the previous experience dataset randomly,
where each state has a weight propotional to the dynamics
estimator’s variance at that state.

S2.4. Training Details

We used ADAM optimizer to train all the model components
(Kingma and Ba, 2014). More explanation is as follows:

• NODE Dynamics: We initialize the differential func-
tion by gradient matching:

f(si,ai) ≈
si+1 − si
ti+1 − ti

Regardless of how observation time points are dis-
tributed, we use subsequences of length ts = 5 to
train the dynamics model. We randomly pick 5 subse-
quences from each data trajectory to reduce gradient
stochasticity. While training the neural ODE model,
we start with an initial learning rate of 1e-4, gradually
increase it to 1e-3 in 100 iterations, and then proceed
Ndyn = 1250 iterations with the latter learning rate.

• Discrete Dynamics: We train PETS and deep PILCO
with the algorithms given respective papers.

• Actor-Critic: In each round, we form a dataset of
initial values from the experience dataset. We chose to
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exclude the sequences collected with exploring policy
as they may explore states that are undesirably far from
the goal. We set Nac = 250.

S2.5. Neural Network Architectures

The dynamics, actor and critic functions are approximated
by multi-layer perceptrons. In all methods and environ-
ments, we used the same neural network architectures,
which are given as follows:

• Dynamics: 3-hidden layers, 200 hidden neurons and
ELU activations. We experimentally observed that
dynamics functions with ELU activations tend to ex-
trapolate better on test seqeunces. Therefore, training
the dynamics model with an augmented dataset (after
each round) becomes much more robust.

• Actor: 2-hidden layers, 200 hidden neurons and
RELU activations. Based on the idea that optimal
policies can be expressed as a collection of piece-wise
linear functions, we opt for RELU activations. Neural
network output goes into TANH activation and multi-
plied with amax.

• Critic: 2-hidden layers, 200 hidden neurons and
TANH activations. Since the state-value functions must
be smooth, TANH activation is more suitable compared
to other activations. We empirically observed critic net-
works with RELU activations easily explode outside
the training data, which deteriorates the learning.

S2.6. Additional Results

Predictive dynamic errors on shorter sequences are illus-
trated in Figure S2. We see that future MSEs are much
lower compared to H = 2 while they still cannot directly
predict overall model performance V (s0)

S3. ODE Solver Comparison
In this ablation study, we ask two questions in relation with
the simulation environment and numerical integration: (i)
Which numerical ODE solver one should use, (ii) To what
extent our continuous framework differ from its discrete
counterparts? To answer, we have built a simple experiment
on CartPole environment where several ODE solvers are
compared: three adaptive step solvers (dopri5 (RK45),
RK23 and RK12), five fixed step solvers (RK4 with 1/10
intermediate steps, and Euler with 10/100/1000 interme-
diate steps), as well as discrete transitions. Due to the lack
of a closed-form ODE solution, true ODE solutions are ob-
tained by Runge-Kutta 7(8) solver, the numerical integrator
which achieves the smallest local error to the best of our
knowledge (Prince and Dormand, 1981).

Each ODE solver takes as input the same set of initial values
as well as twenty different policy functions, some of which
solve the problem whereas some are sub-optimal. Figure
S1 demonstrates the distance between the true state solu-
tions and those given by different ODE solvers. The most
striking observation is that discrete transitions of the form
st+1 − st = h · f(st,at) are highly erroneous. Moreover,
adaptive solvers as well as fixed-step solvers with suffi-
ciently many intermediate steps attain practically zero error.
Unsurprisingly, approximate state solutions deteriorate over
time since the error accumulates. In our experiments, we
use RK78 to mimic the interactions with the real world, and
dopri5 to forward simulate model dynamics.

Figure S1. Error estimates of different numerical integration meth-
ods plotted against integration time.

S4. Additional Related Work
Model-based RL The majority of model-based reinforce-
ment learning methods assumes auto-regressive transitions,
which effectively learn a distribution over the next state
given the current state and action. Unknown transitions
are typically approximated by a Gaussian process (Kocijan
et al., 2004; Deisenroth and Rasmussen, 2011; Kamthe and
Deisenroth, 2017; Levine et al., 2011), multi-layer percep-
tron (MLP) (Gal et al., 2016; Depeweg et al., 2017; Naga-
bandi et al., 2018; Chua et al., 2018) or recurrent neural
network (Ha and Schmidhuber, 2018; Hafner et al., 2018;
2020). Such models are typically developed in conjunction
with model predictive control (Richards, 2005) used for
planning or with a parametric policy.

Continuous-time RL In addition to the works discussed
earlier (Baird, 1993; Doya, 2000), Bradtke and Duff (1994)
developed Q-functions and temporal different learning in
the context of semi-Markov decision processes. Abu-Khalaf
and Lewis (2005) proposed a policy-iteration algorithm for
the optimal control of CT systems with constrained con-
trollers. An online version of this algorithm was derived in
(Vrabie and Lewis, 2009), which was extended in a series
of papers (Luo et al., 2014; Modares et al., 2016; Zhu et al.,
2016; Lee and Sutton, 2019). A direct least-squares solu-
tion to Hamilton-Jacobi-Bellman equation was studied in
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Table S1. Environment specifications

Environment N0 Nexp cp ca amax sbox sgoal Max. execution time (h)

PENDULUM 3 - 1e-2 1e-2 2 [π, 3] [0, `] 12
CARTPOLE 5 2 1e-2 1e-2 3 [0.05, 0.05, 0.05, 0.05] [0, 0, `] 24
ACROBOT 7 3 1e-4 1e-2 4 [0.1, 0.1, 0.1, 0.1] [0, 2`] 24

PENDULUM CARTPOLE ACROBOT

Figure S2. Predictive mean squared error of different dynamics models, computed after each round on a fixed test set.

(Tassa and Erez, 2007), requiring no forward integration for
value estimation but a bag of tricks to deal with numerical
instabilities. In a related work, Mehta and Meyn (2009)
proposed an adaptive controller for nonlinear CT systems
via a continuous-time analog of the Q-function. Above-
mentioned methods are either built upon known dynamics
or they are model-free. In either case, the dynamics are
assumed to be linear with respect to the action, a premise
needed for closed-form optimal policies.

Neural ODEs In their ground-breaking work, Chen et al.
(2018) show that simple multi-layer perceptrons (MLP) can
be utilized for learning arbitrary continuous-time dynamics.
The resulting model, called Neural ODEs (NODEs), have
been shown to outperform its RNN-based, discrete counter-
parts in interpolation and long-term prediction tasks (Chen
et al., 2018). The vanilla NODE model paved the way for ad-
vances in continuous-time modeling, such as second-order
latent ODE models (Yildiz et al., 2019), augmented systems
(Dupont et al., 2019), stochastic differential equations (Jia
and Benson, 2019; Li et al., 2020), and so forth. NODE
framework also allows encoding prior knowledge about the
observed phenomena on the network topology, which leads
to Hamiltonian and Lagrangian neural networks that are ca-
pable of long-term extrapolations, even when trained from
images (Greydanus et al., 2019; Cranmer et al., 2020).

Neural CTRL The NODE breakthrough has opened a
new research avenue in CTRL. In particular, physics-
informed continuous-time dynamical systems have gained
popularity. For example, Lagrangian mechanics are im-
posed on the architecture presented in (Lutter et al., 2019),
which results in near-perfect real-time control of a robot
with seven degrees of freedom. Hamiltonian framework is
proven useful for inferring controls from generalized coor-
dinates and momenta (Zhong et al., 2020). Later in Zhong
and Leonard (2020), an interpretable latent Lagrangian dy-
namical system and controller were trained from images. In
addition to dynamics learning, above-mentioned methods
describe model-specific recipes for learning controls.
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