
Distributed Nyström Kernel Learning with Communications

Rong Yin 1 2 Yong Liu 3 4 Weiping Wang 1 2 Dan Meng 1 2

Abstract
We study the statistical performance for dis-
tributed kernel ridge regression with Nyström
(DKRR-NY) and with Nyström and iterative
solvers (DKRR-NY-PCG) and successfully derive
the optimal learning rates, which can improve the
ranges of the number of local processors p to the
optimal in existing state-of-art bounds. More pre-
cisely, our theoretical analysis show that DKRR-
NY and DKRR-NY-PCG achieve the same learn-
ing rates as the exact KRR requiring essentially
O(|D|1.5) time and O(|D|) memory with relax-
ing the restriction on p in expectation, where |D|
is the number of data, which exhibits the average
effectiveness of multiple trials. Furthermore, for
showing the generalization performance in a sin-
gle trial, we deduce the learning rates for DKRR-
NY and DKRR-NY-PCG in probability. Finally,
we propose a novel algorithm DKRR-NY-CM
based on DKRR-NY, which employs a commu-
nication strategy to further improve the learning
performance, whose effectiveness of communica-
tions is validated in theoretical and experimental
analysis.

1. Introduction
In nonparametric statistical learning, Kernel ridge regression
(KRR) has made a remarkable achievements (Trevor et al.,
2009; Taylor & Cristianini, 2004; Yin et al., 2019). However,
due to the high computational requirements, KRR does not
scale well in large scale settings.

To address the scalability issues, a series of large scale tech-
niques are widely used: Nyström methods (Yin et al., 2020a;
Rudi et al., 2015; 2017; Li et al., 2010), random features (Liu

1Institute of Information Engineering, Chinese Academy of
Sciences, Beijing, China 2School of Cyber Security, University of
Chinese Academy of Sciences, Beijing, China 3Gaoling School of
Artificial Intelligence, Renmin University of China, Beijing, China
4Beijing Key Laboratory of Big Data Management and Analysis
Methods, Beijing, China. Correspondence to: Weiping Wang
<wangweiping@iie.ac.cn>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

et al., 2021; Li et al., 2019; Rudi et al., 2016; Avron et al.,
2017), random projections (Lin & Cevher, 2020; Liu et al.,
2019; Yang et al., 2017; Williams & Seeger, 2001; Yin et al.,
2020b), iterative optimization (Carratino et al., 2018; Lo
et al., 2008; Shalev-Shwartz et al., 2011; Gonen et al., 2016;
Cutajar et al., 2016; Ma & Belkin, 2017; Rudi et al., 2017),
distributed learning (Liu et al., 2021; Lin et al., 2020; Lin &
Cevher, 2018; Zhang et al., 2013; Wang, 2019; Chang et al.,
2017b; Guo et al., 2019; Zhang et al., 2015; Lin et al., 2017),
and combination of the above methods which includes the
combination of distributed learning, Nyström and iterative
optimization (Yin et al., 2020a), distributed learning and
random features (Liu et al., 2021; Li et al., 2019), Nyström
and iterative optimization (Rudi et al., 2017), etc. Recent
statistical learning works demonstrate that the combination
of distributed learning and Nyström (Yin et al., 2020a) can
achieve great computational gains and guarantee the optimal
theoretical properties. However, the main theoretical bot-
tleneck is that there is a strict restriction on the number of
local processors. More specifically, under the basic setting,
the upper bound of the local processors is restricted to be a
constant with the optimal learning rate, which cannot meet
the demand in practical applications.

In this paper, we focus on enlarging the number of local
processors and considering the communication strategy be-
tween local processors while preserving the optimal learning
rates. Firstly, we improve the existing state-of-art perfor-
mances of the distributed learning together with Nyström
(DKRR-NY) and with Nyström and iterative optimization
(DKRR-NY-PCG) in expectation. In particular, to guaran-
tee the optimal learning rates, we theoretically derive their
upper bounds O(

√
|D|) of partitions, while it is limited

to a constant O(1) under the basic setting in the existing
state-of-art bounds, where |D| is the number of data. The ex-
pectation demonstrates the average effectiveness of multiple
trials but may fail to capture the generalization performance
for a single trial. Therefore, we further deduce the opti-
mal learning rates for DKRR-NY and DKRR-NY-PCG in
probability, which can support numerical observations that
cannot be seen from the estimates in expectation. Finally,
we propose a novel algorithm (DKRR-NY-CM) based on
DKRR-NY, which utilizes a communication strategy to fur-
ther improve the performance and protect the privacy of
data in each local processor. Both theoretical analysis and
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numerical results are conducted to verify the power of the
proposed communications.

The rest of the paper is organized as follows. In section 2,
we introduce the related work. Section 3 is the background
about KRR, Nyström, PCG (preconditioning and conjugate
gradient), and divide-and-conquer methods. Section 4 intro-
duces the proposed algorithm (DKRR-NY-CM). In section
5, we mainly show the improved theoretical analysis of
DKRR-NY and DKRR-NY-PCG in expectation and proba-
bility, and show the optimal learning rate for the proposed
DKRR-NY-CM in probability. The following sections are
about the numerical experiments and conclusions.

2. Related Work
In this section, we mainly introduce the related Nyström
and distributed learning in approximate KRR.

The key techniques of Nyström (Li et al., 2010; Rudi
et al., 2015; Tu et al., 2016; Camoriano et al., 2016; Rudi
et al., 2017; Yin et al., 2020a) are to construct the approx-
imate kernel matrix with a few Nyström centers, which
are obtained by different strategies, so as to characterize
statistical and computational trade-offs, that is if, or un-
der which conditions, computational gains come at the
expense of statistical accuracy. The paper (Rudi et al.,
2015) is one of the representative Nyrström method, which
utilized both uniform and leverage score based sampling
strategies to achieve the same optimal learning rates as
the exact KRR with dramatically reducing the computa-
tional requirements. Subsequently, for substantially im-
proving computations with preserving the optimal theo-
retical accuracy, Nyström-PCG method was proposed in
(Rudi et al., 2017) by combining Nyström methods (Rudi
et al., 2015) with preconditioning and conjugate gradient
(PCG) (Cutajar et al., 2016), whose time complexity and
space complexity are O(|D|m + m3) and O(|D|m) with
m ≥ O(|D|

1
2r+γ ) and the optimal learning rate, where m

is the sampling scale. Further, Yin et al. (Yin et al., 2020a)
proposed DKRR-NY-PCG, which combined Nyström-PCG
(Rudi et al., 2017) and divide-and-conquer method, to scale
up KRR. Its time complexity and space complexity are
O(max( |D|mp ,m3)) and O( |D|mp ) with p ≤ O(|D|

2r−1
2r+γ )

and m ≥ O(|D|
1

2r+γ ) while preserving the optimal learn-
ing rate in expectation, where p is the number of partition.
Compared to Nyström-PCG, DKRR-NY-PCG (Yin et al.,
2020a) reduces the time complexity and space complexity
by factors of min(|D|

2r−1
2r+γ + |D|

1−γ
2r+γ , 1 + |D|

2r+γ−2
2r+γ ) and

|D|
2r−1
2r+γ with the optimal learning rate, where 2r−1

2r+γ ≥ 0

and 1−γ
2r+γ ≥ 0. However, at the basic setting (r = 1/2 and

γ = 1), the upper bound of partition is O(1) in DKRR-NY-
PCG, which is not practical in the large scale scenarios.

Distributed KRR (Zhang et al., 2013; 2015; Lin et al., 2017;
Guo et al., 2019; Li et al., 2019; Lin et al., 2020; Liu et al.,
2021) applies KRR to tackle the data subset in each local
processor, then communicates exclusive information such as
the data (Bellet et al., 2015), gradients (Zeng & Yin, 2018)
and local estimator (Huang & Huo, 2015) between different
local processors, finally produces a global estimator by com-
bining local estimators and communicated information on
the global processor, typical strategies of which are the ma-
jority voting (Mann et al., 2009), weighted average (Chang
et al., 2017a) and gradient-based algorithms (Bellet et al.,
2015). Divide-and-conquer is one of the most popular dis-
tributed methods, whose optimal learning rates for KRR
in expectation were established (Zhang et al., 2013; 2015;
Lin et al., 2017). The theoretical analysis shows that divide-
and-conquer KRR can achieve the same learning rates as
the exact KRR, however, there is a strict restriction on the
number of local machines (Zhang et al., 2015; Guo et al.,
2019). Specifically, to reach the optimal learning rate, p
should be restrict to a constant O(1) in (Lin et al., 2017).
Subsequently, in (Lin et al., 2020; Liu et al., 2021), they
considered the communications among different local ma-
chines to enlarge the number of local machines. However,
the communication strategy in (Lin et al., 2020) requires
communicating the input data between each local processor,
which cannot protect the data privacy of each local proces-
sor. Furthermore, for each iteration, the communication
complexity of each local processor is O(d|D|), where d is
the dimension, which is infeasible in practice for large scale
setting.

3. Background
In the supervised learning, given dataset D = {(xi, yi)Ni=1}
be sampled identically and independently from X× R with
respect ρ, where ρ is a probability measure on X×R, which
is fixed but unknown. D = ∪pj=1Dj with p disjoint subsets
{Dj}pj=1. N = |D|. For simplicity, denote with n the
number of data in Dj . Let H be a separable reproducing
kernel Hibert space (RKHS) with inner product 〈·, ·〉H. The
reproducing kernel K : X×X→ R is a positive definite
kernel, measurable and uniformly bounded. We denote with
Kx the function K(x, ·) and have (KN )ij = K(xi, xj) for
all x1, . . . , xN ∈ X. We denote with Cλ the operator C +
λI for λ > 0, where I is the identity operator. For clarity,
we define some linear operators: For any f, g ∈ H, we have
Zm : H → Rm, Z∗m : Rm → H; Sn = 1√

n
Zm, S

∗
n =

1√
n
Z∗m; Cn : H → H, 〈f, Cng〉H = 1

n

∑n
i=1 f(xi)g(xi),

Cn = S∗nSn, Kn = nSnS
∗
n.

The performance of estimating a function is usually mea-
sured by the expected risk in the supervised learning,

inf
f∈H
E(f), E(f) =

∫
(f(x)− y)2dρ(x, y), (1)
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whereH is a space of candidate solutions.

3.1. Kernel Ridge Regression (KRR)

Kernel Ridge Regression (KRR) (Schölkopf et al., 2002)
considers a spaceH of functions

f̂D,λ(x) =

|D|∑
i=1

α̂iK(xi, x). (2)

The coefficients α̂1, . . . , α̂|D| are deduced from the square
loss problem:

f̂D,λ = arg min
f∈H

1

|D|

|D|∑
i=1

(f(xi)− yi)2 + λ‖f‖2H, λ > 0,

(3)
where x1, . . . , x|D| are the data points and y = yD =
[y1, . . . , y|D|]

T are the corresponding labels. KRR can be
transferred into a linear system

α̂ = (KN + λ|D|I)−1y, (4)

where KN is the kernel matrix.

To solve the linear system, the time complexity is O(|D|3)
in the inverse operation of KN + λ|D|I and the space com-
plexity is O(|D|2) in storing the kernel matrix KN , which
are prohibitive for the large scale setting.

3.2. KRR with Nyström (KRR-NY)

For reducing computational requirements, Nyström samples
the training set to approximate the empirical kernel ma-
trix. The key of Nyström in (Rudi et al., 2015) is to obtain
Nyström centers {x̃1, . . . , x̃m} by uniformly sampling the
data points at random without replacement from the training
set. Thus, a smaller hypothesis spaceHm is introduced

Hm = {f |f =

m∑
i=1

αiK(x̃i, ·),α ∈ Rm},

where sampling scale m ≤ |D|. Considering a space Hm
of functions

f̃m,λ(x) =

m∑
i=1

α̃iK(x̃i, x), (5)

the square loss problem can be transferred into the following

f̃m,λ(x) = arg min
f∈Hm

1

|D|

|D|∑
i=1

(f(xi)− yi)2 + λ‖f‖2H.

(6)

The solution of Eq.(6) is characterized by the following
equation (Rudi et al., 2015)

(PmCNPm + λI)f̃m,λ =
1√
|D|

PmS
∗
Ny, (7)

with Pm the projection operator with rangeHm.

The corresponding coefficient α̃ is in the form:

α̃ = (KT
NmKNm + λ|D|Kmm︸ ︷︷ ︸

H

)†KT
Nmy︸ ︷︷ ︸
z

,
(8)

where H† denotes the Moore-Penorse pseudoinverse of a
matrix H, (KNm)ij = K(xi, x̃j) with i ∈ {1, . . . , |D|}
and j ∈ {1, . . . ,m}, and (Kmm)kj = K(x̃k, x̃j) with
k, j ∈ {1, . . . ,m}.

3.3. KRR with Nyström and PCG

To quickly compute the coefficients α̃ in Eq.(8), PCG (pre-
conditioning and conjugate gradient), one of the most popu-
lar gradient methods (Saad, 1996), is introduced, whose
speed of convergence can benefit from preconditioning
(Rudi et al., 2017).

The key idea behind preconditioning is to use a suitable
matrix P to define an equivalent linear system:

P =
1√
|D|

T−1A−1, (9)

where T = chol(Kmm) and A = chol( 1
mTTT + λI).

chol() represents the Cholesky decomposition.

Then, KRR with Nyström and PCG can be seen as solving
the following system

PTHα̂ = PT z,with f̂m,λ(x) =

m∑
i=1

α̂iK(x̃i, x), (10)

where α̂ is solved via t-step conjugate gradient algorithm
and t ∈ N. Note that, when t → ∞, f̂m,λ in Eq.(10) is
equal to f̃m,λ in Eq.(5) (Rudi et al., 2017).

3.4. Distributed KRR with Nyström (DKRR-NY) and
with Nyström and PCG (DKRR-NY-PCG)

Distributed KRR with Nyström and PCG (DKRR-NY-PCG)
is defined as

f̄0
D,m,t =

p∑
j=1

|Dj |
|D|

fDj ,m,t, (11)

where fDj ,m,t is the solver in Eq.(10). When t → ∞,
Eq.(11) can be seen as distributed KRR with Nyström and
without PCG (DKRR-NY). f̄0

D,m,t is rewritten as f̄0
D,m,λ

and fDj ,m,t is rewritten as fDj ,m,λ which is the solver in
Eq.(5). In each local processor, the time complexity, space
complexity, and communication complexity of DKRR-
NY are O(m2|Dj |), O(m|Dj |), and O(m), respectively.
And the corresponding complexity of DKRR-NY-PCG are
O(m|Dj |+m3), O(m|Dj |), and O(m), respectively.
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If we utilize Nyström to approximate KRR without dis-
tributed method on dataset D, its time O(m2|D|) and mem-
ory O(m|D|) are high, which is not suitable for large scale
setting. Distributed learning is one of the most popular
methods to reduce the size of dataset. Therefore, it is sig-
nificant for Nyström. However, the weighted averaging in
Eq.(11) is not good enough to compensate for the loss of
samples in each local processor (Lin et al., 2020; Liu et al.,
2018; Shang & Cheng, 2017), that is, the weighted average
cannot improve the approximation ability of KRR in each lo-
cal processor, and its approximation ability becomes worse
when the number of local processors p increases. Thus,
efficient communication strategies and synthetic methods
are required to enlarge the range of p to guarantee the best
generalization performance of distributed Nyström learning.

4. DKRR-NY with Communications
(DKRR-NY-CM)

In this section, we present a novel communication strategy
for DKRR-NY to further enlarge the number of local pro-
cessors, which is called DKRR-NY-CM. DKRR-NY-CM
communicates the gradients instead of data between local
processors, which can protect the privacy of datasets in each
local processor. The proposed communication strategy is
adaptation from (Lin et al., 2020) to avoid data communica-
tion between local processors.

4.1. Motivation

According to Eq.(7) about Nyström, we know

fD,m,λ =
1√
|D|

(PmCNPm + λI)−1PmS
∗
NyD, (12)

and

f̄0
D,m,λ =

p∑
j=1

|Dj |
|D|

1√
|Dj |

(PmCnPm + λI)−1PmS
∗
nyDj .

(13)

Therefore, for any f ∈ H, we have

fD,m,λ = f − (PmCNPm + λI)−1

∗

[
(PmCNPm + λI)f − 1√

|D|
PmS

∗
NyD

]
,

(14)

and

f̄0
D,m,λ = f −

p∑
j=1

|Dj |
|D|

(PmCnPm + λI)−1

∗

[
(PmCnPm + λI)f − 1√

|Dj |
PmS

∗
nyDj

]
.

(15)

The above Eq.(14) and Eq.(15) can be seen as the well
known Newton-Raphson iteration.

The half gradient of the empirical risk in Eq.(6) over Hm
on f is

GD,m,λ(f)

=(PmCNPm + λI)f − 1√
|D|

PmS
∗
NyD.

(16)

Noting that the global gradient GD,m,λ can be achieved via
the communications of each local gradient

GD,m,λ(f) =

p∑
j=1

|Dj |
|D|

GDj ,m,λ(f). (17)

For l > 0, let

βl−1
j = (PmCnPm + λI)−1GD,m,λ(f̄ l−1

D,m,λ). (18)

Comparing Eq.(14) and Eq.(15), we can use the Newton-
Raphson iteration to design a communication strategy
formed as

f̄ lD,m,λ =f̄ l−1
D,m,λ −

p∑
j=1

|Dj |
|D|

βl−1
j . (19)

In the following, we introduce the detail flows of the pro-
posed DKRR-NY-CM.

4.2. DKRR-NY with Communications
(DKRR-NY-CM)

Based on DKRR-NY and Eq.(19), we propose an itera-
tion procedure to implement the communication strategy of
DKRR-NY-CM. The detail of DKRR-NY-CM is shown in
Algorithm 1. Denote with M the number of communication.
For l from 0 to M , if l = 0: We compute fDj ,m,λ according
to Eq.(5) in each local processor and communicate them
back to the global processor; Then, we compute f̄0

D,m,λ

in Eq.(11) by the back values of the local processors and
communicate it to each local processor. If l > 0: We have
four steps. In the first step, we compute the local gradient
GDj ,m,λ(f̄ l−1

D,m,λ) in Eq.(16) and communicate them back
to the global processor; Then we compute the global gradi-
ent GD,m,λ(f̄ l−1

D,m,λ) in Eq.(17) and communicate them to
each local processor; Thirdly, we compute βl−1

j in Eq.(18)
in local processors and communicate back to the global pro-
cessor; Finally, we compute f̄ lD,m,λ according to Eq.(19) in
global processor and communicate to each local processor.
Loop the above operations until that l is equal to the number
of communication M and finally output f̄MD,m,λ.

The testing flows are shown in Appendix.
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Algorithm 1 DKRR-NY with Communications (DKRR-
NY-CM)
Input: p disjoint subsets {Dj}pj=1 with D = ∪pj=1Dj ,
kernel parameter, regularization parameter λ, sampling scale
m.

For l = 0 to M do

• If l = 0
Local processor: compute fDj ,m,λ in Eq.(5),

and communicate back to global processor.
Global processor: compute f̄0

D,m,λ in Eq.(11),
and communicate to each local processor.

• Else
Local processor: compute local gradient

GDj ,m,λ(f̄ l−1
D,m,λ) in Eq.(16) and communicate back

to the global processor.
Global processor: compute global gradient

GD,m,λ(f̄ l−1
D,m,λ) in Eq.(17), and communicate to

each local processor.
Local processor: compute βl−1

j in Eq.(18) and
communicate back to the global processor.

Global processor: compute f̄ lD,m,λ in Eq.(19),
and communicate to each local processor.

• End If

End For

4.3. Complexity Analysis

(1) Time complexity: In each local processor, we need
to compute the matrices multiplication KT

nmKnm and the
inverse of KT

nmKnm + λ|Dj |Kmm once. In each itera-
tion except for l = 0, we need to compute local gradient
GDj ,m,λ and βj for each local processor. Thus the total
time complexity is O(m2|Dj | + Mm|Dj |) in each local
processor.

(2) Space complexity: In each local processor, the decisive
element is the scale of matrixKnm, whose space complexity
is O(m|Dj |).

(3) Communication complexity: The global processor needs
receive local gradientGDj ,m,λ and βj from the local proces-
sors, and distribute GD,m,λ and f̄ lD,m,λ to local processors
in each iteration except for l = 0. In l = 0, the global pro-
cessor and local processors need to communicate f̄0

D,m,λ

and fDj ,m,λ. Therefore the total communication complexity
is O(Mm).

5. Theoretical Analysis
In this section, we first introduce some basic assumptions
which are widely used in statistical learning of squared loss

(Smale & Zhou, 2007; Caponnetto & Vito, 2007; Rudi et al.,
2017; Li et al., 2019). Then we analyze the generation
performance of DKRR-NY, DKRR-NY-PCG and DKRR-
NY-CM.

5.1. Basic Assumptions

The first Assumption describes that the problem in Eq.(1)
has at least a solution (Smale & Zhou, 2007; Caponnetto &
Vito, 2007).

Assumption 1. There exists an fH ∈ H such that E (fH) =
minf∈H E(f).

Secondly, we show a basic assumption on data distribution
to derive probabilistic results.

Assumption 2. Let zx be the random variable zx = y −
fH(x), with x ∈ X, and y distributed according to ρ(y|x).
Then, there exists b, σ > 0 such that E |zx|e ≤ 1

2e!b
e−2σ2

for any e ≥ 2, almost everywhere on X.

The above assumption (Yin et al., 2020a) holds the bounded
y and is satisfied with σ = b, when |y| ≤ b,∀b > 1.

In the following, we show an assumption that controls the
variance of the estimator (Rudi et al., 2015).

Assumption 3. Let C be the covariance operator as C :
H → H, 〈f, Cg〉H =

∫
X
f(x)g(x)dρX(x),∀f, g ∈ H.

For λ > 0, define the random variable Nx(λ) = 〈Kx, (C +
λI)−1Kx〉H with x ∈ X distributed according to ρX and
let N (λ) = ENx(λ), N∞(λ) = supx∈XNx(λ). The ker-
nel K is measurable, C is bounded. Moreover, for all λ > 0
and a Q > 0,

N∞(λ) <∞, (20)

N (λ) ≤ Qλ−γ , 0 < γ ≤ 1. (21)

In the above assumption, γ inflects the size of RKHS
H, namely it quantifies the capacity assumption (Yin
et al., 2020a). The more benign situation with smaller
H is obtained when γ → 0. If the kernel satisfied
supx∈X K(x, x) = κ2 < ∞, we have N∞(λ) ≤ κ2/λ
for all λ > 0. The assumption ensures that the covariance
operator is a well defined linear, continuous, self-adjoint,
positive operator. Because the operator C is trace class,
Eq.(21) always holds for γ = 1.

Assumption 4. There exists s ≥ 0, 1 ≤ R <∞, such that∥∥C−sfH∥∥H < R. (22)

The above assumption (Rudi et al., 2015) can quantify the
degree that fH can be well approximated by functions in
the RKHSH, and can be seen as regularity of fH. For more
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details of the four assumptions, please refer to the cited
references.

5.2. Optimal Learning Rate for DKRR-NY and
DKRR-NY-PCG in Expectation

In the following, we analyze the optimal learning rate of
DKRR-NY in expectation. Let r = 1/2 + min(s, 1/2).

Theorem 1. Under Assumptions 1, 2, 3, and 4, let δ ∈
(0, 1], r ∈ [1/2, 1], γ ∈ (0, 1], λ = Ω(|D|−

1
2r+γ ), |D1| =

. . . = |Dp|, and f̄0
D,m,λ be the estimator. With probability

1− δ, when

p ≤ O(|D|
2r+γ−1
2r+γ ) and m ≥ O(|D|

1
2r+γ ),

we have E[E(f̄0
D,m,λ)]− E(fH) = O(|D|−

2r
2r+γ ).

Proof. The proof is given in Appendix.

The following is the optimal learning rate of DKRR-NY-
PCG in expectation.

Corollary 1. Under Assumptions 1, 2, 3, and 4, let δ ∈
(0, 1], r ∈ [1/2, 1] γ ∈ (0, 1], λ = Ω(|D|−

1
2r+γ ), |D1| =

. . . = |Dp|, and f̄0
D,m,t be the estimator. With probability

1− δ, when t ≥ O(log(|D|)),

p ≤ O(|D|
2r+γ−1
2r+γ ), and m ≥ O(|D|

1
2r+γ ),

we have E[E(f̄0
D,m,t)]− E(fH) = O(|D|−

2r
2r+γ ).

Proof. The proof is given in Appendix.

Note that E[E(f̄0
D,m,λ)]−E(fH) = E[‖f̄0

D,m,λ−fH‖2ρ] and

O(|D|−
2r

2r+γ ) 1 is the optimal learning rate of KRR (Capon-
netto & Vito, 2007; Yin et al., 2020a). Theorem 1 and Corol-
lary 1 show that if p ≤ |D|

2r+γ−1
2r+γ and m ≥ O(|D|

1
2r+γ ),

the learning rates of the proposed DKRR-NY and DKRR-
NY-PCG can reach O(|D|−

2r
2r+γ ) which are the same statis-

tical accuracy as the exact KRR. The proposed DKRR-NY
and DKRR-NY-PCG derive the same learning rate with the
number of iteration t ≥ O(log(|D|)) in expectation, which
verifies that the error bound caused by PCG is small (Rudi
et al., 2017). Let λ = 1/

√
|D|, with the optimal learning

rate, the proposed DKRR-NY and DKRR-NY-PCG both
achieve O(|D|1.5) time complexity and O(|D|) space com-
plexity.

Theoretical analysis show that divide-and-conquer KRR
(Lin et al., 2017; Guo et al., 2019), DKRR-NY-PCG (Yin

1Logarithmic terms of learning rates and complexity are hidden
in this paper.

et al., 2020a), and DKRR-RF (Li et al., 2019) also ob-
tain the same learning rates as the exact KRR in expec-
tation. However, they have a strict limitation to the num-
ber of local processors p. In particular, at the basic set-
ting, to guarantee the optimal generalization properties,
the upper bounds of p in them are restricted to O(1), but
our results in DKRR-NY-PCG and DKRR-NY are both
O(
√
|D|). DKRR-RF (Liu et al., 2021) obtains the op-

timal learning rate with p ≥ O(|D|
2r+γ−1
2r+γ ) and m ≤

O(|D|
(2r−1)γ+1

2r+γ ) in expectation. Compared to DKRR-RF
(Liu et al., 2021) in expectation, the proposed DKRR-NY-
PCG reduces the time complexity and space complexity
by factors of |D|

2(2r−1)γ
2r+γ and |D|

(2r−1)γ
2r+γ with the optimal

learning rate, where (2r − 1)γ ≥ 0. Compared to Nyström-
PCG (Rudi et al., 2017), DKRR-NY-PCG proposed by this
paper reduces the time complexity and space complexity by
factors of min(|D|

2r+γ−1
2r+γ + |D|

1
2r+γ , 1 + |D|

2r+γ−2
2r+γ ) and

|D|
2r+γ−1
2r+γ with the optimal learning rate, where 2r+γ−1 >

0.

5.3. Optimal Learning Rate for DKRR-NY and
DKRR-NY-PCG in Probability

Theorem 1 and Corollary 1 describe the optimal learning
rates for DKRR-NY and DKRR-NY-PCG in expectation.
The expectation demonstrates the average effectiveness of
multiple trials, but may fail to capture the learning perfor-
mance for a single trial. Therefore, in the following, we
deduce the learning rates for DKRR-NY and DKRR-NY-
PCG in probability.

The below is the learning rate of DKRR-NY in probability.

Theorem 2. Under Assumptions 1, 2, 3, and 4, let δ ∈
(0, 1], r ∈ [1/2, 1], γ ∈ (0, 1], λ = Ω(|D|−

1
2r+γ ), |D1| =

. . . = |Dp|, and f̄0
D,m,λ be the estimator. With probability

1− δ, when

p ≤ O(|D|
2r+γ−1
4r+2γ ) and m ≥ O(|D|

1
2r+γ ),

we have ‖f̄0
D,m,λ − fH‖2ρ = O(|D|−

2r
2r+γ ).

Proof. The proof is given in Appendix.

Here is the learning rate of DKRR-NY-PCG in probability.

Corollary 2. Under Assumptions 1, 2, 3, and 4, let δ ∈
(0, 1], r ∈ [1/2, 1], γ ∈ (0, 1], λ = Ω(|D|−

1
2r+γ ), |D1| =

. . . = |Dp|, and f̄0
D,m,t be the estimator. With probability

1− δ, when t ≥ O(log(|D|)),

p ≤ O(|D|
2r+γ−1
4r+2γ ), and m ≥ O(|D|

1
2r+γ ),

we have ‖f̄0
D,m,t − fH‖2ρ = O(|D|−

2r
2r+γ ).
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Table 1. Computational complexity of the classical approximation algorithms in KRR estimates with the optimal learning rate and
λ = 1/

√
|D|. The columns from second to last correspond to the time complexity, space complexity, communication complexity, the

number of partitions p, m, and types, respectively. m denotes the sampling scale in Nyström and the number of random features in
random features methods. |D| denotes the number of training data, M is the number of communication, d > 0, ∆1 = (1−γ)γ

2
≥ 0,

∆2 = γ
2
> 0, and γ ∈ (0, 1]. Logarithmic terms are not showed.

Algorithms Time Space Comm p m Types

KRR (Caponnetto & Vito, 2007) |D|3 |D|2 / / / In probability
Nyström (Rudi et al., 2015) |D|2 |D|1.5 / / |D|0.5 In probability
Nyström-PCG (Rudi et al., 2017) |D|1.5 |D|1.5 / / |D|0.5 In probability
Random Features (Rudi et al., 2016) |D|2+2∆1 |D|1.5+∆1 / / |D|0.5+∆1 In probability
DKRR-RF (Li et al., 2019) |D|1.5+2∆1+∆2 |D|1+∆1+∆2 |D|0.5+∆1 |D|0.5−∆2 |D|0.5+∆1 In expectation
DKRR-RF (Liu et al., 2021) |D|1.5+2∆1 |D|1+∆1 |D|0.5+∆1 |D|0.5 |D|0.5+∆1 In expectation
DKRR-RF (Liu et al., 2021) |D|1.75+2∆1 |D|1.25+∆1 |D|0.5+∆1 |D|0.25 |D|0.5+∆1 In probability
DKRR-RF-CM (Liu et al., 2021) |D|

3M+7
2M+4 +2∆1 |D|

2M+5
2M+4 +∆1 M |D|0.5+∆1 |D|

M+1
2(M+2) |D|0.5+∆1 In probability

DKRR (Chang et al., 2017b) |D|2 |D| |D|0.5 |D|0.5 / In expectation
DKRR (Lin et al., 2020) |D|2.25 |D|1.5 |D|0.75 |D|0.25 / In probability

DKRR-CM (Lin et al., 2020) |D|
3(M+3)
2(M+2) |D|

M+3
M+2 Md|D| |D|

M+1
2(M+2) / In probability

DKRR-NY-PCG (Yin et al., 2020a) |D|1.5 |D|1+∆2 |D|0.5 |D|0.5−∆2 |D|0.5 In expectation
DKRR-NY-PCG (Corollary 1) |D|1.5 |D| |D|0.5 |D|0.5 |D|0.5 In expectation
DKRR-NY-PCG (Corollary 2) |D|1.75 |D|1.25 |D|0.5 |D|0.25 |D|0.5 In probability
DKRR-NY (Theorem 1) |D|1.5 |D| |D|0.5 |D|0.5 |D|0.5 In expectation
DKRR-NY (Theorem 2) |D|1.75 |D|1.25 |D|0.5 |D|0.25 |D|0.5 In probability
DKRR-NY-CM (Theorem 3) |D|

3M+7
2M+4 |D|

2M+5
2M+4 M |D|0.5 |D|

M+1
2(M+2) |D|0.5 In probability

Proof. The proof is given in Appendix.

Note that, DKRR-NY and DKRR-NY-PCG can also achieve
the optimal learning rates in probability. The upper bound of
p in Theorem 2 and Corollary 2 are O(|D|

2r+γ−1
4r+2γ ), which

is stricter than O(|D|
2r+γ−1
2r+γ ) in Theorem 1 and Corollary

1. The reason is that, compared to the error decomposition
in expectation, the error decomposition in probability is not
easy to separate a distributed error to control the number of
local processors. To derive the optimal learning rate, we pro-
vide a novel decomposition, which is shown in Appendix.

5.4. Optimal Learning Rate for DKRR-NY-CM in
Probability

We demonstrate that DKRR-NY-CM can derive the optimal
learning rate and further enlarge the number of partition p
compared to DKRR-NY and DKRR-NY-PCG in probability.

Theorem 3. Under Assumptions 1, 2, 3, and 4, let δ ∈
(0, 1], r ∈ [1/2, 1], γ ∈ (0, 1], λ = Ω(|D|−

1
2r+γ ), |D1| =

. . . = |Dp|, and f̄MD,m,λ be the estimator. With probability
1− δ, when

p ≤ O(|D|
(2r+γ−1)(M+1)
(2r+γ)(M+2) ) and m ≥ O(|D|

1
2r+γ ), (23)

we have ‖f̄MD,m,λ − fH‖2ρ = O(|D|−
2r

2r+γ ).

Proof. The proof is given in Appendix.

Comparing Theorem 2 with Theorem 3, we know that, with
the same optimal learning rates and m, the upper bound of

partition O(|D|
(2r+γ−1)(M+1)
(2r+γ)(M+2) ) in DKRR-NY-CM is larger

than O(|D|
2r+γ−1
4r+2γ ) of DKRR-NY in probability, where

M ≥ 1. This means that the proposed communication strat-
egy can relax the restriction on p, namely improve the per-
formance of DKRR-NY. Furthermore, the upper bound of p
is monotonically increasing with the number of communi-
cations M , showing the power of communications. DKRR-
NY, DKRR-NY-PCG, and DKRR-NY-CM can achieve the
rate O(1/

√
|D|) at the basic setting and the rate O(1/|D|)

under the best case (r = 1 and γ = 0). PCG can also be
used to accelerate the calculation in DKRR-NY-CM. In this
part, we mainly verify the effectiveness of communication,
so PCG is not used.

5.5. Compared with the Related Work

Table 1 shows the computational complexity of the clas-
sical KRR estimators with the optimal learning rate and
λ = 1/

√
|D|. By comparison, we know that the proposed

DKRR-NY and DKRR-NY-PCG require only |D|1.5 time
and |D|0.5 memory with the optimal learning rates in expec-
tation, which keep the least at the same time and are more
effective than other algorithms. For DKRR-NY-CM, with
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Figure 1. The mean square error on testing sampling with different partitions on KRR, DKRR-NY, and our DKRR-NY-CM. The numbers
2, 4 and 8 represent the number of communications.

the optimal learning rates, it keeps the less time complexity,
space complexity, and communication complexity in prob-
ability compared to the communication-based algorithms
of DKRR-RF-CM (Liu et al., 2021) and DKRR-CM (Lin
et al., 2020). Meanwhile, the proposed DKRR-NY, DKRR-
NY-PCG, and DKRR-NY-CM keep the best upper bound of
p and the best lower bound of m at the same condition.

The proof in this paper is non-trivial extensions of (Yin
et al., 2020a; Lin et al., 2020; Liu et al., 2021). We pro-
vide a novel error decomposition compared to DKRR-NY-
PCG (Yin et al., 2020a) so that the improved bounds can
be obtained in expectation. If we use the same way of
error decomposition in (Yin et al., 2020a), this paper can-
not relax the restriction on the number of local processors.
Furthermore, we provide the bounds of DKRR-NY-PCG
and DKRR-NY in probability and consider communication
strategy to further improve the bounds of DKRR-NY in
probability which are not obtained in (Yin et al., 2020a; Lin
et al., 2020; Liu et al., 2021).

The paper (Lin et al., 2020) provides the communication
strategy in DKRR, but it requires communicating the data
among local processors, which cannot protect the privacy
of data in local processors and increases the communica-
tion complexity of each local processor. In this paper, we
communicate the gradients, model parameters, and model
estimators, which are better to protect data privacy and re-
duce the communication complexity.

6. Experiments
In this section, we report numerical results to verify the
theoretical statements about the power of communications
in DKRR-NY-CM on simulated dataset.

The way of generating the synthetic data is as below. The

training samples {xi}Ni=1 and the testing samples {x′i}N
′

i=1

are independently drawn according to the uniform distri-
bution on the (hyper-)cube [0, 1]. The outputs of training
samples {yi}Ni=1 are generated from the regression mod-
els yi = g(xi) + εi for i = 1, 2, . . . , N , where εi is the
independent Gaussian noise N (0, 0.01), if 0 < x ≤ 0.5,
g(x) = x, otherwise g(x) = 1− x. The outputs of testing
samples {y′i}N

′

i=1 are generated by y′i = g(x′i). Define the
reproducing kernels K(x, x′) = 1 + min(x, x′). Obviously,
g ∈ HK (Wu, 1995). The way of generating dataset is the
same as (Lin et al., 2020). The criterion is the mean square
error (MSE). According to the proposed Theorem, we set
sampling scale m =

√
N and λ = 1

2
√
N

. In the training
process of distributed algorithms, we uniformly distribute
N training samples to p local processors.

Generating 20000 training samples and 2000 testing sam-
ples. Using the exact KRR as a baseline, which trains all
samples in a batch. We compare our proposed DKRR-NY-
CM with DKRR-NY and KRR, repeat the training 5 times,
and estimate the averaged error on testing samples. The
testing results are shown in Figure 1, which can be sum-
marized as follows: 1) The larger the p is, the larger the
gaps between the distributed algorithms (DKRR-NY and
DKRR-NY-CM) and KRR are. When p is larger than an
upper bound, MSE of distributed algorithms is far from the
exact KRR. This verifies the statement about p in Theorem
1, 2, and 3. 2) The upper bound of p in our DKRR-NY-CM
is much larger than that of DKRR-NY. This result verifies
Theorem 3 that the communication strategy can relax the
restriction on p. 3) The upper bound of p is increasing with
the number of communication increasing, which shows the
effectiveness of communication and is consistent with our
theoretical analysis in Eq.(23) of Theorem 3.
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7. Conclusions
This paper studies the statistical performance of DKRR-NY
and DKRR-NY-PCG, and successfully derives the optimal
learning rates with enlarging the ranges of p to the optimal
in existing state-of-art bounds. Specifically, DKRR-NY
and DKRR-NY-PCG achieve the same learning rates as the
exact KRR requiring essentiallyO(|D|1.5) time andO(|D|)
memory with relaxing the restriction on p in expectation.
Furthermore, for showing the generalization performance in
a single trial, we deduce the learning rates for DKRR-NY
and DKRR-NY-PCG in probability. Finally, we utilize a
communication strategy to further improve the performance
of DKRR-NY and protect the privacy of data in each local
processor. Theoretical and experimental analysis verify the
effectiveness of the communications.
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