
Path Planning using Neural A* Search
(Supplementary Material)

Ryo Yonetani * 1 Tatsunori Taniai * 1 Mohammadamin Barekatain 1 2 Mai Nishimura 1 Asako Kanezaki 3

A. Details of Experimental Setups
A.1. Dataset Creation

Here we present supplementary information on how each
dataset was created in our experiments. Since our dataset
generation process involves randomness, we fixed a random
seed in each generation program to ensure reproducibility.
Please refer to the code in our project page: https://
omron-sinicx.github.io/neural-astar/.

MP/Tiled-MP/CSM datasets. In the experiments with
MP/Tiled-MP/CSM datasets, we employed more challeng-
ing settings involving randomized start and goal locations
instead of pre-defined consistent locations used in prior
work (Choudhury et al., 2018; Vlastelica et al., 2020). We
determined these start and goal locations strategically based
on their actual distances to avoid generating easy problem
instances. Specifically, for each environmental map, a sin-
gle goal location was randomly determined once and fixed
throughout the experiments. Here, for a map with the width
and height denoted as (W,H), i.e., (32, 32) for the MP and
(64, 64) for the Tiled MP and CSM datasets, the goal loca-
tion was sampled from one of the four corner regions of size
(W/4, H/4), as illustrated in Fig. S1 (middle). Then, we
performed the Dijkstra algorithm to compute actual move-
ment costs from every passable node to the goal, and calcu-
lated the 55, 70, 85-percentile points of the costs. For every
iteration in the training phase, we sampled a new random
start location from regions whose actual costs higher than
the 55 percentile point. As for validation and testing data,
we sampled two and five random but fixed start locations,
respectively, from each of three kinds of regions whose
costs are within the percentile ranges of [55, 70], [70, 85],
and [85, 100] (see Fig. S1 (right) for an illustration). Conse-
quently, we created 2× 3 = 6 and 5× 3 = 15 diverse start
locations for each validation and test map, respectively. The

*Equal contribution 1OMRON SINIC X, Tokyo, Japan
2Now at DeepMind, London, UK. 3Tokyo Institute of Tech-
nology, Tokyo, Japan. Correspondence to: Ryo Yonetani
<ryo.yonetani@sinicx.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Goal: sampled from the four corner regions
with size (W/4, H/4)

55-70

70-85

85-100

Start: sampled from regions where the
cost from the goal location is within
55-70, 70-85, 85-100-percentile points

Figure S1. Sampling of Start and Goal Locations.

ground-truth paths for all the generated problem instances
were obtained by the Dijkstra algorithm. When computing
losses for the Tiled MP and CSM datasets, these paths were
dilated with a 3× 3 kernel, which stabilized the training.

SDD. In SDD, we extracted relatively simple trajectories
of pedestrians who moved directly towards their destina-
tions. Specifically, for each trajectory provided by Robic-
quet et al. (2016), we first trimmed it randomly to have
a sequence length in the range of [300, 600] timesteps (at
2.5fps). We then calculated the ratio of its straight-line dis-
tance between start and goal points to the trajectory length,
as a measure of path simplicity that gives a lower value for
a more complex trajectory. We discarded trajectories whose
simplicity was less than 0.5. Finally, we cropped image
patches that encompass each trajectory with the margin of
50 pixels and resized them to the size of 64×64. As a result,
8,325 samples were extracted from the dataset.

A.2. Hyper-Parameter Selection

Table S1 shows the list of hyper-parameters as well as ranges
of these values we tried to produce the final results. We
selected the final parameters based on the validation per-
formance on the MP dataset in terms of Hmean scores.
Because completing all the experiments took a consider-
ably long time (see the next section), we performed each
experiment only once with a fixed set of random seeds.

Below we provide several remarks regarding the hyper-

https://omron-sinicx.github.io/neural-astar/
https://omron-sinicx.github.io/neural-astar/

Path Planning using Neural A* Search

Table S1. Hyper-parameter Selection. The list of hyper-
parameters and ranges of these values tried during the development
of this paper.

Parameter Name Values (range of values tried)

Common

Optimizer RMSProp
Learning rate 0.001 (0.0001, 0.0005, 0.001, 0.005)
Batch size 100
Number of epochs 100 (MP), 400 (Tiled MP, CSM)
Tie breaking (for h func.) 0.001× Euclidean distance

Neural A*/Neural BF

Encoder arch U-Net with VGG-16 backbone
(VGG-16, ResNet-18)

Temperature τ
√

32 for MP,
√

64 for Tiled MP and CSM

BB-A*

Encoder arch U-Net with VGG-16 backbone
Trade-off parameter λ 20.0 (0.1, 1.0, 5.0, 10.0, 20.0)

SAIL/SAIL-SL

Max data samples 300 (60, 300)
Sampling rate 10 (10, 100)

WA*

Weight factor for h(v) 0.8 (0.6, 0.7, 0.8)

parameter list. We observed that the tie-breaking in A*
search, i.e., the adjustment to h(v) by adding the Euclidean
distance from v to the goal scaled by a small positive con-
stant (0.001), was critical to improving the base efficiency
of A* search. Thus, we used this setting for all the A*-
based methods throughout the experiments. The choice
of the learning rate little affected final performances given
a sufficient number of epochs. BB-A* has an additional
hyper-parameter λ that controls the trade-off between “in-
formativeness of the gradient” and “faithfulness to the orig-
inal function” (Vlastelica et al., 2020). We tried several
values and found that any choice worked reasonably well,
except for extremely small values (e.g., 0.1). SAIL and
SAIL-SL (Choudhury et al., 2018) have hyper-parameters
on how to collect samples from each training environment
instance, which little affected final performances. Finally,
the weighted A* baseline used a modified node selection
criterion with a weight factor w to the heuristic function;
i.e., (1 − w) · g(v) + w · h(v), for which we set w = 0.8
throughout the experiments. Note that usingw = 1.0 for the
criterion corresponds to the best-first search in our baselines.

A.3. Computing Infrastructure and Training Time

We performed all the experiments on a server operated
on Ubuntu 18.04.3 LTS with NVIDIA V100 GPUs, Intel
Xeon Gold 6252 CPU @ 2.10GHz (48 cores), and 768GB
main memory. Our implementation was based on PyTorch
1.5 (Paszke et al., 2019) and Segmentation Models Py-
Torch (Yakubovskiy, 2020). To efficiently carry out the ex-
periments, we used GNU Parallel (Tange, 2011) to run mul-

tiple experiment sessions in parallel. See our setup.py
and Dockerfile for the list of all dependencies.

In the training sessions, each model was trained using a
single V100 GPU with 16 GB graphics memory. Training
each of our models (Neural A* and Neural BF) took approx-
imately 50 minutes on the MP dataset (100 epochs × 800
maps with the size of 32 × 32) and 35 hours on the Tiled
MP and CSM datasets (400 epochs × 3,200 maps with the
size of 64 × 64). As for SAIL/SAIL-SL and BB-A*, the
training on the MP dataset took approximately the same
time (i.e., 50 minutes). On the Tiled MP and CSM datasets,
SAIL/SAIL-SL took up to about 22 hours and BB-A* took
65 hours.

B. Additional Results
Figures S2 and S3 show additional qualitative results (in-
cluding those of MMP introduced below.) In what follows,
we also add more detailed performance analysis to Neural
A* from different perspectives.

B.1. Comparisons with Imitation Learning Methods

As introduced in Sec. 6, some of the imitation learning
(IL) methods are relevant to our work in that they learn
to recover unknown reward (i.e., negative cost) functions
from demonstrations. Here, we compared our approach with
several IL methods tailored to path planning tasks, namely,
Maximum Margin Planning (MMP) (Ratliff et al., 2006),
Value Iteration Network (VIN) (Tamar et al., 2016) and
Gated Path Planning Network (GPPN) (Lee et al., 2018).

For MMP, we followed the original work and modeled the
cost function as a per-node linear mapping from features to
costs. For feature extraction, we used the VGG-16 network
pretrained on ImageNet. As in Neural A*, we activated the
costs with the sigmoid function to constrain them to be in
[0, 1]. Unlike other IL-based planners, MMP uses A* search
to plan a path with the estimated cost. We used the same
implementation of A* search as that of Neural A*.

For VIN and GPPN, we used the official codebase of Lee
et al. (2018). Because these reactive planners are not based
on a search-based algorithm, we could not employ the Exp
and Hmean metrics, which are associated with performances
of the baseline A* search. Instead, we calculated the success
ratio (Suc), which is the percentage of problem instances
for which a planner found a valid path.

As shown in Tables S2 and S3, we confirmed that the perfor-
mances of these IL methods are limited compared to the pro-
posed Neural A*. Although MMP ensures 100% planning
success as using A* search, it was consistently outperformed
by Neural A* in terms of the Opt, Exp, and Hmean metrics.
One possible reason of these limited performances is that

Path Planning using Neural A* Search

MMP cannot learn how internal search steps of A* affect
search histories and resulting paths, as we compared BB-A*
against Neural A* in Sec. 4.4. While GPPN obtained a
higher Opt score than Neural A* on the Tiled MP dataset,
it did not always successfully find a valid path as shown
in its success ratio. Moreover, GPPN and VIN completely
failed to learn on SDD. These failures can be accounted for
by its large input maps and limited demonstrations (single
trajectory per map), which are more challenging settings
than those by the original work.

B.2. Path Length Optimality Evaluation

Following Tamar et al. (2016); Anderson et al. (2018), we
introduce another metric for evaluating the path optimality,
which calculates the ratio of the optimal path length P̄ to
predicted one P . For consistency with the other metrics, this
path-length ratio is measured in 0–100 (%) and maximized
when the path is optimal, i.e., we calculate |P̄ |/|P | × 100.
As shown in Table S4, Neural A* produced the most nearly-
optimal paths across all the datasets.

B.3. Computational Complexity and Runtime Analysis

The main computational bottleneck of Neural A* lies in
the differentiable A* module. Because this module uses
matrix operations involving all the nodes to enable back-
propagation, its training-phase complexities in space and
time are O(k|V|), where k is the number of search steps.
In theory, the required number of search steps depends on
the true path length d. Thus, the complexities in terms of d
amount toO(d|V|) andO(bd|V|) for the best and worst case,
respectively, where b is the average number of neighboring
nodes expanded per search step. Practically, when training is
finished, we can replace the differentiable A* module with
a standard (i.e., non-differentiable) A* search algorithm
without changing the testing behaviors of Neural A*. With
this replacement, Neural A* can perform planning in O(d)
and O(bd) for the best and worst case.

To analyze search runtimes empirically, we created three
sets of 50 maps with the sizes of 64× 64, 128× 128, and
256× 256, by randomly drawing maps from the MP dataset
and tiling them. We then measured the average runtime per
problem taken using a standard A* search implementation1

1We implemented a python-based A* search algorithm
with pqdict package (https://github.com/nvictus/
priority-queue-dictionary) and used its priority queue
feature for performing node selections efficiently. To accurately
measure a search runtime per problem, we performed the program
exclusively on a single CPU core (for performing A* search) and
a single GPU (for additionally running the encoder to compute
guidance maps for Neural A*) and solved the same problem five
times after a single warm-up trial. The use of more sophisticated
A* search implementations could result in further performance
improvements, which is however beyond the scope of this work.

coupled with and without our guidance maps. Regardless
of the test map sizes, the guidance maps were trained using
the Tiled MP dataset of the size 64× 64, to see if our model
generalizes well to larger maps. As shown in Table S5,
we confirm that Neural A* greatly reduced runtimes of A*
search with the help of guidance maps and also showed
good generalization ability to larger maps.

References
Anderson, P., Chang, A., Chaplot, D. S., Dosovitskiy, A., Gupta,

S., Koltun, V., Kosecka, J., Malik, J., Mottaghi, R., Savva, M.,
et al. On evaluation of embodied navigation agents. arXiv
preprint arXiv:1807.06757, 2018.

Choudhury, S., Bhardwaj, M., Arora, S., Kapoor, A., Ranade, G.,
Scherer, S., and Dey, D. Data-driven planning via imitation
learning. International Journal of Robotics Research (IJRR), 37
(13-14):1632–1672, 2018.

Lee, L., Parisotto, E., Chaplot, D. S., Xing, E., and Salakhutdi-
nov, R. Gated path planning networks. In Proceedings of the
International Conference on Machine Learning (ICML), 2018.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison,
A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A.,
Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.
Pytorch: An imperative style, high-performance deep learning
library. In Proceedings of the Advances in Neural Information
Processing Systems (NeurIPS), pp. 8024–8035, 2019.

Ratliff, N. D., Bagnell, J. A., and Zinkevich, M. A. Maximum mar-
gin planning. In Proceedings of the International Conference
on Machine Learning (ICML), ICML ’06, pp. 729–736, 2006.

Robicquet, A., Sadeghian, A., Alahi, A., and Savarese, S. Learning
social etiquette: Human trajectory understanding in crowded
scenes. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pp. 549–565, 2016.

Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. Value
iteration networks. In Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS), pp. 2154–2162,
2016.

Tange, O. Gnu parallel - the command-line power tool. The
USENIX Magazine, 36(1):42–47, Feb 2011. URL http://
www.gnu.org/s/parallel.

Vlastelica, M., Paulus, A., Musil, V., Martius, G., and Rolı́nek, M.
Differentiation of blackbox combinatorial solvers. In Proceed-
ings of the International Conference on Learning Representa-
tions (ICLR), 2020.

Yakubovskiy, P. Segmentation models pytorch. https:
//github.com/qubvel/segmentation_models.
pytorch, 2020.

https://github.com/nvictus/priority-queue-dictionary
https://github.com/nvictus/priority-queue-dictionary
http://www.gnu.org/s/parallel
http://www.gnu.org/s/parallel
https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch

Path Planning using Neural A* Search

Table S2. Comparisons with Imitation Learning Methods. Bootstrap means and 95% confidence
bounds of path optimality ratio (Opt), reduction ratio of node explorations (Exp), the harmonic mean
(Hmean) between Opt and Exp, and success ratio (Suc).

MP DATASET

Opt Exp Hmean Suc

VIN 24.7 (23.9, 25.5) N/A N/A 31.4 (30.6, 32.3)
GPPN 71.0 (70.2, 71.8) N/A N/A 86.2 (85.6, 86.9)
MMP 81.6 (80.6, 82.8) 22.4 (21.7, 23.2) 31.5 (30.6, 32.4) 100.0 (100.0, 100.0)

Neural A* 87.7 (86.6, 88.9) 40.1 (38.9, 41.3) 52.0 (50.7, 53.3) 100.0 (100.0, 100.0)

TILED MP DATASET

Opt Exp Hmean Suc

VIN 52.7 (51.5, 54.0) N/A N/A 58.3 (57.1, 59.5)
GPPN 68.2 (67.0, 69.4) N/A N/A 81.5 (80.5, 82.5)
MMP 44.8 (42.4, 47.1) 40.5 (38.7, 42.4) 35.5 (33.8, 37.2) 100.0 (100.0, 100.0)

Neural A* 63.0 (60.7, 65.2) 55.8 (54.1, 57.5) 54.2 (52.6, 55.8) 100.0 (100.0, 100.0)

CSM DATASET

Opt Exp Hmean Suc

VIN 70.4 (69.3, 71.6) N/A N/A 73.2 (72.1, 74.4)
GPPN 68.9 (67.7 60.1) N/A N/A 85.3 (84.4, 86.2)
MMP 66.4 (64.0, 68.9) 28.4 (26.4, 30.4) 31.9 (30.0, 33.8) 100.0 (100.0, 100.0)

Neural A* 73.5 (71.5, 75.5) 37.6 (35.5, 39.7) 43.6 (41.7, 45.5) 100.0 (100.0, 100.0)

Table S3. Comparisons with Imitation Learning Methods on SDD. Bootstrap means and 95% con-
fidence bounds of the chamfer distance between predicted and actual pedestrian trajectories.

Intra-scenes Inter-scenes

VIN 920.7 (890.8, 950.4) 900.6 (888.1, 913.8)
GPPN 920.7 (890.8, 952.3) 900.6 (888.0, 913.4)
MMP 126.7 (119.3, 133.9) 130.3 (128.1, 132.6)

Neural A* 16.1 (13.2, 18.8) 37.4 (35.8, 39.0)

Table S4. Path Length Optimality Evaluation. Bootstrap means and 95% confidence bounds of the
ratio of optimal to produced path lengths (the higher the better).

MP Tiled-MP CSM

BF 96.4 (96.1, 96.6) 92.1 (91.6, 92.6) 96.4 (96.1, 96.7)
WA* 96.9 (96.6, 97.1) 93.4 (93.0, 93.8) 96.8 (96.6, 97.1)

SAIL 87.5 (86.8, 88.3) 78.0 (77.0, 79.0) 87.1 (86.1, 88.1)
SAIL-SL 88.2 (87.5, 89.0) 73.4 (72.1, 74.7) 84.7 (83.5, 85.9)
BB-A* 96.3 (96.0, 96.6) 93.0 (92.5, 93.4) 96.5 (96.2, 96.8)

Neural BF 97.5 (97.3, 97.8) 95.0 (94.7, 95.4) 97.4 (97.1, 97.6)
Neural A* 99.1 (99.0, 99.2) 98.4 (98.3, 98.6) 98.9 (98.8, 99.0)

Table S5. Search Runtime Evaluation. Bootstrap mean and 95% confidence bounds of the runtime
(sec) required to solve a single problem with different map sizes.

64× 64 128× 128 256× 256

A* 0.09 (0.08, 0.10) 0.21 (0.17, 0.25) 0.78 (0.72, 0.82)
Neural A* 0.04 (0.04, 0.04) 0.07 (0.06, 0.08) 0.15 (0.14, 0.16)

Path Planning using Neural A* Search

A* BF SAIL SAIL-SL BB-A* Neural BF Neural A* Guidance mapWA*
S

G
S

G

S

G

G

S

S
G

G

S

S

G

G

S

S

G

G
S

S

G

MMP

Figure S2. Additional Qualitative Results (MP/Tiled-MP/CSM Datasets).

Path Planning using Neural A* Search

Input Ground-truth BB-A* Neural A* Guidance mapMMP

Figure S3. Additional Qualitative Results (SDD).

