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Abstract 

We propose SinIR, an effcient reconstruction-
based framework trained on a single natural im-
age for general image manipulation, including 
super-resolution, editing, harmonization, paint-to-
image, photo-realistic style transfer, and artistic 
style transfer. We train our model on a single im-
age with cascaded multi-scale learning, where 
each network at each scale is responsible for 
image reconstruction. This reconstruction ob-
jective greatly reduces the complexity and run-
ning time of training, compared to the GAN ob-
jective. However, the reconstruction objective 
also exacerbates the output quality. Therefore, 
to solve this problem, we further utilize simple 
random pixel shuffing, which also gives con-
trol over manipulation, inspired by the Denois-
ing Autoencoder. With quantitative evaluation, 
we show that SinIR has competitive performance 
on various image manipulation tasks. Moreover, 
with a much simpler training objective (i.e., re-
construction), SinIR is trained 33.5 times faster 
than SinGAN (for 500 × 500 images) that solves 
similar tasks. Our code is publicly available at 
github.com/YooJiHyeong/SinIR. 

1. Introduction 
Researchers in image processing have increasing interests in 
deep internal learning, which can solve image manipulation 
problems by training a model on one single image and 
not relying on a large-scale dataset. Training on a single 
image is plausible as the statistics of a single image have 
abundant information that can be used as a powerful prior 
for solving various problems (Shaham et al., 2019). Internal 
learning has long been employed in prior work even before 
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deep learning became popular, proving internal approaches 
can be successfully applied to several image manipulation 
tasks (e.g., super-resolution (Glasner et al., 2009), editing 
(He & Sun, 2012), dehazing (Bahat & Irani, 2016), texture 
synthesis (Efros & Leung, 1999), and segmentation (Bagon 
et al., 2008)). 

Recently, several deep internal learning methods (Shocher 
et al., 2018) are proposed and achieve remarkable perfor-
mance that is comparable to that of external methods trained 
on large-scale datasets. For example, they solve super-
resolution (Shocher et al., 2018; Ulyanov et al., 2018; Bell-
Kligler et al., 2019), restoration (Zhang et al., 2019b; Mas-
tan & Raman, 2020), refection removal (Fan et al., 2019), 
deblur (Ren et al., 2019), segmentation and dehazing (Gan-
delsman et al., 2019), denoising, and inpainting (Ulyanov 
et al., 2018; Zhang et al., 2019a) tasks. Utilizing Genera-
tive Adversarial Networks (GAN) (Goodfellow et al., 2014), 
several approaches (Li & Wand, 2016; Jetchev et al., 2016; 
Bergmann et al., 2017; Zhou et al., 2018) solve texture gen-
eration from a single texture image. Expanding the capacity 
of GANs, InGAN (Shocher et al., 2019) and DCIL (Mas-
tan & Raman, 2020) solve retargeting with a single natural 
image. 

However, these methods have critical problems that prevent 
the practical application of deep internal learning. First, 
most of these methods are image-specifc in terms of manip-
ulation, except for MGANs (Li & Wand, 2016). This means 
that the trained models can only manipulate the training 
images, and for other images, separate models have to be 
trained. Second, most of these methods are task-specifc. 
This means that the trained models can only perform one 
specifc image manipulation. Although DIP (Ulyanov et al., 
2018), Double-DIP (Gandelsman et al., 2019), and DCIL 
(Mastan & Raman, 2020) can solve several tasks, these mod-
els can only conduct one specifc manipulation at a time. 

SinGAN (Shaham et al., 2019), one of the most recent works 
in deep internal learning, was the frst to achieve general 
image manipulation, where one trained model can solve 
various problems, including super-resolution, editing, paint-
to-image, and harmonization. SinGAN learns unconditional 
generation (i.e., mapping noise to images, not images to 
images) and then uses the generative power for image ma-
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Figure 1. General image manipulation of SinIR. SinIR is trained on a single natural image with reconstruction loss, cascaded multi-
scale learning, and random pixel shuffing. Once trained, SinIR can manipulate any image utilizing internal information learned from the 
training image. Best viewed when zoomed. 

nipulation. However, this leads to long training time (1.5 
and 4.5 hours for 250 × 250 and 500 × 500 images on RTX 
2080 Ti respectively. See Table 1). As unconditional image 
generation is a relatively diffcult problem, SinGAN uses 
a sophisticated loss function (i.e., WGAN-GP loss (Gulra-
jani et al., 2017)) for better convergence and trains multiple 
GANs for a large number of iterations. Although SinGAN 
is not an image-specifc and task-specifc framework, this 
prolonged training time still hinders practical usage of deep 
internal learning. 

In this work, we circumvent this problem with SinIR, a 
reconstruction-based framework trained on a single natural 
image for general image manipulation. Our model learns 
image reconstruction, which is a much simpler problem 
compared to the unconditional generation of SinGAN (Sha-
ham et al., 2019). This allows SinIR to achieve a vastly 
shorter training time (33.49 times faster than SinGAN for 
500 × 500 images). To this end, cascaded multi-scale 
learning is employed to learn robust cross-scale representa-
tions. However, due to the innate property of reconstruction, 
simply applying cascaded multi-scale learning leads to poor 
manipulation quality. Thus, inspired by denoising autoen-
coder (Vincent et al., 2008), we introduce random pixel 
shuffing that effectively mitigates the problem without a 
signifcant increase in computational cost. Furthermore, we 
show that random pixel shuffing gives additional control 
over manipulation. 

However, we want to make it clear that although SinIR pro-
vides a simpler solution to most of the tasks SinGAN can 
handle, SinIR cannot completely replace SinGAN. This is 
because SinIR and SinGAN show clearly different capabil-
ities for some tasks. Particularly, SinIR shows less capa-

bility for random image generation but performs well on 
photo-realistic and artistic style transfer, and vice versa. To 
our best knowledge, SinGAN is the only well-known deep 
internal learning framework that performs general image 
manipulation. Therefore, SinIR and SinGAN are compared 
to provide meaningful comparisons in solving similar tasks 
and not for the purpose of replacing the latter. Addition-
ally, recently introduced GAN-prior methods (Pan et al., 
2020; Gu et al., 2020) also tackle general image manipula-
tion. However, they are not internal learning methods, and 
their outputs are obtained directly from the given images. 
(i.e., there is no separation between training and inference 
images like SinIR and SinGAN). This results in essential 
differences in methodology and solvable tasks. 

Our main contributions can be summarized as follows. 

• To the best of our knowledge, SinIR is the frst 
reconstruction-based deep internal learning framework 
for general image manipulation. 

• By dint of a much simpler training objective (i.e., re-
construction), the training time of SinIR is vastly re-
duced compared to SinGAN (Shaham et al., 2019) that 
solves similar problems (trained 33.49 times faster for 
500 × 500 images) as discussed in Section 3.1. This 
makes deep internal learning more plausible and prac-
tical. 

• We show that random pixel shuffing enables success-
ful manipulation of SinIR. Moreover, owing to this, 
SinIR obtains additional controllability over manipula-
tion results. We give analyses with several tasks. 

• As depicted in Figure 1 and discussed in Section 3.2 
with quantitative evaluations, SinIR has competitive 
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performance for various image manipulation tasks. 
Even though SinIR is trained with a single image, it 
produces visually pleasing results comparable to those 
of dedicated methods trained on large-scale datasets. 

2. Method 
Our goal is, given one single natural image, to train a model 
for general image manipulation in a much faster way. Al-
though SinGAN (Shaham et al., 2019) solves similar prob-
lems, it suffers from prolonged training time with a complex 
GAN-based objective. Instead of using GANs, we start 
from a well-known unsupervised representation learning 
framework, autoencoders (Hinton & Salakhutdinov, 2006), 
because of its reconstruction objective that is much simpler 
than unconditional image generation. 

However, the autoencoder was originally designed to be 
trained on large-scale datasets, and when trained on a single 
image, autoencoders may learn trivial identity mapping and 
reproduce meaningless samples if random inference images 
are provided for manipulation. Thus, for our model to learn 
better representations from a single image and achieve gen-
eral image manipulation, we expand the capability of autoen-
coders with two methods: cascaded multi-scale learning 
and random pixel shuffing. 

2.1. Training 

2.1.1. CASCADED MULTI-SCALE LEARNING 

A single natural image often contains various structures 
across different scales. To successfully learn these cross-
scale visual properties, our model learns to refne a down-
sampled training image to obtain the original image in 
a cascaded manner across multiple scales. Our model 
consists of multiple networks that are responsible for re-
fnement at each scale. Outputs of each network will be 
upsampled and fed into a network at a one-level fner scale 
(thus, inputs and outputs have the same resolution, but in-
puts are blurry). The networks at coarser scales will learn 
more to refne overall structures, while networks at fner 
scales will learn more to refne detailed textures. 

Although there are subtle methodological differences, this 
multi-scale approach is a well-explored practice (Burt & 
Adelson, 1983; Denton et al., 2015; Huang et al., 2017; Chen 
& Koltun, 2017; Zhang et al., 2017; Li et al., 2017; Wang 
et al., 2018). Especially to overcome the shortage of large-
scale datasets, many deep internal learning frameworks such 
as ZSSR (Shocher et al., 2018), INGAN (Shocher et al., 
2019) and SinGAN (Shaham et al., 2019) adopted this ap-
proach. Note that SinIR’s architecture follows that of Sin-
GAN in this work for simplicity 

To train multi-scale networks, we opt for progressively grow-

ing learning (Karras et al., 2018), as it is well-known as one 
of the most typical frameworks for multi-scale learning. Pro-
gressively growing multi-scale learning is widely used by 
many image synthesis methods (Aigner & Körner, 2018; 
Karras et al., 2019; Zhang et al., 2019c; Chen & Koltun, 
2017; Qi et al., 2018), including SinGAN (Shaham et al., 
2019). They train multiple networks one by one from the 
coarsest scale while freezing previously trained networks. 
Such methods ease the diffculty of training by solving easier 
problems one by one. 

Specifcally, we downsample the training image 
and obtain ground-truth images for N + 1 scales, 
{XN , XN−1, . . . , X1} and X0 = X , where X is the 
original training image. Then, at each n-th scale, we train 
n-th network (Fn) to reconstruct the one-level fner image. 
Thus, denoting X̂ 

n = Fn(X̂ 
n+1 ↑r) and X̂ 

N = FN (XN ) 
for the coarsest scale (↑r means upsampling by a factor r), 
our objective is 

min Lrec(Xn, X̂ 
n), (1)

Fn 

where Lrec is some reconstruction loss. Once we fnish 
training one network, we freeze this network and add new 
network to be trained for a one-level fner scale. 

2.1.2. RANDOM PIXEL SHUFFLING 

Although cascaded multi-scale learning gives a great chance 
to learn cross-scale representations, it is insuffcient to 
achieve successful manipulation (see visual artifacts in the 
last row of Figure 3). This is likely because of our training 
objective, reconstruction. As aforementioned, we use out-
puts of coarser scales as inputs of fner scales in a cascaded 
manner. Thus, if outputs of coarser scales show less diver-
sity, it has the effect of showing limited variations in training 
samples to the next networks. Then it is likely that networks 
of fner scales will learn trivial or even identity mapping and 
fail to learn robust representations. In the case of GANs, this 
problem is naturally avoided as they use random noise (or 
latent code) for inputs. Besides, because of adversarial loss, 
they are less constrained in terms of outputs giving diverse 
samples, compared to the reconstruction loss. The effect 
of limited diversity is even more exacerbated when we use 
progressive growing of networks (Karras et al., 2018) for 
reconstruction because each network is trained only with 
fxed outputs from frozen networks. In other words, there is 
zero diversity in inputs of each network. 

However, this problem can be effectively mitigated with a 
simple technique inspired by denoising autoencoder (Vin-
cent et al., 2008): random pixel shuffing. An autoencoder 
may end up learning identity mapping and fail to learn 
robust representations. However, simply by imposing cor-
ruption to inputs, deterministic mapping of the autoencoder 
can be replaced with stochastic mapping, even giving the 



SinIR: Effcient General Image Manipulation with Single Image Reconstruction 

෠𝑋０

෠𝑋N

N
↑r෠𝑋

𝑋N-1

𝑋N

𝑋

෠𝑋N-1

𝑋N

F0 F0

F1

F0

FN

Input

Output

Ground
truth

Training Progress

⋯

Reconstruction
Loss

F0 F1

Random

Pixel

Shuffling
F0

↑r

↑r

⋯

෠𝑋N-1

N-1
↑r෠𝑋

෠𝑋N

𝑋N

Random

Pixel

Shuffling

Random

Pixel

Shuffling

𝑋N 𝑋N

Figure 2. Training of SinIR. We train a reconstruction network at each resolution level to refne images in a cascaded manner (Right). 
However, without random pixel shuffing, it is hard for SinIR to obtain meaningful results as explained in Section 2.1.2 and Figure 3. The 
outputs of each network are upsampled (↑r ) and used as inputs at a one-level fner scale. SinIR is trained with progressively growing 
learning (Karras et al., 2018) (Left). Please see Section 2.1 for details. Note that SinIR is fully-convolutional, and thus images of any size 
can be used for training and inference. The network details are in the supplement. 

autoencoder a generative property, although it is trained 
with reconstruction loss. With this, the network can capture 
the main variation of the images, learning robust representa-
tions. 

Noticing that the problem posed by denoising autoencoder 
is very analogous to ours, we apply a similar idea to SinIR. 
Instead of randomly setting some pixels to complete black 
as denoising autoencoder does, considering that we are us-
ing more complicated natural images, we randomly shuffe 
some pixels in the given single image so that the network 
can learn a more robust relationship between adjacent pix-
els. The effect of different types of corruption is explored 
in the supplement. But for simplicity, we use random pixel 
shuffing in this paper. 

Rows of Figure 3 illustrates the effect of random pixel shuf-
fing. When we do not use random pixel shuffing (last row), 
it shows severe artifacts that signifcantly harm manipula-
tion quality. However, when we randomly shuffe 0.05% to 
5% pixels, it shows much better manipulation quality. Inter-
estingly, depending on the percentage, SinIR produces very 
different results. This behavior has various usages, as dis-
cussed in detail later. For example, this is utilized as a tool 
to control perception-distortion tradeoff (Blau & Michaeli, 
2018) of super-resolution (Figure 8). Also, for artistic style 
transfer, this property can be used to control style-content 
tradeoff (Figure 5). It can also be used to adjust smoothness 
as it stands out in Figure 3. 

2.1.3. OPTIMIZATION 

We use the Adam optimizer (β1 = 0.5, β2 = 0.999) 
(Kingma & Ba, 2015) and the learning rate is 1e-4, unless 
mentioned otherwise. For the reconstruction loss, we use 
MSE (mean squared error) loss. However, it is well-known 
that MSE loss produces blurry images (Zhao et al., 2017), 
thus we combine MSE loss and SSIM (structural similarity) 
loss (Wang et al., 2004). Lrec in Equation 1 is 

Lrec(A, B) = MSE(A, B) + (1 − SSIM(A, B)). (2) 

2.2. Inference: General Image Manipulation 

The columns of Figure 3 depict the effect of different in-
ference starting scales. After deciding on the starting scale, 
we properly downsample and forward inference images so 
that when it reaches the top scale (n = 0), the size of the 
output becomes the same as the original. If the inference 
starting scale is close to the coarsest (n = N ), the image is 
manipulated more globally and vice versa. Thus, depend-
ing on the inference image and the starting scale, we can 
achieve general image manipulation with a single trained 
model. For example, if we feed a clip-art to coarser scales, 
it performs the paint-to-image task. If we feed a classical 
painting to the same scales, it performs artistic style transfer. 
If we feed some images to the fnest scale, it performs photo-
realistic style transfer as color and tone are manipulated. A 
similar multi-scale inference scheme can be found in WCT 
(Li et al., 2017) and SinGAN (Shaham et al., 2019), which 
also employ multi-scale learning. 
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Figure 3. Effects of percentages of randomly shuffed pixels and different inference starting scales. Each row and column corre-
sponds to different percentages and different inference starting scales. Also, note when we do not shuffe pixels of the training image, 
speckle-like or pecky stains are observed in manipulated inference images. This is not desirable as it hampers better refection of original 
textures from the training image. On the other hand, when we randomly shuffe some pixels, such artifacts are effectively reduced. See 
Section 2.1 and 2.2 for details. 

Table 1. Comparative analysis of training time. All results are 
obtained by averaging ten rounds on a single NVIDIA RTX 2080 
Ti GPU. 

Image size SinIRSinGAN Speedup(# scales) (Ours) 

125px (8) 36m 29s 1m 53s ×19.37 
250px (11) 90m 39s 3m 39s ×24.84 
500px (13) 267m 57s 8m 0s ×33.49 

3. Experiments 
All experiments are conducted on the same machine with 
a single NVIDIA RTX 2080 Ti GPU. For a fair compari-
son, in the same way with SinGAN (Shaham et al., 2019), 
we set scale factor r closely to 4/3, minimum and maxi-
mum dimension to 25px, 250px, and the number of scale 
N + 1 is calculated from these parameters. Note that the 
maximum dimension constraint of SinGAN (250px) due 
to impractically long training time can be greatly relieved 
by SinIR’s faster training speed (Table 1). Moreover, for 
the same reason, all results from SinIR in this section are 
obtained in a few minutes. In terms of iteration number, 
SinIR requires much fewer iterations as its training objec-
tive (i.e., reconstruction) is much simpler than unconditional 
image generation. Thus, SinIR is trained for 500 iterations 
at every scale, whereas SinGAN is trained for 6,000 itera-
tions at every scale following the authors’ best practice. For 
example, when we have 10 scales, SinGAN is trained for 
60,000 iterations, and SinIR is trained for 5,000 iterations. 
As explained in Section 1, although comparisons are mainly 

Table 2. Results of the user study. The numbers indicate prefer-
ence rates. Photo ST and Artistic ST means photo-realistic and 
artistic style transfer. 

SinIR (Ours) SinGAN Indecisive 

Photo ST 90.00% 6.75% 3.25% 
Artistic ST 76.95% 18.70% 4.35% 
Paint-to-image 
Editing 
Harmonization 

64.50% 
51.25% 
56.90% 

28.00% 
37.00% 
33.33% 

8.50% 
11.75% 
9.76% 

conducted with SinGAN (Shaham et al., 2019), this does not 
mean SinIR can completely replace SinGAN. The percent-
age of random pixel shuffing is set to 5e-4. For resampling, 
a bicubic kernel is used. 

3.1. Analysis 

Table 1 shows the training time of SinIR and SinGAN (Sha-
ham et al., 2019). SinIR is trained 24.84 times faster com-
pared to SinGAN, with 250 × 250 images, which is the 
maximum dimension of training images presented in Sin-
GAN paper. Moreover, SinIR is trained 33.49 times faster 
with 500×500 images. Owing to these results, SinIR makes 
deep internal learning for general image manipulation more 
plausible and practical. 

3.2. Applications 

We explore the capacity of SinIR for various image manipu-
lation tasks. Inference images are not limited to 250px. All 
dedicated methods used for comparisons are not internal 
learning methods, thus require large-scale datasets. More 
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Figure 4. Visual results of Photo-realistic Style Transfer. DPST and WCT2 are the results from (Luan et al., 2017) and (Yoo et al., 
2019). 

SinGAN Johnson et al.ContentStyle

0.5% / 250 px 5% / 250 px0.5% / 500 px 5% / 500 px(trained on large-
scale datasets)

SinGAN PerceptualContentStyle SinAE (Ours)

SinIR (Ours)

Figure 5. Visual results of Artistic Style Transfer. The numbers below the results of SinIR indicate the percentages of randomly shuffed 
pixels and the maximum dimension of the training image. These results show that SinIR has control over manipulation using random pixel 
shuffing. The inference starting scale for all SinIR results is n = N − 4. Note that Johnson et al. (Johnson et al., 2016) is a dedicated 
method trained externally. Best viewed when zoomed in. 

results are included in the supplement. For application, a 
SinIR model is trained on an image with desired textures 
(e.g., style image for style-transfer), and then inference im-
ages (e.g., content image for style-transfer) are fed to this 
model for manipulation. 

Photo-realistic Style Transfer. Photo-realistic style 
transfer demands strict preservation of the original con-
tent while transferring the color and tone of a given style 
image. To this end, we feed content images to fner scales 
so that the model does not manipulate overall structures 
except for the color and tone. In Figure 4, we can observe 
that SinIR successfully transfers color and tone while not 
touching structures. On the other hand, SinGAN shows less 
capability for photo-realistic style transfer. For quantitative 
evaluation, we conducted a user study using randomly sam-
pled images from a dedicated dataset provided by (Luan 

et al., 2017). We showed 20 samples of SinIR and SinGAN 
to 20 subjects experienced in computer vision and asked 
to choose better samples. The preference rate of SinIR in 
Table 2 was signifcantly higher than that of SinGAN with 
a considerable margin of 83.25%, which aligns with the 
qualitative evaluation. 

Note that the results of SinIR are similar to those of ded-
icated methods. Moreover, to further reduce training and 
inference time, we can optionally set scale factor r to 1 and 
the number of scales to 2 or so, as we do not need manipu-
lation of overall structures. With this setting, we averaged 
10 inferences of 1024 × 1024 images. Impressively, SinIR 
took less than a second taking 0.189 s and 0.381 s for start-
ing scales n = 0 and n = 1, while WCT2 took 2.030 s 
and 4.799 s with the fastest and slowest methods. Consid-
ering WCT2 was 830 times faster than previous methods, 
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Trained on large-scale datasets Trained on a single image

SinIR (5e-3%) SinIR (5e-5%)

Figure 6. Visual results of 4X Super-resolution. SRGAN (Ledig et al., 2017) and EDSR(Lim et al., 2017) are dedicated methods trained 
on large-scale datasets. See Section 3.2 for detailed analysis. Best viewed when zoomed in. 

this result makes SinIR close to state-of-the-art, achieving 
real-time photo-realistic style transfer. However, the best 
scenarios for each method may be different. SinIR may be 
preferred when real-time inference with a fxed style is de-
sirable and training samples are limited. In contrast, WCT2 
may be preferred when training on large-scale datasets is 
feasible and transferring arbitrary styles is required. 

Artistic Style Transfer. Artistic style transfer requires 
the successful blending of style and content. As Figure 5 
shows, SinIR is able to produce visually pleasing results, 
successfully blending the style and the content. Also, SinIR 
has additional controllability over manipulation results by 
adjusting the percentage of randomly shuffed pixels, as 
explained in Section 2.1.2 and Figure 3. In particular, when 
we increase the percentage, the given style is more aggres-
sively blended, and vice versa (0.5% vs. 5% in Figure 5). 
If users want to transfer larger textures, a larger maximum 
dimension of the training images may be preferred (250px 
vs. 500px in Figure 5. Please zoom and see the blob-like 
textures which became larger, for example). This option is 
less feasible with SinGAN (Shaham et al., 2019), because it 
requires greatly prolonged training time with larger maxi-
mum dimension (e.g., 4.5 hours for 500 × 500 images. See 
Section 3.1 and Table 1). Also, SinGAN shows less capa-
bility on this task, obtaining heavily distorted images or 
limited difference from the content image. For quantitative 
evaluation, we created 20 samples from SinIR and SinGAN 
using images collected from the Web and showed them to 23 
subjects experienced in computer vision. Aligning with our 
qualitative evaluation, the preference rate of SinIR was sig-
nifcantly higher than that of SinGAN with a considerable 
margin of 58.26% (Table 2). 

Super-resolution. For super-resolution, we need to refne 
detailed textures, but overall structures should largely re-
main unchanged as it would otherwise lead to unnecessary 
distortion and poor quality. For this reason, SinIR generally 
shows better performance with fewer scales. For example, 
we train SinIR using 2 scales with a scale factor of 2. In-

Table 3. Results of 4X Super-resolution on the BSD100 bench-
mark. The percentages of randomly shuffed pixels of SinIR in 
parentheses. For example, SinIR (5e-2) means 0.05% of pixels are 
shuffed during training. 

MS-
SSIM↑ SSIM↑ RMSE↓ NIQE↓ 

SRGAN 
EDSR 

0.933 
0.963 

0.640 
0.743 

16.33 
12.29 

3.407 
6.498 

SinGAN 0.913 0.612 16.21 3.709 

SinIR (5e-1) 
SinIR (5e-2) 
SinIR (5e-3) 
SinIR (5e-4) 
SinIR (5e-5) 

0.915 
0.920 
0.918 
0.917 
0.916 

0.635 
0.632 
0.623 
0.621 
0.619 

16.28 
16.56 
17.14 
17.23 
17.34 

4.155 
3.647 
3.410 
3.402 
3.409 

stead, we set the number of kernels to 256, the iteration 
number at each scale to 1000 (2000 iterations in total), and 
the learning rate to 0.001 so that the overall model can still 
be trained suffciently with enough capacity. Also, anti-
aliasing is recommended when downsampling the training 
image to suppress undesirable artifacts that may lead to 
critical degradation in case of super-resolution. During in-
ference, similarly to SinGAN (Shaham et al., 2019), the last 
network is used for all scales as it better handles detailed 
textures. The LR image is properly upsampled before it is 
fed to the model to obtain the fnal HR image with the target 
size. 

Table 3 shows 4X super-resolution scores using BSD100 
dataset (Martin et al., 2001), in terms of distortion (RMSE, 
SSIM, and MS-SSIM) and perception (NIQE) quality. 
These are two conficting criteria for super-resolution often 
found in a trade-off relationship (Blau & Michaeli, 2018). 
In general, SinIR shows better perceptual scores that are 
similar to or even better than SRGAN (Ledig et al., 2017) 
that is externally trained on a large-scale dataset. Compared 
to SinGAN (Shaham et al., 2019) that is also trained on a sin-
gle image, SinIR shows better perceptual quality. In terms 
of distortion score, SinIR was slightly better in MS-SSIM 
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(Trained on large-scale datasets)

Figure 7. Visual results of Paint-to-image (Top), Editing (Middle. Edited region in a square), and Harmonization (Bottom. Pasted 
objects in circles). Deep Harmonization indicates Deep Paint Harmonization (Luan et al., 2018), a dedicated external method. 
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Figure 8. Controllability over perception-distortion trade-off 
(Blau & Michaeli, 2018) of SinIR. As the percentage of randomly 
shuffed pixels increases, it shows less distortion but worse percep-
tual quality, vice versa. The numbers indicate the percentage of 
randomly shuffed pixels during training. 

and SSIM and slightly inferior in RMSE than SinGAN. 

Interestingly, by adjusting the percentage of randomly shuf-
fed pixels during training (Section 2.1.2), the perception-
distortion trade-off can be controlled to some extent by 
SinIR. When we increase the percentage, the distortion 

score improves while the perception score becomes worse, 
and vice versa, as depicted in Figure 8. 

Paint-to-Image. Paint-to-image aims to obtain natural-
looking images from simple drawings. As shown in the frst 
row of Figure 7, SinIR produces naturally textured images 
using the visual characteristics of the training image. For 
quantitative evaluation, we collected images from the Web 
and created simple drawings to obtain 20 samples from 
SinIR and SinGAN (Shaham et al., 2019). Then we showed 
them to 20 subjects experienced in computer vision and 
asked them to choose better results. SinIR was preferred to 
SinGAN with a margin of 36% as shown in Table 2. 

Editing. For this task, we aim to obtain natural-looking 
images from edited images by blending an edited region 
with adjacent parts. We frst manipulate edited images from 
SinIR, then combine them with the original using masks like 
SinGAN (Shaham et al., 2019). The second row of Figure 
7 shows that SinIR obtains visually consistent results. For 
quantitative evaluation, we created 20 edited images from 
the images collected from the Web. Then we showed the 
results of SinIR and SinGAN to 20 subjects, and SinIR was 
preferred to SinGAN with a margin of 14.25%. 
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Harmonization. Image harmonization aims at the natural 
blending of pasted alien objects and original images. We 
manipulate edited images and combine them with the origi-
nal using masks like SinGAN (Shaham et al., 2019). The 
last row of Figure 7 shows that the results of SinIR are com-
parable to those of SinGAN and Deep Paint Harmonization 
(Luan et al., 2018), a dedicated method. We conducted a 
user study using randomly sampled images from a dedi-
cated dataset provided by (Luan et al., 2018). We showed 
20 samples to 21 subjects experienced in computer vision. 
As Table 2 shows, SinIR was preferred to SinGAN with a 
margin of 23.57%. 

4. Discussion 
We introduce SinIR, an internal learning framework trained 
on a single image for general image manipulation. SinIR 
learns reconstruction instead of utilizing the adversarial loss 
in SinGAN (Shaham et al., 2019). Owing to this, SinIR 
is trained much faster (Table 1). However, to obtain visu-
ally pleasing manipulation results, we need to train SinIR 
with cascaded multi-scale learning and random pixel shuf-
fing. Especially, random pixel shuffing is necessary as our 
training objective is reconstruction. Achieving general im-
age manipulation with reduced training time, SinIR makes 
the real-world application of deep internal learning more 
practical with faster training speed and better visual results. 

For future work, although we used progressively growing 
learning (Karras et al., 2018) for multi-scale learning as it 
is a well-known technique, more dedicated methods can be 
explored. Also, while we use only one training image in 
this work, the effect of training with multiple images can 
be further explored. Effective methods to handle extreme 
cases where there are fewer internal references in training 
images can be explored. Lastly, considering recent fndings 
on memorization and generalization of neural networks with 
experiments with a single image (Zhang et al., 2020), we 
fnd that sophisticated corruption techniques as in (Yu et al., 
2019) and (Krull et al., 2019) can be considered instead 
of simple random pixel shuffing for more robust texture 
transfer. 
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