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Abstract

Likelihood is a standard estimate for outlier de-
tection. The specific role of the normalization
constraint is to ensure that the out-of-distribution
(OOD) regime has a small likelihood when sam-
ples are learned using maximum likelihood. Be-
cause autoencoders do not possess such a pro-
cess of normalization, they often fail to recognize
outliers even when they are obviously OOD. We
propose the Normalized Autoencoder (NAE), a
normalized probabilistic model constructed from
an autoencoder. The probability density of NAE
is defined using the reconstruction error of an
autoencoder, which is differently defined in the
conventional energy-based model. In our model,
normalization is enforced by suppressing the re-
construction of negative samples, significantly im-
proving the outlier detection performance. Our
experimental results confirm the efficacy of NAE,
both in detecting outliers and in generating in-
distribution samples.

1. Introduction

An autoencoder (Rumelhart et al., 1986) is a neural network
trained to reconstruct samples from a training data distri-
bution. Since in principle the quality of reconstruction is
expected to be poor for inputs that deviate significantly from
the training data, autoencoders are widely used in outlier
detection (Japkowicz et al., 1995), in which an input with a
large reconstruction error is classified as out-of-distribution
(OOD). Autoencoders for outlier detection have been ap-
plied in domains ranging from video surveillance (Zhao
et al., 2017) to medical diagnosis (Lu & Xu, 2018).

However, autoencoders have been known to reconstruct
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Figure 1. Examples of reconstructed outliers. The last two rows
show the reconstructions from a conventional autoencoder (AE)
and NAE. Both autoencoders are trained on MNIST, and other
inputs are outliers. The architecture of the two autoencoders is
identical. Successful detection of an outlier is highlighted with blue
solid rectangles, while detection failures due to the reconstruction
of outliers are denoted with an orange dotted rectangle. Note that
AE is not the identity mapping, as it fails to reconstruct the shirt.

outliers consistently across a wide range of experimental
settings (Lyudchik, 2016; Tong et al., 2019; Zong et al.,
2018; Gong et al., 2019). We name this phenomenon outlier
reconstruction. Figure 1 shows examples of some outliers
reconstructed by an autoencoder trained with MNIST data;
the autoencoder is able to reconstruct a wide range of OOD
inputs, including constant black pixels, Omniglot charac-
ters, and fragments of MNIST digits. The early works on
regularized autoencoders (Vincent et al., 2008; Rifai et al.,
2011; Ng et al., 2011) focus for the most part on preventing
the autoencoder from turning into the identity mapping that
reconstructs every input. Nonetheless, outlier reconstruc-
tion can still occur even when the autoencoder is not the
identity as shown by the non-identity autoencoder in Figure
1. Not surprisingly, outlier reconstruction is a leading cause
of autoencoder’s detection failure.

On the other hand, in a normalized probabilistic model, it
is known that maximum likelihood learning suppresses the
assignment of probability mass in OOD regions in order to
keep the model normalized. Thus, the likelihood is widely
used as a predictor for outlier detection (Bishop, 1994).
Meanwhile, an autoencoder is not a probabilistic model
of the data and does not have a suppression mechanism
corresponding to the normalization in other probabilistic
models. As a result, the reconstruction of outliers are not
inhibited during training of an autoencoder.

This paper formulates an autoencoder as a normalized prob-
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abilistic model to introduce a mechanism for preventing
outlier reconstruction. In our formulation, which we call the
Normalized Autoencoder (NAE), the reconstruction error
is re-interpreted as an energy function, i.e., the unnormal-
ized negative log-density, and defines a probabilistic model
from an autoencoder. During maximum likelihood learning
of NAE, outlier reconstruction is naturally suppressed by
enforcing the normalization constraint, and the resulting au-
toencoder is significantly less prone to reconstruct outliers,
as shown in Figure 1.

In each training iteration of NAE, samples generated from
the model is used to update the normalization constraint
which is implicitly computed as in other energy-based mod-
els. Since running a Markov Chain Monte Carlo (MCMC)
sampler until convergence every iteration is computation-
ally infeasible, an approximate sampling strategy has to
be employed. We observe that training with popular sam-
pling strategies such as Contrastive Divergence (CD; Hinton
(2002)) and Persistent CD (PCD; Tieleman (2008)) may
often produce poor density estimates. Instead, we propose
on-manifold initialization (OMI), a method of initializing
an MCMC chain on manifold defined by the decoder of an
autoencoder. OMI selects high-model-density initial states
by leveraging the assumption that points on the decoder
manifold typically have small reconstruction error, i.e. high
model density. With OMI, NAE can accurately recover the
data density and thus become an effective outlier detector.

Intriguingly, although technically a normalized probabilis-
tic model, the variational autoencoder (VAE; Kingma &
Welling (2014)) also reconstructs outliers and assigns a spu-
riously high likelihood on OOD data (Nalisnick et al., 2019;
Xiao et al., 2020) for reasons that are as-yet unclear.

Our main contributions can be summarized as follows:

* We propose NAE, a novel generative model constructed
from an autoencoder;

* We propose OMI, a sampling strategy tailored for NAE;

* We empirically show that NAE is highly effective for
outlier detection and can perform other generative tasks.

Section 2 provides brief background on autoencoders and
energy-based models. NAE is described in Section 3, and
OMI is described in Section 4. Related works are re-
viewed in Section 5. Section 6 presents experimental re-
sults. Section 7 provide discussions and conclude the pa-
per. Our source code and pre-trained models are publicly
available online at https://github.com/swyoon/
normalized-autoencoders.

2. Background
2.1. Autoencoders

Autoencoders are neural networks trained to reconstruct
an input datum x € X C RP=. For an input x, the qual-
ity of its reconstruction is measured in reconstruction error
lg(x), where 6 denotes parameters in an autoencoder. The
loss function of an autoencoder Lag for training is the ex-
pected reconstruction error of training data. Gradient de-
scent training is performed via computing the gradient of L
with respect to model parameters 6:

LAE = ]Exwp(x) [le (X)]a (1)
vF)LAE = ]Exmp(x) [VGIQ (X)]7 (2)

where Vy is the gradient operator with respect to 6 and p(x)
denotes the data density.

Architecture An autoencoder consists of two submodules,
an encoder and a decoder. An encoder f,(x) : RPx — RP=
maps an input x to a corresponding latent representation
vector z € Z C RP=, and a decoder f4(z) : RP= — RDP=
maps a latent vector z back to the input space. Then, the
reconstruction error ly(x) is given as:

lp(x) = dist(x, fa(fe(x))), 3)

where dist(-,-) is a distance-like function measuring
the deviation between an input x and a reconstruction
fa(fe(x)). A typical choice is the squared L? distance,
ie., dist(x1,x2) = ||x1 — x2||3. Other possible choices
include L' distance, dist(x1,%x2) = |x; — X2, and the
structural similarity (SSIM; Wang et al. (2004); Bergmann
et al. (2018)).

Note that the reconstruction error (Eq. (3)) is not a like-
lihood of a datum, and therefore the minimization of the
reconstruction error does not correspond to the maximiza-
tion of the likelihood. Without modification, an autoencoder
per se is not a probabilistic model.

Outlier Detection A datum is an outlier or called OOD if
it lies in the p-sublevel set of a data density {x|p(x) < p}
(Steinwart et al., 2005). We particularly focus on p = 0,
where an outlier is defined as an input from the outside of
the data distribution’s support. Most of the OOD examples
which attract the attention of the research community are
in fact out-of-support samples. For example, SVHN and
CIFAR-10 are out-of-support to each other, as confirmed
by a supervised classifier perfectly discriminating the two
datasets. Note that the support-based definition provides
invariant characterization of outliers, as no invertible trans-
form defined on the data space alters whether a sample is in-
or out-of-support. Meanwhile, for p # 0, the characteriza-
tion of outliers are not invariant to the choice of coordinates
Lan & Dinh (2020).
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In the autoencoder-based outlier detection (Japkowicz et al.,
1995), an input is classified as OOD if its reconstruction
error lg(x) is greater than a threshold 7: ly(x) > 7. The
outlier reconstruction indicates that there exists an input x*
with p(x*) < p, but ly(x*) < 7. Appendix includes the
detailed investigation on outlier reconstruction.

2.2. Energy-based Models

Unlike autoencoders, energy-based models (EBMs) are
valid models for a normalized probability distribution. The
EBM represents a probability distribution through the un-
normalized negative log probability, also called the energy
function Fy(x). Here, 0 denotes the model parameters.

For a continuous input x € X C RPx, Fy(x) defines the
model density function py(x) through Gibbs distribution:

po(x) = Qie exp(—Ey(x)/T), 4

where T' € R is called the temperature and is often ignored
by setting T" = 1. )y is the normalization constant and is
defined as:

Qp = /X exp(—Fy(x)/T)dx < oo. )

The computation of € is usually difficult for high-
dimensional x. However, maximum likelihood learning
can still be performed without the explicit evaluation of 2.
The gradient of negative log likelihood of data is given as
follows (Younes, 1999):

Exp(x)[— Vo log pa(x)]
=Exnp(x)[VoLo(x)]/T + Vg log Qp (6)
=Esp() [VoEo(x)]/T — Exr oy (x) Vo Eo(X)] /T (7)

Vi log Qy in Eq. (6) is evaluated from the energy gradients
of samples x’ generated from the model in Eq. (7). The
samples from py(x) are often called “negative” samples.
The derivation of Eq. (7) is provided in Appendix.

In Eq. (7), the first term decreases the energy of the training
data, or “positive” samples, while the second term increases
the energy of the generated samples, or “negative” samples.
The training converges when py(x) becomes identical to
p(x), as the two gradient terms cancel out. In practice, the
two expectations in Eq. (7) are approximated with a mini-
batch of samples during each iteration. Figure 2 visualizes
the gradients in Eq. (7).

Langevin Monte Carlo (LMC) The negative samples are
generated using MCMC. LMC (Parisi (1981); Grenander
& Miller (1994)) is a simple yet effective MCMC method
used in recent work on deep EBMs (Du & Mordatch, 2019;
Grathwohl et al., 2020; Nijkamp et al., 2019). In LMC, a
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Figure 2. An illustration of the energy gradients in Eq. (7). The
red and blue shades represent the model and the data density,
respectively. The gradient update following Eq. (7) increases the
energy of samples from py(x) (the red dots) and decreases the
energy of training data (the blue crosses).

starting point X is drawn from a noise distribution pg(x),
typically a Gaussian or uniform distribution. Starting from
X, a Markov chain evolves as follows:

Xi41 = X + A Vi log pg(x¢) + oxey, (¥

where ¢, ~ AN(0,I). Ay and oy are the step size and
the noise parameters, respectively. A theoretically moti-
vated choice is 2\x = 0,2(, but the parameters are often
tweaked separately for better performance (Du & Mordatch,
2019; Grathwohl et al., 2020; Nijkamp et al., 2019). As
Vi logpe(x) = —VxE(x)/T, tweaking the step size can
be seen as adjusting the temperature 7.

To ensure the convergence of the chain, either Metropolis-
Hastings rejection (Roberts et al., 1996) or annealing of
the noise parameter to zero (Welling & Teh, 2011) may be
employed, but often omitted in practice.

We discuss specific strategies to evaluate the second term in
Eq. (7) in Section 4. For a comprehensive review on various
strategies for training an EBM, readers may refer to Song &
Kingma (2021).

3. Normalized Autoencoders
3.1. Definition

We propose Normalized Autoencoder (NAE), a normal-
ized probabilistic model defined from an autoencoder. The
probability density of NAE py(x) is defined as a Gibbs
distribution (Eq. (4)) the energy of which is defined as the
reconstruction error of an autoencoder:

Ep(x) = lg(x). 9

Thus, the model density of NAE is given as

1
Po(x) = ¢ exp(—lo(x)/T), (10)
where €y is defined as in Eq. (5). Due to the normalization
constant, py(x) is a properly normalized probability density.

As a probabilistic model, NAE is trained to maximize the
likelihood of data. The loss function to be minimized is the
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negative log-likelihood of data:

Exwp(x) [7 log Do (X)] = Exmp(x) [lg (X)}/T + log Q.
(11)

The gradient for the negative log-likelihood is evaluated as
in conventional EBMs (Eq. (7)).

Exnp() [~V log po(x)]
= Exop(x0)[Volo (X)) /T — Exr oy 0 [ Vol (x)]/T. (12)

Therefore, each gradient step decreases the reconstruction
error of training data x, while increasing the reconstruction
error of negative samples x’ generated from pg(x).

3.2. Remarks

Normalization as Regularization In NAE, enforcement
of normalization can be viewed as a regularizer for the
reconstruction loss (1). A typical formulation for a regu-
larized autoencoder is given as L = Lag + Ly, Where
Ly is a regularizer. By setting the loss function of NAE as
L = TEyp(x)[— log pe(x)], we have L = Lag+T log Q.
Therefore, the normalization constant contributes as a regu-
larizer: Ly = T log (2.

Suppression of Outlier Reconstruction During the train-
ing of NAE, the reconstruction of an outlier is inhibited by
enforcing the normalization constraint. Given a successful
sampling process, the negative samples should cover all high
density regions of pg(x). A sample from a high density re-
gion of py(x) has a low ly(x) by definition (Eq. (9)). Hence,
if there exist a reconstructable outlier, which has high py(x)
due to low ly(x), it will appear as a negative sample from
MCMC. As the gradient update given in Eq. (12) increases
the reconstruction error of negative samples, the reconstruc-
tion quality of a reconstructable outlier will be degraded. As
a result, the reconstruction error of NAE becomes a more
informative predictor that discriminates outliers from inliers
than that of a conventional autoencoder.

Outlier Detection with Likelihood NAE bridges the two
popular outlier detection criteria, namely, the reconstruction
error (Japkowicz et al., 1995) and the likelihood (Bishop,
1994). The reconstruction error criterion classifies an in-
put with a large reconstruction error as OOD lg(x) > T,
whereas the likelihood criterion predicts an input as an
outlier if the log-likelihood is smaller than the threshold
logpg(x) < 7'. These two criteria are equivalent in
NAE for appropriately set 7 and 7/, as the reconstruc-
tion error and the log-likelihood has a linear relationship:
logpg(x) = —lp(x) — log Q. Note that the two criteria
rarely coincide in other models, for example, denoising au-
toencoders (DAE, Vincent et al. (2008)), VAE (Kingma &
Welling, 2014)), and DSEBMs (Zhao et al., 2016), caus-
ing confusion on which of the decision rules should be
employed for outlier detection.
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Figure 3. Density estimates and negative samples from NAEs
trained by various approximate sampling methods. The gener-
ated samples (blue dots) are visualized along with the true density,
a 2D mixture of 8 Gaussians. The data density is depicted in Figure
5. CD: The learned density has a spurious mode, marked by an ar-
row. The black crosses denote training data. PCD without restart:
The highly correlated samples result in an oscillating density es-
timate. PCD with restart: Despite the good quality of sampling,
the density is poorly estimated. On-manifold: Both density esti-
mation and sample generation are performed well. More details
are specified in Section 4.1 and Section 6.2.

Sample Generation Samples from py(x) are generated
through MCMC. Unlike VAE, the forward pass of a de-
coder should not be considered as sample generation.

4. On-Manifold Initialization

The main challenge in the training of NAE through Eq. (12)
is that each iteration requires negative sample generation
using MCMC, which is computationally expensive. In this
section, we first discuss the failure modes of popular approx-
imate sampling strategies for EBMs, namely Contrastive
Divergence (CD; Hinton (2002)) and Persistent CD (PCD;
Tieleman (2008)). We argue that the method on how the
initial state of MCMC is chosen have incurred such failure
modes. Then, we propose on-manifold initialization, an ap-
proximate sampling strategy effective in training the NAE.
On-manifold initialization provides a better initial state for
MCMC by leveraging the structure of an autoencoder.

There exist other training methods for EBMs which do
not rely on MCMC, for example denoising score matching
(Vincent, 2011) or noise contrastive estimation (Gutmann &
Hyvirinen, 2010), and they may also be applicable to NAE.
We leave application of such methods on NAE as future
work.

4.1. Failure Modes of CD and PCD

Failure Mode of CD CD, often called CD-k, draws a nega-
tive sample by first initializing a Markov chain of MCMC
at a training data point, then proceeding k steps of MCMC
transitions. The strength of CD is that the number of steps k
can be radically smaller, e.g., & = 1, than the usual number



Autoencoding Under Normalization Constraints

of steps required in a convergent MCMC run, significantly
reducing the amount of computation.

However, when £ is small, CD-k is not able to suppress a
spuriously high mode in the model density pp(x) located far
from the data distribution p(x), because negative samples
are only generated in the vicinity of training data. Figure 3
shows an instance of a spurious mode in the model density.
Negative samples (blue dots) are close to training data (black
crosses) so that they do not reach for the density mode in
the middle. As a result, the mode is not suppressed. Such a
spurious mode will result in outlier detection failures and,
in case of NAE, reconstructed outliers. The possibility of
accidentally assigning high density in the unvisited area was
acknowledged in the original article (Section 3 of Hinton
(2002)). Spurious modes are also observed in DAE, where
a corrupted datum is located only in the neighborhood of
a training data point (Alain & Bengio, 2014). Increasing k
will decrease the chance of have spurious modes, but the
computational advantage of CD will be lost when £ is large.

Failure Mode of PCD An initial state of MCMC in PCD
is given as the negative sample generated from MCMC
in the previous training iteration. PCD was originally im-
plemented using fully persistent MCMC (Tieleman, 2008).
However, without a restart, MCMC chains in a mini-batch
may become highly correlated to each other. When py(x) is
multi-modal, the correlated chains yield degenerate negative
samples which only cover a subset of density modes as in
Figure 3. The degenerate samples make the density estimate
oscillatory, slowing the convergence of the model.

The degeneracy between chains can be mitigated by ran-
domly resetting the initial state to a sample from the noise
distribution po(x) with a small probability (typically 5%)
(Du & Mordatch, 2019; Grathwohl et al., 2020). However,
learning with PCD still fails to yield an accurate density
estimate (Figure 3). This failure mode can be explained by
the study of Nijkamp et al. (2019): When a short MCMC
chain initialized from po(x) is used in training, an EBM
simply learns a flow that maps po(x) to p(x), and the energy
no longer models the data density. Using a restart drives an
EBM to become such a flow, as restarted chains are short
and start from pp(x).

In summary, CD initializes MCMC from the data distribu-
tion py(x), and PCD initializes MCMC from a noise distri-
bution po(x). The convergence of MCMC is independent of
its initialization in theory, but the initialization method can
be crucial in practice, as shown in Figure 3. When pp(x),
from which we want to sample, deviates significantly from
pe(x) or po(x), these initialization methods may lead to
a poor density estimate and a suboptimal performance in
outlier detection.
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Figure 4. An illustration of the on-manifold initialization. The one-
dimensional latent space Z and the two-dimensional input space
X are shown. The red star is the on-manifold initialized state. The
cross denotes a negative sample obtained at the end of the whole
process.

4.2. On-manifold Initialization

We propose on-manifold initialization (OMI), a novel
MCMC initialization strategy which eventually leads to
a significantly better density estimate. We aim to initialize a
MCMC chain from a high-density region of py(x) instead
of po(x) or p(x). While finding a high-density region given
an energy function is difficult in general, it is possible for
NAE’s distribution, since we can exploit the structure of an
autoencoder. For a sufficiently well-trained autoencoder, a
point with high pp(x), i.e., a small reconstruction error, will
lie near the decoder manifold, which we define as:

M= {x|x = f4(z),z € Z}. (13)

In on-manifold initialization, we initialize MCMC from a
point in the decoder manifold xq € M.

Not all points in M have high py(x). To find points with
high py(x), we run a preliminary MCMC named as latent
chain in the latent space Z. The latent chain generates a
sample from on-manifold density qy(z) defined from on-
manifold energy Hy(z).

(2) =~ exp(~Ho(2)/ 1) (14)
Hy(z) =FEy(fa(2)), (15)

where ¥y = [exp(—Hy(z)/T,)dz is the normalization
constant and 7T, is the temperature. A latent vector x with a
small Hy(z) will result in a small Ep(x) when it is mapped
to the input space by x = f4(z). Thus, Hy(z) guides the
latent chain to find z which produce xy € M which has a
small energy, i.e., a small reconstruction error.

Similarly to Eq. (8), we use LMC to run the latent chain.
An initial state zg is drawn from a noise distribution defined
on the latent space. Then the state propagates as:

Zep1 = 2t + A\ V5108 qo(2¢) + 0464, (16)

where )\, and o, are the step size and the noise parameters
as in Eq. (8). A sample replay buffer (Du & Mordatch,
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2019) is applicable in the latent chain. Figure 4 illustrates
negative sample generation process using the on-manifold
initialization. We also write the process as an algorithm in
Appendix.

5. Related Work

Autoencoders There have been several attempts to formu-
late a probabilistic model from an autoencoder. VAE uses a
latent variable model by introducing a prior distribution p(z).
However, the prior may deviate from the actual distribution
of data in Z, which may cause problems. GPND (Pidhorskyi
et al., 2018) models probability density by factorizing into
on- and off-manifold components but still requires a prior
distribution. M-flow (Brehmer & Cranmer, 2020) only de-
fines a probability density on the decoder manifold and does
not assign a likelihood to off-manifold data. DAE models
a density by learning the gradient of log-density (Alain &
Bengio, 2014).

MemAE (Gong et al., 2019) is a rare example that directly
tackles the outlier reconstruction problem. MemAE em-
ploys a memory module that memorizes training data to
prevent outlier reconstruction, but in this case, the recon-
struction error for an inlier can be large because the model’s
generalization ability is also limited.

Design of Energy Functions Specifying the class of Fy(x)
not only has computational consequences but alters the in-
ductive bias that an EBM encodes. Feed-forward convolu-
tional networks are used in Xie et al. (2016), Du & Mor-
datch (2019) and Grathwohl et al. (2020) and are shown to
effectively model the distribution of images. The energy
can also be modeled in an auto-regressive manner (Nash &
Durkan, 2019; Meng et al., 2020). Auto-regressive energy
functions are very flexible and thus are capable of model-
ing high-frequency patterns in data. VAEBM (Xiao et al.,
2021) combines VAE and a feed-forward EBM to model
complicated data distribution.

The reconstruction error of an autoencoder is used as a
discriminator in EBGAN (Zhao et al., 2016). Although
the reconstruction error was called “energy” in EBGAN,
the formulation is clearly different from NAE. EBGAN
does not utilize Gibbs distribution formulation (Eq. (4))
to model a distribution, and samples are generated from a
separate generator network. In DSEBM (Zhao et al., 2016),
the difference between an input and its reconstruction is
interpreted as the gradient of log-density.

6. Experiments

6.1. Technicalities for NAE Training

Pre-training as a Conventional Autoencoder NAE can be
pre-trained as a conventional autoencoder by minimizing the
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Figure 5. Estimating 8 Gaussians using various autoencoders. The
density of an autoencoder (AE) is computed from Eq. (10). AE
gives a significant amount of probability to low-data-density area.
VAE also assigns some probability mass in between Gaussians.
Meanwhile, the density estimate from NAE agrees well with the
data distribution.

reconstruction error following Eq. (2), before the main train-
ing. By providing a good initialization for network weights
and the decoder manifold, pre-training greatly reduces the
number of NAE training iterations (Eq. (12)) required un-
til convergence. Pre-training is not always necessary: In
our experiments, we observe that NAE can be trained suc-
cessfully without pre-training for synthetic data. However,
pre-training was essential to obtain decent results for larger
scale data, such as MNIST and CIFAR-10.

Latent Space Structure Two configurations for the latent
space is used in experiments: the unbounded real space R”=
and the surface of a hypersphere SP=—1. When Z = RP=,
a linear layer is used as the output of an encoder. ¢o(z)
is set as (0, I). The squared norm of the latent vectors
are added to the loss function as a regularizer so that z’s
concentrate near the origin (Ghosh et al., 2020).

For the hyperspherical space Z = SP=~! (Davidson et al.,
2018; Xu & Durrett, 2018; Zhao et al., 2019), the output of
an encoder is projected to the surface of a unit ball through
the division by its norm: z < z/||z||. In Langevin dynam-
ics, a sample is projected to SP=~1 at the end of each step.
qo(2) is set to a uniform distribution on SP=~1,

The hyperspherical latent space has a few advantages over
RP=. First, it is impossible to draw uniformly random sam-
ples, because R+ is not compact. Second, for large D,, it
is difficult to draw samples near the origin, because of its ex-
ponentially decreasing volume. However, we believe more
works needs to be done to completely understand the effect
of hyperspherical geometry on the latent representation.

Regularizing Negative Sample Energy As introduced in
Du & Mordatch (2019), we regularize the energy of nega-
tive samples to prevent its divergence. We add the average
squared energy of negative sam}gles in a mini-batch to the
loss function: L = Lyag+a Y, E(x})?/B for the batch
size B and the hyperparameter ov. We set o = 1.
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Table 1. MNIST hold-out class detection AUC scores. The values in parentheses denote the standard error of mean after 10 training runs.

HoLD-0oUT: 0 1 2 3 4

5 6 7 8 9 AVG

NAE-OMI
NAE-CD .799 .098 .878 769 .656
NAE-PCD .745 114 .879 154 .690
AE .819 131 .843 134 .661
DAE 769 124 .872 .935 .884
VAE(R) .954 391 978 910 .860
VAE(L) .967 326 976 .906 798
WAE .817 .145 975 950 751
GLOW .803 .014 .624 .625 364
PXCNN++ .757 .030 .663 .663 483
IGEBM 926 401 .642 .644 .664
DAGMM .386 .304 407 435 444

.989(.002) .919(.013) .992(.001) .949.004) .949(.005) .978.003) .938(.004) .975(.024) .929(.004) .934(.005) .955

.806 .874 537 .876 .500 .679
.813 .872 .509 .902 544 .682
155 .844 .542 .902 537 677
.793 .865 .533 910 .625 731
.939 916 174 .946 721 .839
927 928 751 .935 .614 .813
.942 .853 912 .907 799 .805
561 .583 .326 721 426 .505
.642 .596 .307 .810 497 .545
752 .851 572 147 522 .672
429 446 .349 .609 420 423

6.2. 2D Density Estimation

We demonstrate the density estimation capability of NAE
with a two-dimensional mixture of 8 Gaussians. First,
we benchmark negative sample generation strategies for
NAE, including CD, PCD with and without restart, and on-
manifold initialization. The results are shown in Figure 3
and discussed in Section 4.1 in detail.

Second, we compare NAE trained with the on-manifold ini-
tialization to a conventional autoencoder and VAE (Figure
5). An autoencoder assigns high densities on regions be-
tween Gaussian modes, meaning that an autoencoder gives
a small reconstruction error from a points from the region.
For the overcomplete case (D, = 3 > Dy), an autoencoder
almost becomes the identity map, and its reconstruction
error is not an informative predictor for an outlier. VAE and
NAE learn a non-identity function under the overcomplete
setting, showing the effectiveness of their regularizers.

In the experiments, the identical network architecture is
used, and the temperature is optimized by gradient descent.
In on-manifold initialization, temperature values are shared
by the main MCMC and the latent chain. When perform-
ing MCMC in X', Metropolis-Hastings rejection is applied
to ensure the detailed balance but is not applied in the la-
tent chain. For visualization, the normalization constants
for an autoencoder and NAE are computed by numerically
integrating over the domain, [—4, 4]2.

6.3. Outlier Detection

Experimental Setting We empirically demonstrate the ef-
fectiveness of NAE as an outlier detector. In outlier detec-
tion tasks, an outlier detector is trained only using inlier
data and then asked to discriminate outliers from inliers
during test phase. Given an input, a detector is assumed to
produce a scalar decision function which indicates the out-
lierness of the input. We measure the detection performance
in AUC, i.e., the area under the receiver operating character-
istic curve. Following the protocol of Ren et al. (2019) and
Hendrycks et al. (2019), we use an OOD dataset different

from the datasets used in test phase to tune model hyper-
pamraeters. Additional details on model implementation
and datasets can be found in the supplementary material.

The identical networks architectures are used for all
autoencoder-based methods. The reconstruction error is
used as the decision function, except for VAE. For deep
generative models, PixelCNN++ (PXCNN++, Salimans
et al. (2017)), Glow (Kingma & Dhariwal, 2018) and a
feed-forward EBM (IGEBM, Du & Mordatch (2019)), we
use the negative log-likelihood (i.e., the energy) as the de-
cision function. For VAE, we show two results from using
the reconstruction error (R) or the negative log-likelihood
(L) as decision functions.

MNIST Hold-Out Class Detection One class from
MNIST is set as the outlier class and the rest as the inlier
class. Then, the procedure is repeated for all ten classes in
MNIST. ConstantGray dataset is used for model selection.

This problem is not as easy as it seems, as confirmed in
the very low performance of various algorithms in Table
1. When a class is held out from MNIST, the remaining
9 classes may contain a set of visual features sufficient to
reconstruct the hold-out class, i.e., the outlier reconstruction
occurs. The outlier reconstruction is particularly severe for
the digit 1, 4, 7 and 9, possibly because their shape can be
reconstructed from the recombination of other digits. For
example, overlapping 4 and 7 produces a shape similar to
9. Interestingly, most of the other baseline algorithms also
show poor performance when 1, 4, 7 or 9 are held out as the
outlier. NAE shows the highest AUC score for all classes
and effectively suppresses the reconstruction of the outlier
class (Figure 6).

We also compare CD and PCD along with OMI in training
NAEs. Using CD and PCD show poor outlier detection
performance, although given the identical set of MCMC
parameters.

Out-of-Distribution Detection The samples from differ-
ent datasets are used as the outlier class. We test two in-
lier datasets, CIFAR-10 or ImageNet 32x32 (ImageNet32).
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Table 2. OOD detection performance in AUC.
In: CIFAR-10 ConstantGray FMNIST SVHN CelebA Noise

NAE 963 819 920 887 1.0
AE .006 .650 175 655 1.0
DAE .001 671 175 669 1.0
VAE(R) .002 700 191 662 1.0
VAE(L) .002 767 185 684 1.0
WAE .000 .649 168 652 1.0
GLOW .384 222 260 419 1.0
PXCNN++ .000 013 074 639 1.0
IGEBM 192 216 371 477 1.0

In: ImageNet32 ConstantGray FMNIST SVHN CelebA Noise

NAE 966 994 985 949 1.0
AE .005 915 102 325 1.0
DAE .069 991 102 426 1.0
VAE(R) .030 936 132 501 1.0
VAE(L) .028 950 132 545 1.0
WAE .069 991 081 364 1.0
GLOW 413 856 169 479 1.0
PXCNN++ .000 004 027 238 1.0

Figure 6. Reconstruction examples in MNIST hold-out class de-
tection. Data and their reconstructions are shown for four difficult
hold-out settings (1, 4, 7 and 9). Digit 2 is shown as an inlier
example. The bottom two rows depict the reconstructions from
four autoencoders (AE) and four NAEs trained on each setting.
AEs reconstruct the outlier class well, while NAEs selectively
reconstruct only inliers.

Zero-padded 32x32 MNIST images are used for model
selection. Results are shown in Table 2.

It is known that constant images and SVHN images are
particularly difficult outliers for generative models trained
on a set of images with rich visual features (Nalisnick et al.,
2019; Serra et al., 2020). However, NAE detect such difficult
outliers successfully. All models are able to discriminate
noise outliers, indicating that their poor performance is not
from the failure of training.

6.4. Sample Generation

Samples are generated from NAE using MCMC with OMI.
Figure 7 shows the samples from NAEs trained on MNIST
and on CelebA 64x64. The random initial states of the
latent chain (zp) map to unrecognizable images. After
the latent chain, OMI produces somewhat realistic images.
MCMC on X refines the OMI images. Although quantita-
tive image (in Appendix) quality metric for samples gener-
ated from NAE is not on a par with that of generative models

-

w’os A
Cb3 73 7L0O
©b393720

Zp

Sample OMI

Zp

Sample OMI

Figure 7. Sampling with NAEs trained on MNIST and CelebA
64x64. (zo) The random initialization of the latent chain. We
visualize fq(zo). (OMI) Images after OMI. (Samples) Samples
obtained after MCMC starting from OMI. OMI images and Sam-
ples corresponds to the red start and the green cross in Figure 4,
respectively.

which specialize in sampling, but the generated samples are
indeed visually sensible.

7. Discussion and Conclusion

Comparison to Other EBMs NAE uses Gibbs distribu-
tion to define a density function as in other EBMs (Eq. 4).
The main difference between NAE and other EBMs is the
choice of an energy function. However, this difference re-
sults in significant theoretical and practical consequences.
First, we naturally incorporate the manifold hypothesis, i.e.
the assumption that high-dimensional data lie on a low-
dimensional manifold, into a model. Second, the energy
function of NAE can be pre-trained as a conventional au-
toencoder. Third, more effective sampling can be performed
by using OMI, leading to a more accurate density estimate.

Likelihood-based Outlier Detection and Inductive Bias
The likelihood is considered as a poor decision function for
outlier detection, after the failures of likelihood-based deep
generative models such as VAE, PixelCNN++, and Glow
(Nalisnick et al., 2019; Hendrycks et al., 2019). Those gen-
erative models fail to detect obvious outlier images which
typically have low complexity. However, we believe that the
failures should not be attributed to the use of the likelihood.
There are likelihood-based models, particularly EBMs (Du
& Mordatch, 2019; Grathwohl et al., 2020), including NAE,
that show better outlier detection performance than VAE,
PixelCNN++ and Glow. Instead, inductive bias of a gen-
erative model is likely to be responsible for the failure of
detecting low-complexity outliers. It is reported that the
likelihoods of the failed models are negatively correlated to
the complexity of images (Serra et al., 2020). Meanwhile,
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Figure 8. Sampling with randomly initialized NAE.

the reconstruction of low-complexity images are explicitly
suppressed in NAE training, as the simple images tend to
lie on the decoder manifold.

OMI in Early Stage of Training Sampling with OMI gen-
erates samples with high model density py(x) even in the
early stage of training. In fact, the early stage is where the
advantage of OMI over CD is salient, because py(x) differs
from p(x) significantly. Figure 8 visualizes samples gener-
ated via CD and OMI from a randomly initialized NAE and
shows that CD fails to draw samples from pg(x).

OMI draws high-model-density proposals because it is de-
signed to exploit the assumption that well-reconstructed
points lie on the decoder manifold. We find that this as-
sumption holds well for all experimental settings used in
the paper.

Analytic Solution for Linear Case Linear NAEs reduce to
Gaussian distributions. Consider f.(x) = Wx and f4(z) =
W Tz with W € RP=*Px_Given the squared L? distance
reconstruction error, the density of NAE is written as:

po(x) = exp(—xTE_lx/2)/Qg, 17

where ¥~ = 2(I — WTW)2/T. When the determinant
of I — W TW is non-zero, py(x) becomes a well-defined
Gaussian. Under certain conditions (see Appendix), the
maximum likelihood estimate of 3 becomes the empirical
covariance of data, as in a usual Gaussian distribution.

It is interesting to note that a linear VAE also reduces into a
Gaussian, as it is equivalent to probabilistic PCA(Kingma
& Welling, 2014). On the other hand, a linear autoencoder
is equivalent to PCA (Bourlard & Kamp, 1988), which is
not a generative model.

Conclusion We have introduced a novel interpretation of

the reconstruction error as an energy function. Our interpre-
tation leads to a novel class of probabilistic autoencoders,
which shows impressive OOD detection performance and
bridges EBMs and autoencoders.
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