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Appendix

A. Relation of Reconstructibility to Other Assumptions in the Literature
In this appendix, we compare Assumption (b), i.e., the left-invertibility of the label transition matrix T , with other
learnability/invertibility assumptions in the literature of weakly supervised learning.

A.1. Identifiability from Zhang et al. (2019)

Consider a probability distribution P (X|θ) that is parameterized by a set of parameters θ ∈ Θ. This parametric family of
distributions satisfies the identifiability condition if

∀θ1, θ2 ∈ Θ, θ1 6= θ2 =⇒ P (X|θ1) 6= P (X|θ2). (19)

In other words, if P (X|θ) is perfectly known, then the parameter θ can be uniquely identified.

Zhang et al. (2019) proved the consistency of their algorithm under several assumptions, among which the most fundamental
is identifiability of the posterior probability distributions of weak and true labels. More precisely, they assumed that for
any input pattern x ∈ X , the posterior probability distribution of true labels, P (Z|x), belongs to a parametric family of
identifiable probability distributions. Let P (Z|θ) be a distribution in that family and Θ be a set of parameters. In addition,
they also assumed that the posterior probabilities of weak labels are also identifiable; that is,

∀θ1, θ2 ∈ Θ, θ1 6= θ2 =⇒ P (Y |θ1) 6= P (Y |θ2), (20)

where P (Y = y|θ) ≡
∑
z∈Z TyzP (Z = z|θ). Note that θ is different from model parameters such as weights in neural

networks. Here, a model is a function fw : X → Θ that is parameterized by a set of network weights w. For a given input x,
it predicts a parameter θ = fw(x) and in turn the posterior probabilities P (Z|θ).

The identifiability of true label distributions is automatically satisfied by careful implementation. For example, if the
categorical posterior probabilities are expressed by using the softmax function, the choice Θ = 1⊥Z guarantees identifiability.
Therefore, we use this assumption in the discussion below.

Zhang et al. (2019) claimed that they successfully avoided relying on the existence of a left-inverse of T by resorting
to the identifiability assumptions. However, without any prior knowledge on the true posterior probability distributions,
identifiability implies the left-invertibility of T . Specifically, we can prove the following proposition.

Proposition 16. Let T be a label transition matrix. Assume that for any x ∈ X , a posterior probability distribution P (Z|x)
of true labels belongs to a parametric family {P (Z|θ) | θ ∈ Θ} of identifiable distributions. Then, the left-invertibility of T
implies the identifiability of P (Y |x), the posterior probability distribution of weak labels. Moreover, the converse also holds
if {P (Z|θ) | θ ∈ Θ} = P(Z).

Proof. Suppose that T is left-invertible. Then, it holds that

P (Z = z|θ) =
∑
y∈Y

RzyP (Y = y|θ), (21)

where R is a left-inverse of T . This implies that if P (Y |θ1) = P (Y |θ2), then P (Z|θ1) = P (Z|θ2), from which it follows
that θ1 = θ2 because of the identifiability of P (Z|θ). Therefore, Eq. (20) holds.

Conversely, suppose that P (Y |θ) is identifiable and also that {P (Z|θ) | θ ∈ Θ} = P(Z). Let θ1 and θ2 be parameters in Θ
such that θ1 6= θ2, let ∆Z(θ1, θ2) be a vector in RZ with components [∆Z(θ1, θ2)]z = P (Z = z|θ1)− P (Z = z|θ2), and
let ∆Y (θ1, θ2) be a vector in RY with components [∆Y (θ1, θ2)]y = P (Y = y|θ1) − P (Y = y|θ2). By the assumption
that {P (Z|θ) | θ ∈ Θ} = P(Z), we have that

{t∆Z(θ1, θ2) | t ∈ R, θ1 ∈ Θ, θ2 ∈ Θ} = 1⊥Z . (22)

On the other hand, by the assumption that P (Y |θ) is identifiable, for any θ1, θ2 ∈ Θ such that θ1 6= θ2, it holds that

∆Y (θ1, θ2) = T∆Z(θ1, θ2) 6= 0 and ∆Z(θ1, θ2) 6= 0. (23)
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These equations imply that ∆Z(θ1, θ2) is a nonzero vector that does not belong to the kernel of T . They also imply that any
vector in the kernel of T is perpendicular to 1⊥Z . Moreover, 1Z is not in the kernel of T : if that were the case, the uniform
distribution of true labels would be mapped to the zero vector, which does not correspond to any weak-label distribution.
Therefore, the kernel of T is {0}, which means that T is left-invertible.

This proposition suggests that the identifiability assumption is equivalent to the left-invertibility of T in cases with
{P (Z|θ) | θ ∈ Θ} = P(Z). Indeed, this is what usually happens in practice: we do not know a priori in which subset of
P(Z) the true posterior probabilities reside, and thus, it is customary to take {P (Z|θ) | θ ∈ Θ} to be P(Z) itself. We can
see from the proof above that if T is not left-invertible, then ∆Z(θ1, θ2) must lie outside the kernel of T for any θ1, θ2 ∈ Θ
in order for P (Y |θ) to be identifiable. This constraint implies that {P (Z|θ) | θ ∈ Θ} has strictly lower dimensions than
P(Z) does, which essentially means that we can exclude some of the labels in Z at the modeling step.

A.2. Non-Ambiguity Condition in Partial-Label Learning

In theoretical analyses of partial-label learning, the so-called non-ambiguity condition has been used (Cour et al., 2011;
Cabannnes et al., 2020). In this section, we discuss the relation between the non-ambiguity and the left-invertibility of T .

A partial label y ∈ Y is a candidate set of labels, only one of which is correct. Obviously, Y ⊂ 2Z \ {∅}, where 2Z is the
power set of Z . The empty set ∅ is not in Y because a partial label always contains a correct label.

Definition 17 (Non-ambiguity condition). Let P (z′ ∈ Y \ {z} | Z = z) be the probability that a partial label contains an
incorrect label z′, given a true label z. Then, the ambiguity degree ε is defined as follows3:

ε ≡ sup
z,z′∈Z,P (Z=z)>0

P (z′ ∈ Y \ {z} | Z = z). (24)

Partial labels are said to satisfy the non-ambiguity condition if ε < 1.

The ambiguity degree is the maximum probability of co-occurrence of an incorrect label z′ with a correct label z. To gain
some intuition into the ambiguity degree and the non-ambiguity condition, let us consider two extreme cases: ε = 0 and
ε = 1. The equality ε = 0 implies that a weak label y is always a singleton {z} if the correct label is z. That is, every
instance is given only the correct label, and therefore, this is equivalent to supervised learning. On the other hand, when
ε = 1 and the non-ambiguity condition is not satisfied, there is a pair of labels z and z′ in Z such that if a true label of an
instance is z, an incorrect label z′ is always given to that instance as well.

There is a simple example that does not satisfy the non-ambiguity condition but has a left-invertible label transition matrix
T . Consider a binary classification problem Z = {1, 2} with a partial label set Y = {{1}, {1, 2}}. If we identify 1 with the
positive label and 2 with the negative label, this problem is often referred to as positive-unlabeled (PU) learning or learning
with totally asymmetric label noise. The label transition matrix T has the following form:

T =

(
r 0

1− r 1

)
, (25)

where r (0 < r < 1) is the proportion of positively labeled instances in truly positive instances. This T is left-invertible
and yet breaks the non-ambiguity condition, because examples with the correct label 2 always have a partial label {1, 2}
including the incorrect label 1.

We can further show the following proposition.

Proposition 18. Suppose that partial labels satisfy the non-ambiguity condition. If ‖Z‖ = 2 or 3, then the label transition
matrix T is left-invertible. On the other hand, if ‖Z‖ > 3, then the label transition matrix is not necessarily left-invertible.

Proof. We prove the case with ‖Z‖ ≤ 3 by proving its contraposition. Suppose that T is not left-invertible. Then, the
column vectors tz of T (z ∈ Z) are not linearly independent; that is, there exists {az}z∈Z such that∑

z∈Z
aztz = 0 (26)

3In the original paper (Cour et al., 2011), the ambiguity degree was defined with the probability conditioned on an input pattern x as
well. We omit that conditioning for brevity because we assume that the distribution of weak labels does not depend on x.
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and at least one of az is nonzero. Because tz ∈ P(Y), it follows that
∑
z∈Z az = 0. Therefore, without loss of generality,

we can assume that one of the following two equations holds:

tz1 = tz2 , (27)
tz3 = a1tz1 + a2tz2 (a1 > 0, a2 > 0). (28)

By noting that (tz)y = P (Y = y|Z = z) and that z ∈ y if P (Y = y|Z = z) > 0, we can see that the former implies

P (Y = {z1, z2}|Z = z1) = P (Y = {z1, z2}|Z = z2) = 1, (29)

while the latter implies

P (z3 ∈ Y \ {z1}|Z = z1) = P (z3 ∈ Y \ {z2}|Z = z2) = 1. (30)

In either case, we have ε = 1, and therefore, the non-ambiguity condition is broken.

If ‖Z‖ = 4, we can find an example T that is left-invertible but non-ambiguous. One such example is

T =


0.5 0 0.5 0
0.5 0 0 0.5
0 0.5 0.5 0
0 0.5 0 0.5

 . (31)

If Z = {1, 2, 3, 4} and T ’s columns from left to right correspond to 1 to 4, then the rows from top to bottom represent
partial labels (1, 3), (1, 4), (2, 3), and (2, 4). We can see that this is not left-invertible by noting that a nonzero vector
(1, 1,−1,−1)T is in the kernel of T . On the other hand, the ambiguity degree ε is 0.5, and therefore, the non-ambiguity
condition is satisfied.

We can also construct an example for an arbitrary ‖Z‖ > 4 by using Eq. (31). For instance, the following block diagonal
form of T is non-invertible and non-ambiguous:

T =

(
T4 0
0 I

)
, (32)

where T4 is the label transition matrix for the first four labels given by Eq. (31), and I is an identity matrix with an
appropriate size.

A.3. Weak Noise Condition in Learning from Noisy Labels

Theoretical analyses of noisy-label learning have assumed that the noise rate is smaller than some threshold, which often
coincides with the point at which T is not left-invertible (Angluin & Laird, 1988; Natarajan et al., 2013). For example,
(Natarajan et al., 2013) considered label noise that has the following transition matrix:

T =

(
1− r+ r−
r+ 1− r−

)
. (33)

They assumed that r+ + r− < 1, and T ceases to be left-invertible at the boundary r+ + r− = 1. However, T recovers
left-invertibility for a noise rate above the threshold (e.g., complementary label learning, which can be seen as the extreme
case in which labels are flipped with probability 1). There, our framework is still applicable.

B. Multiple Weak-Label Datasets
The arguments in the main text deal with scenarios with only one weak-label set Y and an associated transition matrix T .
In this appendix, we show that without making formal changes, we can extend the formulation to scenarios with multiple
samples having different noise characteristics.

Let N be the number of training sets. They all have the same true-label set Z = {z1, z2, . . . , zC} and base distribution
p(x, z), but each has its own weak-label set Y(d) = {y(d)1 , y

(d)
2 , . . . , y

(d)
Cd
} and label transition matrix T (d). We show that
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this problem can be mapped to a problem with a single weak-label set Y = ∪Nd=1Y(d) and a label transition matrix. A partial
risk on the dth set is defined as Rd[q(z|x)] ≡ E(x,y)∼p(d)(x,y)[lW(q(z|x), y)], where p(d)(x, y) ≡

∑
z∈Z T

(d)
yz p(x, z). The

total risk is defined as a convex combination of the partial risks:

R[q(z|x)] ≡
N∑
d=1

αdRd[q(z|x)] (34)

≡ E(x,y)∼
∑

z∈Z Tyzp(x,z)[lW(q(z|x), y)], (35)

where the coefficients αd are positive real numbers satisfying
∑N
d=1 αd = 1, and the total label transition matrix from Z

to Y is defined as T = (α1T
(1)T, α2T

(2)T, . . . , αNT
(N)T)T. In fact, the αd may be absorbed in a weak-label loss, and

we may simply set αd = 1/N for all d. The equality TT1Y = 1Z can be verified by using T (d)T1Y(d) = 1Z for all
d = 1, 2, . . . , N , and therefore, T is formally qualified as a transition matrix.

As in the discussion in the main text, we assume that T is left-invertible. This assumption is weaker than requiring that all of
the T (d) be left-invertible. By using this T as a label transition matrix, we can formally treat the multiple-source scenario
exactly the same as the single-source case. In the training phase, we need to calculate the empirical risk. This can be done
by first calculating the empirical partial risks from respective training sets with a partial-label set Y(d) and then aggregating
the results.

Example 19. Consider three-class classification from two weakly labeled datasets. One set is labeled by an annotator who
distinguishes Class 1 from the other classes, and the other set, by another annotator who distinguishes Class 2 from the other
classes. Such a scenario is represented by the following transition matrices:

T (1) =

(
1 0 0
0 1 1

)
, T (2) =

(
0 1 0
1 0 1

)
, T =

 1
2 0 0 1

2
0 1

2
1
2 0

0 1
2 0 1

2

T

. (36)

Here, T is reconstructible, while T (1) and T (2) are not. An example of R is

R =

 1 −1 1 1
1 1 1 −1
−1 1 −1 1

 . (37)

C. Proofs Omitted in Main Text
C.1. Theorem 5

We first prove the following lemma, which relates Condition 1 of the theorem to the finiteness of the convex conjugate of
F (v).

Lemma 20. Let F : C ⊂ 1⊥Z → R be a closed convex function. Then its convex conjugate F ∗(q) is finite for all q ∈ P(Z)
if and only if supv∈C [maxz∈Z vz − F (v)] <∞.

Proof. Without loss of generality, the condition that F ∗(q) <∞ for all q ∈ P(Z) can be replaced with the finiteness at
q = ey for all y ∈ Y , where ey ∈ P(Z) is a standard unit vector. This is because of Jensen’s inequality and the fact that
P(Z) is the convex hull of a set of the standard unit vectors. Then, the lemma can be seen as a special case of Proposition 14
with Y = Z and R = IZ .

Proof of Theorem 5. Suppose that l is a regular proper loss. From Theorem 4, there exists a closed convex function
S : P(Z)→ R and its subgradient function∇S : P(Z)→ RZ such that

l(q, z) = −[∇S(q)]z + 〈q,∇S(q)〉 − S(q). (38)

Let S∗ : C̃ → R be the convex conjugate of S. From the Savage representation and the identity S∗(∇S(q)) + S(q) =
〈q,∇S(q)〉, which follows from the equality condition of the Fenchel-Young inequality, we have l(q, z) = λS∗(∇S(q), z).
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Now we need to show that the restriction of S∗ to C ≡ C̃ ∩ 1⊥Z , denoted as F : C → R, satisfies the two conditions of the
theorem. Suppose that v = v‖1Z + v⊥, where v‖ ∈ R and v⊥ ∈ 1⊥Z . Because 〈q,v〉 = v‖ + 〈q,v⊥〉 for q ∈ P(Z), it
holds that for all v ∈ C̃,

S∗(v) ≡ sup
q∈P(Z)

[〈q,v〉 − S(q)] (39)

= v‖ + F (v⊥). (40)

This implies that

〈q,v〉 − S∗(v) = 〈q,v⊥〉 − F (v⊥) (41)

for all q ∈ P(Z) and v ∈ C̃. By taking the supremum of this equality over v ∈ C̃, we conclude that F ∗(q) = S(q) for all
q ∈ P(Z), where F ∗ is the convex conjugate of F . Because S(q) is finite for all q ∈ P(Z), F ∗(q) is also finite in P(Z).
By Lemma 20, this implies Condition 1 of the theorem.

To show Condition 2, we need to relate the subgradients of S(q) with those of F ∗(q). We first note that they have the same
projections of the subgradients onto 1⊥Z , because F ∗(q) = S(q) in P(Z). Regarding the component of the subgradients
that is parallel to 1Z , it holds that 〈1Z ,∇F ∗(q)〉 = 0 because F ∗(q) is independent of 〈q,1Z〉; that is, for all t ∈ R,

F ∗(q + t1Z) = sup
v∈C

[〈q + t1Z ,v〉 − F (v)] (42)

= sup
v∈C

[〈q,v〉 − F (v)] (43)

= F ∗(q). (44)

On the other hand, because S is defined on P(Z), it holds that v + t1Z ∈ ∂S(q) for all v ∈ ∂S(q) and t ∈ R. The choice
of this t does not affect the loss function’s value. Therefore, we can always choose ∇S(q) such that ∇S(q) = ∇F ∗(q),
which implies Condition 2.

Conversely, suppose that there exists a closed convex function F : C ⊂ 1⊥Z → R that satisfies the two conditions. Its convex
conjugate F ∗ is finite at all p ∈ P(Z) by Lemma 20. Let S : P(Z) → R be a restriction of F ∗ on P(Z). In general, a
subdifferential of a function is not larger as a set than a subdifferential of its restriction; that is, ∂F ∗(q) ⊂ ∂S(q). This
implies that ∇F ∗(q) can be seen as a subgradient function of S. From this fact and the identity F (∇F ∗(q)) + F ∗(q) =
〈q,∇F ∗(q)〉, which follows from the equality condition of the Fenchel-Young inequality (Rockafellar, 1996), the loss
l(q, z) = λF (∇F ∗(q), z) conforms to the Savage representation and is proper.

C.2. Proposition 6

Let v0 be a minimizer of Ez∼p [λF (v, z)]. Then it holds that

−〈v0,p〉+ F (v0) = min
v∈C

[−〈v,p〉+ F (v)] (45)

= −F ∗(p), (46)

where v0 ∈ ∂F ∗(p). This proves the claim because p is always a member of P(Z).

C.3. Theorem 7

Our proof of this theorem relies on the following lemma that gives a general relation between T -properness and proper-
ness (Cid-sueiro, 2012).

Lemma 21. A weak-label loss lW : P(Z)×Y → R is (strictly) T -proper if and only if a loss function l : P(Z)×Z → R,
defined as l(q, z) =

∑
y∈Y TyzlW(q, y), is (strictly) proper.

This lemma follows from the identity Ey∼Tp[lW(q, y)] = Ez∼p[
∑
y∈Y TyzlW(q, y)]. The left-hand (right-hand) side

is minimized by q = p if and only if the loss in the expected value is T -proper (proper). The lemma indicates that
having corrupted labels and a weak-label loss is equivalent to having clean labels and a mixed weak-label loss as a
supervised-learning loss.
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Proof of Theorem 7. From Lemma 21, the weak-label loss lW is T -proper if and only if a loss defined as l(q, z) ≡∑
y∈Y TyzlW(q, y) is proper. Then, from Theorem 5, there exists a closed convex function F defined on a subset of 1⊥Z that

satisfies Condition 1 of the theorem and the following equation:

−[∇F ∗(q)]z + F (∇F ∗(q)) =
∑
y∈Y

TyzlW(q, y), (47)

where F ∗ is the convex conjugate of F and ∇F ∗(q) is a subgradient of F ∗ at a point q. By using the identity TT1Y = 1Z ,
we find that

−[∇F ∗(q)]z =
∑
y∈Y

Tyz[lW(q, y)− F (∇F ∗(q))]. (48)

Note that the right-hand side is a product of a matrix TT and a vector in RY , whose yth component is [lW(q, y)−F (∇F ∗(q))].
By the left-invertibility of T , we can invert this equation up to possibly nonzero ∆(q) ∈ cokerT .

C.4. Lemma 11

Let T be a label transition matrix corresponding to a reconstruction matrix R. Then, v = TT(RTv) for v ∈ 1⊥Z . Because
all the elements of T are nonnegative and TT1Y = 1Z , a component of v is a convex combination of (RTv)y. Therefore,
vz ≤ maxy∈Y(RTv)y for all z ∈ Z .

C.5. Proposition 14

Suppose that F ∗(Rey) <∞ for all y ∈ Y . By the definition of the convex conjugate, it follows that

F ∗(Rey) ≡ sup
v∈C

[〈Rey,v〉 − F (v)] (49)

= sup
v∈C

[〈ey, RTv〉 − F (v)] (50)

= sup
v∈C

[(RTv)y − F (v)] (51)

<∞. (52)

By maximizing both sides over y ∈ Y , we obtain

max
y∈Y

F ∗(Rey) = max
y∈Y

sup
v∈C

[
(RTv)y − F (v)

]
(53)

= sup
v∈C

[
max
y∈Y

(RTv)y − F (v)

]
(54)

<∞. (55)

Conversely, suppose that supv∈C
[
maxy∈Y(RTv)y − F (v)

]
< ∞. Because 〈q, RTv〉 ≤ maxy∈Y(RTv)y for all q ∈

P(Y), it follows that

F ∗(Rq) ≡ sup
v∈C

[〈Rq,v〉 − F (v)] (56)

≡ sup
v∈C

[
〈q, RTv〉 − F (v)

]
(57)

≤ sup
v∈C

[
max
y∈Y

(RTv)y − F (v)

]
(58)

<∞. (59)

The proposition follows as the special case with q = ey .
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D. Condition for Strict Properness
In this appendix, we prove the conditions for a dual representation to give a strictly proper loss.

As already stated in Theorem 4, a proper loss is strictly proper if and only if the associated negative Bayes risk S(p) is
strictly convex. To dualize this condition, we introduce some notations. Let Z ′ = {z′1, z′2, . . . , z′K′} be a subset of the
label set Z = {z1, z2, . . . , zK}. Then, a mapping πZ′ : RZ → RZ′ denotes a natural projection from RZ onto RZ′ , and
ρZ′ : RZ′ → 1⊥Z′ denotes an orthogonal projection from RZ′ onto its subspace 1⊥Z′ . We also need a “projection onto
the bottom,” σZ′ : 1⊥Z′ → RZ′−{z′1}, which is a natural projection from 1⊥Z′ , as a subspace of RZ′ , onto RZ′−{z′1}. Let
F : C → R be a function whose domain is a convex subset C of 1⊥Z . Then, we define a function FZ′ : CZ′ → R as the
closure of

F̃Z′(v) ≡ inf
v′∈C∩π−1

Z′ ◦ρ
−1

Z′ (v)

[
F (v′)− 〈 1

|Z ′|
1Z′ , πZ′(v

′)〉
]
, (60)

where CZ′ ≡ ρZ′ ◦ πZ′(C).

Theorem 22. A proper loss in the dual representation associated with a closed convex function F is strictly proper if and
only if for all subsets Z ′ of Z , a function FZ′ ◦ σ−1Z′ is differentiable on some subset DZ′ of σZ′(CZ′) and the range of
∂FZ′ on σ−1Z′ (DZ′) contains the relative interior of P(Z ′).

D.1. Proof

Discussing strict convexity on a closed set P(Z) is not straightforward. Instead, the following lemma allows us to decompose
it into strict convexity on open subsets of P(Z).

Lemma 23. A function S is strictly convex on P(Z) if and only if it is strictly convex on a convex, relatively open subset
PZ(Z ′) ≡ {p ∈ P(Z)|pz 6= 0 (z ∈ Z ′), pz = 0 (z /∈ Z ′)} for any Z ′ ⊂ Z .

Proof. Suppose that S is strictly convex on P(Z). Clearly, it is strictly convex on any convex subset of P(Z). Conversely,
suppose that S is strictly convex on PZ(Z ′) for any subset Z ′ of Z . Let p1 and p2 be two different elements of P(Z), let l
be a line segment connecting them, and let λ, λ1, and λ2 be real numbers such that 0 < λ2 < λ < λ1 < 1. Also, define
p = λp1 + (1− λ)p2 and p′i = λip1 + (1− λi)p2 (i = 1, 2). We can see that p is also a convex combination of p′1 and p′2:

p = λ′p′1 + (1− λ′)p′2, where λ′ =
λ2 − λ
λ1 − λ2

. (61)

Because the relative interior of l is contained in only one of the PZ(Z ′), p, p′1, and p′2 are all contained in that PZ(Z ′).
Therefore, by assumption,

S(p) < λ′S(p′1) + (1− λ′)S(p′2) (62)
≤ λ′[λ1S(p1) + (1− λ1)S(p2)] + (1− λ′)[λ2S(p1) + (1− λ2)S(p2)] (63)
= λS(p1) + (1− λ)S(p2). (64)

As this holds true for any p1 and p2 in P(Z) and λ ∈ (0, 1), S(p) is strictly convex on P(Z).

We now focus on a single Z ′ ⊂ Z and S restricted on PZ(Z ′). Because 〈p,v〉 = 〈πZ′(p), πZ′(v)〉 for any p ∈ PZ(Z ′)
and v ∈ C, we can define a function SZ′ as

SZ′(p) ≡ sup
v∈C

[〈p, πZ′(v)〉 − F (v)] (65)

for p ∈ πZ′(PZ(Z ′)), and this function is equal to S(p) in πZ′(PZ(Z ′)). Clearly, SZ′ is strictly convex if and only if
S is strictly convex on PZ(Z ′). Note that πZ′(PZ(Z ′)) is the relative interior of P(Z ′), and that the above definition is
applicable to points within the relative boundary of PZ(Z ′). Therefore, SZ′ can be extended to a function on P(Z ′).

Lemma 24. A convex function f is strictly convex on a convex, relatively open subset C of its domain if and only if
∂f(p1) ∩ ∂f(p2) = ∅ for any pair of two different points p1,p2 in C.4

4The condition that C is relatively open can be removed, in which case ∂f(p) can be empty for some p. See, for example, Theorem 26.3
in Rockafellar (1996).
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Proof. Suppose that f is not strictly convex on C. Then, there exist p1,p2 ∈ C and λ ∈ (0, 1) such that f(λp1+(1−λ)p2) =
λf(p1) + (1 − λ)f(p2). Take v ∈ ∂f(p), and let H be a graph of an affine function h(q) ≡ f(p) + 〈q − p,v〉. Then,
H is a supporting hyperplane of the epigraph of f at (p, f(p)). Because (p, f(p)) belongs to the relative interior of the
line segment joining (p1, f(p1)) and (p2, f(p2)), these two points also lie in H . Therefore, v ∈ ∂f(p1) and v ∈ ∂f(p2),
which implies that ∂f(p1) ∩ ∂f(p2) 6= ∅.

Conversely, suppose that there exist two different points p1 and p2 in C such that ∂f(p1)∩∂f(p2) 6= ∅. Let v be an element
of ∂f(p1) ∩ ∂f(p2). Then for a certain constant k, a graph H of an affine function h(q) = 〈q − p,v〉+ k is a supporting
hyperplane of the epigraph of f and contains (p1, f(p1)) and (p2, f(p2)). This implies that H contains the line segment
joining (p1, f(p1)) and (p2, f(p2)). Thus, f cannot be strictly convex along the line segment connecting p1 and p2.

By applying this lemma to SZ′ , its strict convexity becomes equivalent to the injectivity of the subdifferential map ∂SZ′ .
On the other hand, the inverse of a subdifferential map of a closed convex function is the subdifferential map of its conjugate
function (Corollary 23.5.1 in Rockafellar (1996)). Indeed, it holds that

SZ′(p) = sup
v∈C

[
〈p, σZ′ ◦ πZ′(v)〉+ 〈 1

|Z ′|
1Z′ , πZ′(v)〉 − F (v)

]
(66)

= sup
v′∈σZ′◦πZ′ (C)

 sup
v∈C∩π−1

Z′ ◦σ
−1

Z′ (v
′)

[
〈p,v′〉+ 〈 1

|Z ′|
1Z′ , πZ′(v)〉 − F (v)

] (67)

= sup
v′∈σZ′◦πZ′ (C)

[〈p,v′〉 − FZ′(v′)] , (68)

and therefore, that ∂SZ′ = (∂FZ′)
−1. This implies that the necessary and sufficient condition for ∂SZ′(p1)∩∂SZ′(p2) = ∅

for p1 6= p2 is that {v′|{p1,p2} ⊂ ∂FZ′(v′)} = ∅.
Lemma 25. Suppose that p ∈ ∂FZ′(v) for some p ∈ intP(Z ′) and v in the domain of ∂FZ′ . Then, no other point in
intP(Z ′) belongs to ∂FZ′(v) if and only if FZ′ ◦ σ−1Z′ is differentiable at σZ′(v).

Proof. Let v0 be σZ′(v) and p0 be σZ′ ◦ ρZ′(p). We can verify by direct calculation that ∂(FZ′ ◦ σ−1Z′ )(v0) = σZ′ ◦
ρZ′(∂FZ′(v)). In addition, because FZ′ is defined on (a subset of) 1⊥Z , q+t1Z′ ∈ ∂FZ′(v) for any q ∈ ∂FZ′(v) and t ∈ R.
Therefore, {p0} ∈ ∂(FZ′ ◦ σ−1Z′ )(v0) is equivalent to ∂FZ′(v) = {p0 + t1Z′ |t ∈ R}, in which case ∂FZ′(v) contains one
and only one element of intP(Z ′). This implies the lemma because a convex function FZ′ ◦ σ−1Z′ is differentiable at a point
v0 if and only if it has a unique subgradient there.

Finally, by combining these lemmas, we obtain Theorem 22.

E. Forward-Correction Loss
In this appendix, we verify that a forward-corrected loss lW conforms to Theorem 7. A weak-label loss lW : P(Z)×Y → R
is called the forward correction of lY if lW(q, y) = lY(Tq, y), where lY : P(Y)× Y → R is a proper loss for estimating
weak-label posterior probabilities.

We first apply Theorem 5 to lY and find that lY(q, y) = −[∇F ∗Y(q)]y + FY(∇F ∗Y(q)) for q ∈ P(Y); here, F ∗Y(q) is the
negative Bayes risk corresponding to lY , and FY(v) is its convex conjugate. We also have the negative Bayes risk S(q) and
its conjugate S∗(v) for the weak-label loss lW. A key identity among these quantities is S(q) = F ∗Y(Tq), which further
implies that ∇S(q) = TT∇F ∗Y(Tq). The latter can be inverted to find that ∇F ∗Y(Tq) = RT∇S(q) −∆(q) for some
function ∆(q) that takes values on cokerT . It also holds that

FY(∇F ∗Y(Tq)) + F ∗Y(Tq) = 〈Tq,∇F ∗Y(Tq)〉 (69)
= 〈q,∇S(q)〉 = S∗(∇S(q)) + S(q), (70)

where the first and third equalities follow from the equality condition of the Fenchel-Young inequality (Rockafellar, 1996).
By using S(q) = F ∗Y(Tq) in Eq. (70), we find that FY(∇F ∗Y(Tq)) = S∗(∇S(q)). Therefore, we confirm that

lW(q, y) = lY(Tq, y) (71)

= −[RT∇S(q)]y + S∗(∇S(q)) + ∆y(q), (72)
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Table 3. Numbers of examples in the dataset splits. “Training (original)” refers to those that are originally defined as training splits in the
datasets, while “Training (used)” indicates those that were actually used in training.

Dataset Training (original) Training (used) Validation Test

MNIST 60,000 54,000 6,000 10,000
CIFAR-10 50,000 45,000 5,000 10,000

Table 4. Initial learning rates with which the best validation accuracy was achieved for each setting.

Weight decay MNIST, linear MNIST, MLP CIFAR-10, ResNet-20 CIFAR-10, WRN-28-2

BC fixed 0.003 0.0001 0.001 0.001
BC tuned 0.0001 0.0001 0.0003 0.001

BC + GA fixed 0.0001 0.01 0.01 0.003
BC + GA tuned 0.001 0.01 0.003 0.003
BC + gLS fixed 0.0003 0.0003 0.1 0.03

which conforms toTheorem 7.

F. Linear-Algebraic Properties of Reconstruction Matrix
In this appendix, we present a proof that for any reconstructible label transition matrix T , there exists a reconstruction matrix
R such that RT1Z = 1Y . Note that this further implies that TT(RT1Z − 1Y) = 0, or that RT1Z − 1Y ∈ cokerT .

A transition matrix T satisfies the identity TT1Y = 1Z . This implies that for any v ∈ 1⊥Z ,

〈Tv,1Y〉 = 0, (73)

and thus, that T1⊥Z ⊂ 1⊥Y . Therefore, the restriction T ′ of T on 1⊥Z has a left-inverse R′ defined on 1⊥Y . A matrix
R = R′ + k1Z1T

Y is also a left-inverse of T ′. Because T1Z /∈ 1⊥Y , we can choose k such that R is a left-inverse of T . For
such R, it holds that RT1Z ∝ 1Y , but because TTRT1Z = 1Z and TT1Y = 1Z , we conclude that RT1Z = 1Y .

G. Experimental Details
Datasets We used the MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky, 2009) datasets. Each dataset defines its
training and test splits. In our experiment, we split the training split into two splits: one was used for training, and the other
was used for validation. Table 3 lists the numbers of examples in the dataset splits.

Before starting the experiments, we converted the ground-truth labels in the training splits into complementary labels. A
complementary label for an instance was randomly chosen with probabilities given by the transition matrix in Eq. (18).

Training procedure We used stochastic gradient descent with momentum to optimize the models. The momen-
tum and the mini-batch size were fixed to 0.9 and 256, respectively. The initial learning rates were chosen from
{0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001} as those giving the best validation accuracy. When a learning rate of 0.1
or 0.0001 achieved the best validation accuracy, we also tried two more values beyond the predefined range. In all such
cases, we confirmed that the chosen values were at a peak or on a plateau of the validation accuracy. The chosen values
are listed in Table 4. The default value of the weight decay coefficient is 10−4, but when it is tuned, it is chosen from
{0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001}. The values of the weight decay coefficient that achieved the best validation

Table 5. Weight decay coefficient with which the best validation accuracy was achieved for BC and BC + GA.

MNIST, linear MNIST, MLP CIFAR-10, ResNet-20 CIFAR-10, WRN-28-2

BC 0.0003 0.001 0.001 0.01
BC + GA 0.1 0.001 0.0003 0.0003
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Table 6. Values of the coefficient k in Eq. (17) as chosen by the validation accuracy.

Dataset and model k

MNIST, linear 0.03
MNIST, MLP 1.0

CIFAR-10, ResNet-20 1.0
CIFAR-10, WRN-28-2 1.0

Table 7. Numbers of epochs at which the best validation accuracy was achieved for each setting.

MNIST, linear MNIST, MLP CIFAR-10, ResNet-20 CIFAR-10, WRN-28-2

BC 4.1 46.6 22.6 24.6
BC + GA 54.1 62.7 83.6 76.1
BC + gLS 19.5 59.1 47.9 39.7

accuracy are listed in Table 5.

Our proposed method, generalized logit squeezing (gLS), has two hyperparameters: the exponent α and the coefficient k.
For a fixed α, we searched for the value of k that achieved the best validation accuracy. The candidate values were 10, 3, 1,
0.3, 0.1, 0.03, and 0.01. These results are listed in Table 6.

We adopted early stopping to determine the training time. Specifically, when the validation accuracy had not improved for
the last 10 epochs, the learning rate was reduced by a factor of 10, and the third time the same condition was satisfied, the
training was terminated. The test accuracy reported here is for the epochs with the best validation accuracy. Table 7 lists the
numbers of epochs at which the best validation accuracy was achieved.

We used a simple grid search strategy for the hyperparameter search. The best hyperparameters (i.e., the learning rate and
the gLS coefficient) were used in the evaluation step, in which a randomly initialized model was trained on the training
split and evaluated on the test split. The training duration in the evaluation step was also determined by the early stopping
strategy as described above.

Other details All the experiments were performed using on-premise computation servers equipped with NVIDIA’s
GeForce GTX 1080Ti and Tesla V100. The training duration varied significantly, depending on the methods and the model
size, but the longest run took less than one hour on the Tesla V100. We used PyTorch (Paszke et al., 2019) to implement the
experiments.


