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Abstract
This paper discusses the problem of weakly su-
pervised classification, in which instances are
given weak labels that are produced by some label-
corruption process. The goal is to derive condi-
tions under which loss functions for weak-label
learning are proper and lower-bounded—two es-
sential requirements for the losses used in class-
probability estimation. To this end, we derive a
representation theorem for proper losses in super-
vised learning, which dualizes the Savage repre-
sentation. We use this theorem to characterize
proper weak-label losses and find a condition for
them to be lower-bounded. From these theoretical
findings, we derive a novel regularization scheme
called generalized logit squeezing, which makes
any proper weak-label loss bounded from below,
without losing properness. Furthermore, we ex-
perimentally demonstrate the effectiveness of our
proposed approach, as compared to improper or
unbounded losses. The results highlight the im-
portance of properness and lower-boundedness.

1. Introduction
Recent machine learning techniques have achieved state-
of-the-art performance on many prediction tasks, but they
usually require massive training data with clean annota-
tions. One approach to reduce the costs of data preparation
is so-called weakly supervised learning: each instance is
annotated with a weak label that is cheaper to obtain but
less informative than a true label. For classification, many
types of weak supervision have been proposed. For exam-
ple, in learning with noisy labels (Angluin & Laird, 1988;
Natarajan et al., 2013; Patrini et al., 2017), one observes
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an instance with a label that may be corrupted. Positive-
unlabeled (PU) learning of binary classification uses positive
and unlabeled data, but not labeled negative data (Elkan &
Noto, 2008; du Plessis et al., 2015). Another example is
learning from partial labels, which are collections of candi-
date labels among which only one is true (Cour et al., 2011).
Many of these approaches are understood as learning from
weak labels that are produced by label-corruption processes,
and some authors have taken unified approaches to tackle
these problems (van Rooyen & Williamson, 2018; Zhang
et al., 2019).

A fundamental theoretical question is under what condi-
tions learning from weak labels is possible. To address
this question, analysis of loss functions plays a central role.
Among loss functions, proper losses are a particularly im-
portant class of losses that can correctly estimate class pos-
terior probabilities (Winkler & Murphy, 1968; Buja et al.,
2005; Gneiting & Raftery, 2007). Two major classes of
proper weak-label losses have been proposed in the litera-
ture. One class derives from unbiased risk estimation, or
backward loss correction (Patrini et al., 2017), in which
a label-corruption process is inverted to estimate an ex-
pected risk with respect to the distribution of true labels.
This approach has been taken, for example, in partial-label
learning (Cid-sueiro, 2012), noisy-label learning (Natarajan
et al., 2013; Patrini et al., 2017), PU learning (du Plessis
et al., 2015), and complementary-label learning (Ishida et al.,
2019). For a general label-corruption process, a recent work
showed how to construct a proper weak-label loss from a
loss for supervised learning (van Rooyen & Williamson,
2018). The other class of losses follows from forward
loss correction (Patrini et al., 2017), in which proper loss
functions are used for estimating the posterior distribution
of weak labels. This approach has been applied to noisy-
label learning (Patrini et al., 2017) and complementary-label
learning (Yu et al., 2018). Moreover, Zhang et al. (2019) ap-
plied a forward-corrected loss to more general problems of
learning from weak labels, although their discussion focused
on the negative log-likelihood loss.

In addition to properness, lower-boundedness is another im-
portant requirement for loss functions so that learning can
succeed. Losses that are not bounded from below are prob-
lematic, as they cause the objective to diverge to negative
infinity, especially when using complex models like deep
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neural networks (Kiryo et al., 2017). Forward-corrected
losses are known to be proper and lower-bounded (Patrini
et al., 2017; Yu et al., 2018). On the other hand, backward-
corrected losses are generally not guaranteed to be bounded
from below (Natarajan et al., 2013; Cid-Sueiro et al., 2014;
du Plessis et al., 2015; Kiryo et al., 2017; Patrini et al., 2017;
Ishida et al., 2019; van Rooyen & Williamson, 2018). From
a practical viewpoint, implementation tricks proposed by
Kiryo et al. (2017) cause a training objective to be positive
and work reasonably well, but they also result in an improper
loss. Those tricks have also been applied to complementary-
label learning (Ishida et al., 2019) and unlabeled-unlabeled
learning (Lu et al., 2020). Chou et al. (2020) proposed a
novel class of surrogate losses that are bounded from be-
low, but these losses are not guaranteed to be proper. To
the best of our knowledge, conditions under which proper
weak-label losses are bounded from below have yet to be
addressed.

Our contributions This paper discusses proper losses for
weakly supervised learning of class posterior probability
estimation. In particular, we obtain conditions under which
proper weak-label losses are bounded from below. To do
so, we derive the dual representation of proper losses for
supervised learning. This representation is a dualized ver-
sion of the Savage representation (Savage, 1971; Cid-Sueiro
et al., 1999; Gneiting & Raftery, 2007), which characterizes
a proper loss in terms of a Bayes risk. By using a theorem
that we obtain, we characterize proper weak-label losses
and derive a sufficient condition under which the resulting
losses are bounded from below. The derived condition is
not necessary but covers a large class of losses that are pa-
rameterized by convex functions constrained by a single
inequality.

From these results, we derive a novel regularization scheme
called generalized logit squeezing (gLS), which makes any
proper weak-label loss bounded from below, without los-
ing its properness. We also experimentally demonstrate the
effectiveness of our proposed approach as compared to un-
bounded or improper losses. We show that gLS yields supe-
rior or competitive results as compared to baseline methods,
regardless of the precise values of the hyperparameters that
are specific to gLS, as long as those parameters are in the
regime in which gLS gives T -proper and bounded losses.

2. Formulation
In this section, we introduce notations and basic notions,
which we adopted from previous studies (Winkler & Mur-
phy, 1968; Buja et al., 2005; Gneiting & Raftery, 2007; Cid-
sueiro, 2012; van Rooyen & Williamson, 2018). We begin
by summarizing the mathematical notations in Section 2.1.
Then, the two key notions of weak labels and proper losses

are described in Sections 2.2 and 2.3, respectively.

2.1. Notations

Boldface and calligraphic letters respectively denote vec-
tors and sets. The sets of real numbers and extended real
numbers are denoted by R and R ≡ R ∪ {−∞,∞}, re-
spectively. Let X be a discrete set and |X | be its cardi-
nality. The set RX is the |X |-dimensional vector space
whose dimensions are indexed with x ∈ X . A matrix
IX is the identity matrix on RX , 1X is a vector in RX
such that (1X )x = 1 for all x ∈ X , and 1⊥X is the or-
thogonal complement of 1X . The set of probability distri-
butions over X is identified with the probability simplex
P(X ) ≡ {p ∈ RX |

∑
x∈X px = 1, px ≥ 0 for all x ∈ X}.

The theory of convex functions has offered useful tools for
analyzing proper losses (Gneiting & Raftery, 2007; Dawid,
2007). A function f : C → R is convex if f((1 − λ)x0 +
λx1) ≤ (1 − λ)f(x0) + λf(x1) for all λ ∈ (0, 1) and
x0,x1 ∈ C. It is strictly convex if the equality holds only
when x0 = x1. A convex function f is said to be closed
if its epigraph {(x, t) ∈ C × R|t ≥ f(x)} is a closed set.
A vector ∇f(x) is a subgradient of f at a point x ∈ C if
it satisfies f(y) ≥ f(x) + 〈∇f(x),y − x〉 for all y ∈ C.
In general, subgradients may not be unique at a given point.
The set of all the subgradients of f at x ∈ C is called
the subdifferential and is denoted by ∂f(x). The convex
conjugate of a convex function f : C → R is denoted by f∗

and is defined as f∗(v) = supx∈C [〈v,x〉 − f(x)].

2.2. Weak Labels in Classification Learning

Let X be a space of instances, Z = {z1, z2, . . . , zc} be
a set of true (latent) labels, and Y = {y1, y2, . . . , ycW}
be a set of weak (observed) labels. In weakly supervised
learning of classification, an algorithm is given a training set
sampled from X × Y in accordance with an unknown data
distribution, and it learns to classify an instance x ∈ X into
a true class z ∈ Z . The true labels for training instances are
not available to the learner.

We focus on a setting in which weak labels are characterized
by a conditional distribution p(y|x, z), or a label transition
matrix T (x), whose matrix element Tyz(x) is p(y|x, z). In
this paper, we assume that (a) T (x) ≡ T , which means that
weak labels are independent of input data x, and that (b) T
has a left inverse R such that RT = IZ . In principle, As-
sumption (a) can be lifted by replacing T with T (x) and R
with R(x) in the following analysis, even though such sce-
narios are more challenging to deal with in practice, because
they require knowing T (x) for all x ∈ X . Assumption (b)
requires that weak labels be informative enough for a learner
to infer a distribution over the true labels. Concretely, we
can reconstruct true-label posterior probabilities from weak-
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label posterior probabilities by using the following identity:

p(z|x) =
∑
z′∈Z

(RT )zz′p(z
′|x) =

∑
y∈Y

Rzyp(y|x). (1)

A label transition matrix T satisfying Assumption (b) is said
to be reconstructible, andR is called a reconstruction matrix
of T . In particular, T is reconstructible only if |Z| ≤ |Y|.

Solving weakly supervised classification always requires
some assumption like Assumption (b) that constrains the
form of T . See Appendix A for a comparison of Assump-
tion (b) with other assumptions that have been made in
previous works.

The following are illustrative examples with Z =
{z1, z2, z3}.
Example 1 (Learning with label noise, Natarajan et al.
(2013)). If instances are equipped with noisy labels, then
the weak-label set Y is identical to Z . For a three-class
setting with symmetric noise, T is

T =

1− p p/2 p/2
p/2 1− p p/2
p/2 p/2 1− p

 , (2)

and its reconstruction matrix is

R =
1

2− 3p

2− p −p −p
−p 2− p −p
−p −p 2− p

 , (3)

where p ∈ (0, 1) is the mislabeled probability. Note that
T is not reconstructible if p = 2

3 , in which case the weak
labels become independent of the true labels.

Example 2 (Partial labels, Cour et al. (2011)). Consider
three-class classification with Y = {(1, 0, 0), (0, 1, 0),
(0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}. A label y ∈
Y is called a partial label. For example, (1, 1, 0) indicates
that the true label is either z1 or z2, but not z3. In a scenario
in which a spurious label is added with probability p, the
label transition matrix T is

T =
(
TT
1 TT

2 TT
3

)T
, (4)

where

T1 = (1− p)2I3, (5)

T2 =

(1− p)p (1− p)p 0
(1− p)p 0 (1− p)p

0 (1− p)p (1− p)p

 , (6)

T3 =
(
p2 p2 p2

)
. (7)

This T is left-invertible unless p = 1. The left-inverse is not
unique.

So far, we have assumed that there is only one weak-label
set Y and a label transition matrix T , and the arguments in
the rest of this paper are made for such a scenario. Note,
however, that the arguments here can also be applied to
scenarios in which two or more data sources with different
noise characteristics are available. Importantly, this can be
done without changing any formal aspect of our theory. See
Appendix B for the details of this point.

2.3. Proper Losses for Weak-Label Learning

A common strategy for classification is to estimate the class
posterior probabilities. To this end, an expected loss should
preferably be minimized when an estimator gives the true
posterior probabilities:

E(x,z)∼p(x,z)[l(q(z|x), z)] ≥ E(x,z)∼p(x,z)[l(p(z|x), z)],
(8)

where p(x, z) ∈ P(X × Z) is a sample distribution,
q(z|x) ∈ P(Z) denotes the estimated posterior probabili-
ties for a given instance x ∈ X , and l : P(Z)×Z → R is
a loss function. Because the inequalities at different points
in X are mutually independent, we focus on the conditional
risk at a fixed x, omit the conditioning variable x, and simply
use a vector notation like p ∈ P(Z) for the class posterior
probabilities in the rest of the paper. Loss functions sat-
isfying Eq. (8) are said to be proper (Winkler & Murphy,
1968). A loss function is said to be strictly proper when the
equality in Eq. (8) holds only if p = q (Gneiting & Raftery,
2007). Strict properness is often more desirable than proper-
ness itself, because it leads to a Fisher-consistent estimator
arg minq Ez∼p[l(q, z)] for the class posterior probabilities.
It also guarantees that the minima of the empirical and ex-
pected losses are unique, which thereby renders the loss
minimization problem well-posed.

In weak-label learning, we use a loss function defined on
a pair of predicted posterior probabilities q ∈ P(Z) and
a weak label y ∈ Y; we refer to this function as a weak-
label loss. The notion of properness can be extended to
weak-label losses (Cid-sueiro, 2012).
Definition 3. Let T be a label transition matrix. A weak-
label loss lW : P(Z)×Y → R is called T -proper if, for all
p and q in P(Z),

Ey∼Tp [lW(q, y)] ≥ Ey∼Tp [lW(p, y)] , (9)

where the vector Tp is a point in the probability simplex
P(Y) and represents a probability distribution over Y . The
weak-label loss is said to be strictly proper when the equality
in Eq. (9) holds only if p = q.

3. Dual Representation of Proper Losses
In this section, we derive a representation of proper loss
functions for supervised learning, which we call a dual
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representation. It is closely related to the so-called Savage
representation (Savage, 1971; Gneiting & Raftery, 2007).
The Savage representation expresses a proper loss in terms
of its Bayes risk, whereas our representation uses a convex
function that is related to the convex conjugate of the Bayes
risk. The dual representation will be useful for our later
discussion of the lower-unboundedness of proper weak-label
losses.

We start by reviewing the Savage representation, which
requires a mild regularity condition (Gneiting & Raftery,
2007). In general, losses can be positive infinity for some
(q, z) ∈ P(Z) × Z . A loss function is said to be regular
if it is finite for any (q, z) ∈ P(Z) × Z except possibly
that l(q, z) = ∞ when qz = 0. Regular proper losses for
class posterior probability estimation are known to have the
following representation (Cid-Sueiro et al., 1999; Gneiting
& Raftery, 2007).

Theorem 4 (Savage representation). A regular loss function
l : P(Z) × Z → R is (strictly) proper if and only if there
exists a closed (strictly) convex function S : P(Z) → R
such that for q ∈ P(Z) and z ∈ Z ,

l(q, z) = − [∇S(q)]z + 〈q,∇S(q)〉 − S(q), (10)

where ∇S(q) ∈ RZ is a subgradient of S at a point q ∈
P(Z).

By using the definition of the subgradient, we can easily ver-
ify that the convex function S in the theorem is the negative
Bayes risk; that is,

S(p) = − min
q∈P(Z)

Ez∼p [l(q, z)] ≡ −L(p), (11)

where L(p) is the Bayes risk. Thus, Theorem 4 shows that
a proper loss function is determined by its Bayes risk, up
to the choice of ∇S(q) ∈ ∂S(q) at points where S is not
differentiable (Williamson et al., 2016).

Importantly, the sum of the second and third terms in
Eq. (10) is the convex conjugate S∗(∇S(q)) of S (Reid
et al., 2015). This fact leads to the “dual” of the Savage
representation. For a closed convex function F whose do-
main is a convex subset C of 1⊥Z , we define a function
λF : C × Z → R as

λF (v, z) = −vz + F (v). (12)

The following theorem shows that under a certain condition
on F , λF is essentially a proper loss for which C parameter-
izes the probability simplex P(Z).

Theorem 5. Let l : P(Z)×Z → R be a regular loss. Then,
it is proper if and only if there exists a closed convex function
F : C ⊂ 1⊥Z → R that satisfies the following conditions:

1. F (v)−maxz∈Z vz is bounded from below.

2. With F ∗(p) the convex conjugate of F (v), it holds
that l(q, z) = λF (∇F ∗(q), z), where ∇F ∗(p) is an
appropriately chosen subgradient function.

Furthermore, F ∗(p) at a point p ∈ P(Z) is a negative
Bayes risk for this loss.

A full proof of this theorem is presented in Appendix C.1.
In Appendix D, we also derive conditions on F under which
the associated proper loss is strictly proper; however, we
do not use them in the following discussion. Theorem 5
elucidates that F in the proved representation is closely
related to the convex conjugate of the negative Bayes risk
−L. Therefore, in the rest of the paper, the representation
of a proper loss given in Condition 2 is called the dual
representation.

Here, we contrast our Theorem 5 with related results. In-
deed, a representation of proper losses that uses λF (v, z)
is not new. Reid et al. (2015) showed that proper losses
can be written with L∗. van Rooyen & Williamson (2018)
also showed with different proof techniques that any proper
loss has the form of Condition 2 in Theorem 5. In a more
general context, Nowak-Vila et al. (2019) and Blondel et al.
(2020) discussed loss functions for structured prediction and
arrived at the same representation. There is another line of
research on the related notions of matching losses (Kivinen
& Warmuth, 1997) and the Bregman divergence (Bregman,
1967; Banerjee et al., 2005), which are the special case of
proper losses that have strictly convex and continuously dif-
ferentiable Bayes risks. In particular, Amid et al. (2019)
proved that matching losses have the dual representation.
However, none of those previous studies obtained Condi-
tion 1 in Theorem 5, and therefore, they only succeeded in
proving the necessity of the dual representation. In contrast,
Theorem 5 gives necessary and sufficient conditions for a
loss to be proper, which is made possible by constraining
the convex functions by Condition 1. The theorem is also
applicable to general proper losses that may possibly have
non-smooth or not strictly convex Bayes risks.

Consider a proper loss l(p, z) = λF (∇F ∗(p), z). If
∇F ∗(p) is invertible on P(Z), then λF can be re-
garded as a composite proper loss with a link function
∇F ∗(p) (Williamson et al., 2016). In this case, we can
use a model that outputs a value on C instead of the class
posterior probabilities.

This approach has practical advantages. Given v ∈ C, a
loss is just λF (v, z) and is always guaranteed to be convex
as a function of v ∈ C. This may facilitate optimization.
In addition, once the best prediction v̂ is obtained, it can
be converted into class probabilities by using p ∈ ∂F (v̂).
That is, we can completely circumvent calculation of the
convex conjugate F ∗, which may not be straightforward in
general. Because a subdifferential map ∂F ∗ of a strictly
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convex function F ∗ is injective (see Appendix D), it follows
that ∇F ∗(p) is invertible if F ∗(p) is strictly convex, or
equivalently, if l(p, z) is strictly proper.

Note that F ∗ and −L are different in a subtle way, though
they are closely related: the Bayes risk is defined only
on P(Z), while F ∗ has a larger domain. For example,
F ∗ might be finite at points in aff P(Z) \ P(Z), where
aff P(Z) represents the affine hull of P(Z). It also holds
that F ∗(p) = F ∗(p + t1Z) for all p ∈ P(Z) and t ∈ R,
but p + t1Z is not in P(Z) if t 6= 0.

This might lead us to suspect that minimizing λF (v, z) can
result in a solution that does not correspond to posterior
probabilities in P(Z). Indeed, even if F satisfies the condi-
tions in Theorem 5, there might be a point v ∈ C for which
any solution of∇F ∗(p) = v does not belong toP(Z). This
is because the theorem guarantees the convex conjugate of
F to be well-defined in P(Z) but also allows it to exist
outside P(Z). However, the following proposition, which
is proved in Appendix C.2, guarantees that minimizers of
the loss always correspond to some point in P(Z).
Proposition 6. Let F : C → R be a convex function that
satisfies the conditions in Theorem 5. Then, any minimizer
v of Ez∼p [λF (v, z)] =

∑
z∈Z pzλF (v, z), if one exists,

satisfies∇F ∗(q) = v for some q ∈ P(Z), where F ∗ is the
convex conjugate of F .

4. Characterization of T -Proper Losses
In this section, we characterize T -proper losses, which may
possibly be lower-unbounded. Our main theorem here is
closely related to backward correction in that it involves
inversion of a label-corruption process. However, because
our result gives necessary and sufficient conditions for T -
properness, it also holds for forward-corrected losses and
any other T -proper losses.

For a closed convex function F : C ⊂ 1⊥Z → R and a
reconstruction matrix R for weak labels Y , we define a
function λF,R : C × Y → R as

λF,R(v, y) = −(RTv)y + F (v). (13)

Then we can state the main theorem of this section as fol-
lows:
Theorem 7. Let T be a label transition matrix for weak
labels Y , and let lW : P(Z) × Y → R be a weak-label
loss. Then, lW is T -proper if and only if there exist a closed
convex function F : C ⊂ 1⊥Z → R, a reconstruction matrix
R of T , and a function ∆(q) taking values on the cokernel1

of T , which satisfy the following conditions:

1. F (v)−maxz∈Z vz is bounded from below.

1The cokernel of T is the kernel of TT, i.e., a set of vectors v
in RY such that TTv = 0.

2. It holds that lW(q, y) = λF,R(∇F ∗(q), y) + ∆y(q),
where∇F ∗(q) is an appropriately chosen subgradient
function.

See Appendix C.3 for a proof.

Because of the assumption of reconstructibility, we have
that ∆(q) ≡ 0 if |Z| = |Y|. On the other hand, if |Z| <
|Y|, a label transition matrix T has a cokernel of nonzero
dimension, and therefore, ∆(q) might take finite values.
However, even if ∆(q) 6= 0 for some q, by the definition of
cokerT , we have that 〈Tp,∆(q)〉 = 0 for all p, q ∈ P(Z),
which leads to the following proposition:

Proposition 8. The function ∆(q) in Theorem 7 does not
contribute to the expected loss; that is, Ey∼Tp[∆y(q)] = 0
for all p, q ∈ P(Z). In particular, it holds that ∆(q) ≡ 0
if |Z| = |Y|.

Two well-known classes of T -proper losses are forward and
backward correction losses. Because Theorem 7 is applica-
ble to any T -proper loss, the loss functions of these classes
also conform to it. We demonstrate this in the following two
examples.

Example 9 (Forward correction). Let lY : P(Y)×Y → R
be a proper loss for estimating weak-label posterior prob-
abilities. Note the difference from a weak-label loss lW :
P(Z)×Y → R and a proper loss l : P(Z)×Z → R for su-
pervised learning. A weak-label loss lW : P(Z)×Y → R is
called the forward correction of lY if lW(q, y) = lY(Tq, y).
Its T -properness is a consequence of the properness of lY
and the reconstructibility of T . In Appendix E, we prove
that forward correction losses conform to Theorem 7.

Example 10 (Backward correction). Let l : P(Z)×Z → R
be a proper loss for fully supervised learning. A backward-
corrected loss lW : P(Z) × Y → R associated with
l is defined as lW(q, y) =

∑
z∈Z Rzyl(q, z). By ap-

plying Theorem 5 to l(q, z), we find that lW(q, y) =
−[RT∇F ∗(q)]y + F (∇F ∗(q))(RT1Z)y. It can be shown
that RT1Z − 1Y ∈ cokerT (see Appendix F for a proof).
Therefore, the backward-corrected loss has the form given
in Theorem 7 with ∆(q) = F (∇F ∗(q))(RT1Z−1Y). For
any label transition matrix T , we can choose a reconstruc-
tion matrix R such that RT1Z = 1Y (see Appendix C.6
in van Rooyen & Williamson (2018) and Appendix F in
this paper); therefore, we can always make ∆(q) zero for a
backward-corrected loss by using an appropriate R.

5. Lower-Boundedness of T -Proper Losses
T -proper losses as constructed in Theorem 7 may not be
bounded from below. Indeed, there is a gap between the
boundedness criteria for proper losses and T -proper losses.
In Section 5.1, we see this for an example of the softmax
cross-entropy loss. In Section 5.2, we give a sufficient
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Figure 1. Weak-label loss lW(p, y) with F (v) =
∑

z∈Z log(evz )
for partial labels (Example 12). (a–c) lW(p, y) for all p ∈ P(Z).
By symmetry, the plots for weak labels y that are not shown here
can be obtained by rotating one of these plots. (d) lW(p, (1, 1, 0))
for p ∈ P(Z) such that p1 = p2 = (1− p3)/2.

condition under which a T -proper loss is bounded from
below.

5.1. T -Proper Loss May Not Be Bounded from Below

Consider a T -proper weak-label loss lW(q, y) =
λF,R(∇F ∗(q), y) with ∆(q) = 0. To see if λF,R(v, y)
is bounded from below, we need to compare F (v) with
RTv. On the other hand, any regular proper loss is bounded
from below, because the definition of regularity requires
that the loss must not be negative infinity on the compact
probability simplex. This is also reflected in Condition 1 of
Theorem 7, which suffices to ensure the lower-boundedness
of a loss of the form −vz + F (v). The following lemma
implies that the boundedness of T -proper losses imposes a
stronger restriction on F (v) than that of proper losses.
Lemma 11. Let R be a reconstruction matrix. Then
maxy∈Y(RTv)y ≥ maxz∈Z vz for any vector v ∈ 1⊥Z .

See Appendix C.4 for a proof.
Example 12. Consider F (v) = log(

∑
z∈Z e

vz ), which
corresponds to the softmax cross-entropy loss and satisfies
F (v) > maxz∈Z vz for all v ∈ Z . Also, up to an exponen-
tially small correction, it holds that F (tv) ' tmaxz∈Z vz
for v 6= 0 and large positive t. This fact and Lemma 11
imply that λF,R(tv, y) ' t[−(RTv)y + maxz∈Z vz] ≤ 0
for y ∈ arg maxy∈Y(RTv)y. If we choose v such that
this inequality is strict, this diverges to negative infinity

as t → ∞. Therefore, the weak-label loss constructed by
applying Theorem 7 to this F (v) with ∆(q) = 0 is not
bounded from below. To provide a concrete example, we
examine partial labels as described in Example 2. Here, we
take a reconstruction matrix

R =

1 0 0 3−2p
3(1−p)

3−2p
3(1−p) − 3−p

3(1−p)
1
3

0 1 0 3−2p
3(1−p) − 3−p

3(1−p)
3−2p
3(1−p)

1
3

0 0 1 − 3−p
3(1−p)

3−2p
3(1−p)

3−2p
3(1−p)

1
3

 ,

(14)

and we set p = 0.1. Figures 1(a–c) show contour plots
of lW(p, y) for all p ∈ P(Z) and y = (0, 0, 1), (1, 1, 0),
and (1, 1, 1). We can just rotate these plots to find the plots
for the other weak labels. Among these, lW(p, (1, 1, 0)) is
not bounded from below. To make the divergence clearer,
Fig. 1(d) shows the same function on the line satisfying
p1 = p2. The plot suggests that the loss indeed diverges
logarithmically to negative infinity, or equivalently, it di-
verges linearly in the logit, which is consistent with the
above discussion.

5.2. Sufficient Condition for Lower-Boundedness

Now, we are ready to state a sufficient condition for T -
proper losses to be bounded from below. Lemma 11 implies
that if F (v) − maxy∈Y(RTv)y has a lower bound on C,
then Condition 1 in Theorem 7 is automatically satisfied.
Therefore, we have the following theorem.
Theorem 13. Let T be a label transition matrix for weak
labels Y , and let F : C ⊂ 1⊥Z → R be a closed convex
function. If F (v)−maxy∈Y(RTv)y is bounded from below
in C, then a weak-label loss lW(q, y) = λF,R(∇F ∗(q), y)
is T -proper and lower-bounded, whereR is a reconstruction
matrix of T ,∇F ∗(q) is a subgradient function of the convex
conjugate F ∗(q) of F (v), and the function λF,R is defined
as λF,R(v, y) = −(RTv)y + F (v).

Theorem 13 gives a sufficient condition for a T -proper loss
to have a lower bound, but it is not necessary. For example,
a T -proper loss is not of the above form whenever it has
a contribution of ∆(q), as in Theorem 7, that cannot be
absorbed in λF,R(q, y). Still, Theorem 13 gives a large class
of lower-bounded T -proper losses that are parameterized
by a convex function F that is constrained only by a single
inequality.

We can also interpret the condition in Theorem 13 in terms
of its dual, or the Bayes risk. Crudely speaking, the con-
dition can be understood as a constraint to ensure that the
Bayes risk is finite at “class probabilities given a weak label.”
More precisely, the following proposition paraphrases the
condition imposed on F in Theorem 13 into a condition on
F ∗. See Appendix C.5 for a proof.
Proposition 14. Let R be a reconstruction matrix for weak
labels Y , and let F : C ⊂ 1⊥Z → R be a closed convex
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Algorithm 1 Training of the linear model with the
backward-corrected cross entropy and generalized logit
squeezing.

Input: training dataD = {(xi,yi)}, reconstruction matrix
R, coefficient k, exponent α, batch size N , SGD-like
algorithm A.

Output: weight matrix W
Initialize weights W
repeat

Sample minibatch (X,y) from D
V ← XWT

lce ← 1
N

∑N
i=1 [−(V R)iyi + log

∑
z exp(viz)]

lgLS ← 1
N

∑N
i=1

∑
z
k
2 |viz|

α

l← lce + lgLS
Update W by using an algorithm A

until a stopping criterion is met

function. Then, F (v) −maxy∈Y(RTv)y is bounded from
below in C if and only if F ∗(Rey) < ∞ for all y ∈ Y ,
where ey ∈ P(Y) is a distribution over weak labels that
concentrates on a single weak label y.

The condition F ∗(Rey) < ∞ can be informally para-
phrased as L(Rey) > −∞, because F ∗ and −L are equal
in P(Z). Note, however, that Rey is not necessarily in
P(Z) because of the negative components of R, and there-
fore, F ∗ and −L may not be equal at Rey .

A function λF,R(v, y) is convex as a function of v ∈ C,
because it is a sum of the linear function (RTv)y and a
convex function F (v) (van Rooyen & Williamson, 2018).
As with proper losses, therefore, we can obtain the benefits
of the convexity of λF,R(v, y) by using C-valued models.

5.3. Generalized Logit Squeezing

If we note that maxy∈Y(RTv)y is a positively homoge-
neous function of degree 1, then any convex function F that
grows superlinearly satisfies the condition of Theorem 13.
This fact leads to the following corollary of Theorem 13,
which gives a useful way to regularize an unbounded loss.

Corollary 15. Let F : C ⊂ 1⊥Z → R be a convex function,
let α be a real number that is greater than 1, and let k be a
positive number. We define a convex function F ′ as

F ′(v) = F (v) +
k

2

∑
z∈Z
|vz|α (15)

for v ∈ C. Then, a weak-label loss lW(q, y) =
λF ′,R(∇F ′∗(q), y) is T -proper and lower-bounded.

To facilitate the use of this corollary, we present pseudocode
for training the linear model with the backward-corrected
cross entropy loss in Algorithm 1.

Table 1. Comparison of three losses. BC, GA, and gLS respectively
stand for backward correction, gradient ascent, and generalized
logit squeezing.

Proper Bounded

BC 3 7
BC + GA 7 3
BC + gLS 3 3

The term
∑
z∈Z |vz|α is convex if and only if α ≥ 1. The

conclusion of the corollary for α = 1 depends on the precise
form of F and the value of k.

Corollary 15 indicates that if a T -proper loss associated with
F is not bounded from below, then we can replace F with
F + k

2

∑
z∈Z |vz|α to make the loss bounded while keeping

its T -properness. We refer to the proposed regularization
scheme of Eq. (15) as generalized logit squeezing (gLS).
The special case with α = 2 has the same form as the reg-
ularization schemes called feature contraction (Li & Maki,
2018) and logit squeezing (Kannan et al., 2018). Those
previous studies focused on the performance of supervised
learning (Li & Maki, 2018) or adversarial robustness (Kan-
nan et al., 2018), and they were mostly empirical. On the
other hand, gLS has a solid theoretical foundation that guar-
antees its asymptotic success in weakly supervised learning.

Although gLS might appear similar to Lp regularization,
they are different concepts. gLS penalizes a model’s large
output values, whereas normal Lp regularization pulls train-
ing trajectories toward smaller norms of the weights. They
both restrict the model space but in different ways, and their
actual effects on learning might be very different. On the
other hand, if v ∈ C is a linear function of the weights, then
gLS is closely related to Lp regularization, because the gLS
term is a positively homogeneous function of degree α on
the weights. In this particular case, the two regularization
schemes could be expected to work in a similar way.

6. Experiment
In this section, we experimentally compare three differ-
ent losses, all of which derive from the cross-entropy loss,
to demonstrate the effectiveness of lower-bounded proper
losses2. Table 1 summarizes these losses. We take the
backward correction (BC) of the softmax cross entropy as a
baseline loss:

λF,R(v, y) = −(RTv)y + log
∑
z∈Z

evz , (16)

which is proper but lower-unbounded. Here, v is so-called
logits, which can be converted into class posterior probabili-

2The code is publicly available at https://github.com/
yoshum/lower-bounded-proper-losses.

https://github.com/yoshum/lower-bounded-proper-losses
https://github.com/yoshum/lower-bounded-proper-losses
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Table 2. Mean and sample standard deviation of the test accuracy. The best accuracy for each dataset and model is shown in boldface. BC:
backward correction; GA: gradient ascent; gLS: generalized logit squeezing, with the exponent α fixed to 2.

Weight decay MNIST, linear MNIST, MLP CIFAR-10, ResNet-20 CIFAR-10, WRN-28-2

BC fixed 81.52± 1.44% 83.09± 0.67% 28.86± 2.06% 29.57± 1.58%
BC tuned 83.56± 0.87% 83.30± 1.01% 29.56± 1.49% 30.02± 1.49%
BC + GA fixed 78.57± 1.82% 87.88± 1.11% 34.39± 2.96% 36.87± 2.26%
BC + GA tuned 80.63± 1.01% 89.15± 0.75% 35.36± 1.80% 36.90± 2.52%
BC + gLS fixed 83.77± 0.55% 88.63± 0.38% 49.71± 3.04% 49.98± 2.59%

ties with the softmax function. In our experiments, this loss
is made bounded from below in two different ways. The
first way is to apply gLS to the backward-corrected cross
entropy and use

λF,R(v, y) = −(RTv)y + log
∑
z∈Z

evz +
k

2

∑
z∈Z
|vz|α.

(17)

For brevity, we refer to this loss as BC + gLS. It is proper
and lower-bounded if α > 1, while it becomes improper and
lower-unbounded if α < 1. The properties for the boundary
case of α = 1 depend on the value of k. The other way to
make the loss bounded from below is to use gradient ascent
(GA) (Kiryo et al., 2017; Ishida et al., 2019; Lu et al., 2020),
which updates a model in the ascending direction of the loss
surface when the empirical class-conditional risk becomes
negative. GA makes the training objective bounded from
below but improper.

6.1. Setup

As a specific example of weak labels, we experimented with
complementary labels (Ishida et al., 2017; Yu et al., 2018;
Ishida et al., 2019). Let c be any category label. Then, a
complementary label c put on an instance indicates that it
belongs to a category other than c. For K-class classifica-
tion, (unbiased) complementary labels are characterized by
the following transition matrix:

T =
1

K − 1
(1K − IK), (18)

where 1K is the K × K matrix with all elements 1, and
IK is the K ×K identity matrix. This can be seen as an
extreme case of noisy labels, where a label is corrupted with
probability 1.

We evaluated the effectiveness of the losses on the
MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky,
2009) datasets. To each instance in these datasets, we ran-
domly assigned a complementary label with conditional
probabilities given the ground-truth category, which is given
by Eq. (18). For each dataset, we trained two models: a lin-
ear model and a feed-forward network with one hidden layer
(multilayer perceptron; MLP) were used with MNIST, and

ResNet-20 (He et al., 2016) and Wide-ResNet (WRN) 28-
2 (Zagoruyko & Komodakis, 2016) were used with CIFAR-
10. We used stochastic gradient descent with momentum
to optimize the models. The momentum was fixed to 0.9,
while the initial learning rates were chosen as those giving
the best validation accuracy. The default value of the weight
decay was 10−4, but we also tuned it with BC and BC + GA
to compare its effect with that of gLS. More details on the
experimental procedure and the hyperparameters are given
in Appendix G.

6.2. Results

In Table 2, we list the mean and the sample standard de-
viation of the test accuracy for 16 trials with the chosen
hyperparameters. Here, we tuned the coefficient k and fixed
the exponent α = 2 for BC + gLS. If the weight decay
was fixed to the default value for all the models, BC + gLS
achieved the best test accuracy by a clear margin. It was par-
ticularly effective on the CIFAR-10 benchmark, which used
more complex models. This is reasonable, because complex
models are easier to fit to an unbounded training loss and
are affected more severely than simple models; therefore,
they are more sensitive to how the lower-unboundedness is
prevented by regularization.

On the other hand, the effects of tuning the weight decay
were not consistent among the different models. In the
experiments with BC without GA, we found that tuning the
weight decay brought a gain of approximately 2% to the
linear model, which enabled BC to achieve performance
comparable to that of the proposed method (BC + gLS), but
the gains were insignificant for the other models. This is
consistent with the observation that in the linear model, the
two regularization schemes have similar functional forms,
as explained in the previous section. By contrast, a larger
weight decay seemed to penalize complex models too much
and cause underfitting before it prevented loss divergence.
The experiments with BC + GA showed a similar trend,
except for the MLP model, which exhibited a gain of about
2% from tuning the weight decay. Overall, the weight decay
could narrow or close the gap between the baselines and the
proposed method for simpler models, but it did not have a
significant effect for deeper models, which more severely
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Figure 2. Sensitivity of the test accuracy to the coefficient of the
squared logit term in Eq. (17). The bars represent the sample stan-
dard deviations. The horizontal lines indicate the test accuracies of
BC (dotted) and BC + GA (dashed-dotted) with the weight decay
coefficients that achieved the best validation accuracy.
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Figure 3. Performance of gLS for different exponents. The bars
represent the sample standard deviations. The gray region (α < 1)
represents the regime in which gLS yields an improper, lower-
unbounded loss. The horizontal lines indicate the test accuracies of
BC (dotted) and BC + GA (dashed-dotted) with the weight decay
coefficients that achieved the best validation accuracy.

suffer from overfitting due to a lower-unbounded loss.

We also examined how sensitive the accuracy is to the co-
efficient k of the gLS term in Eq. (17). Figure 2 shows the
test accuracies for different k values on CIFAR-10 trained
with WRN-28-2, and it indicates two findings. First, the
test accuracy depended significantly on k, and it is thus
important to choose an appropriate value of k to obtain the
best results. In a sense, this is an obvious conclusion: both
of the limits, k → 0 and k →∞, are undesirable, because
the former would converge to BC, while the latter would
lead to a model that outputs zero for any input; therefore,
there should be an optimal value of k. Second, however, the
figure indicates that the results were not too sensitive to k
and that BC + gLS yielded better results over two orders of
magnitude of k as compared to the other methods.

As Corollary 15 indicates, gLS yields lower-bounded T -
proper losses as long as α > 1. In Figure 3, we show
the test accuracies on CIFAR-10 trained with WRN-28-
2 by using various exponents. The results demonstrate
that gLS gave superior results as compared to the baseline
methods, even with α 6= 2. Interestingly, the test accuracies
improved as α → 1. As α became less than 1, however,
the test accuracies immediately dropped to values similar
to the baselines. This observation not only validates the
effectiveness of our proposed approach but also underlines
the importance of using T -proper and lower-bounded losses,
which is the central premise that motivated our theoretical
analysis.

7. Conclusion
In this paper, we have discussed proper losses for weakly
supervised classification. We first derived the dual repre-
sentation of proper losses for supervised learning. Instead
of the Bayes risk, which plays a central role in the Savage
representation, the derived theorem represents a loss with a
function related to the convex conjugate of the Bayes risk.
We then used this theorem to characterize T -proper losses
and derived a sufficient condition for them to be bounded
from below. These theoretical findings led to a novel regu-
larization scheme called generalized logit squeezing (gLS),
which prevents any proper weak-label loss from diverging
to negative infinity, while keeping the properness of the
original loss. We also experimentally demonstrated the ef-
fectiveness of our proposed approach. Remarkably, gLS
yielded superior results as compared to the baseline methods
regardless of the precise values of the hyperparameters that
are specific to gLS, as long as those parameters were in the
regime in which gLS gives T -proper and lower-bounded
losses.
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