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Abstract

Self-supervised learning on graph-structured data
has drawn recent interest for learning general-
izable, transferable and robust representations
from unlabeled graphs. Among many, graph con-
trastive learning (GraphCL) has emerged with
promising representation learning performance.
Unfortunately, unlike its counterpart on image
data, the effectiveness of GraphCL hinges on ad-
hoc data augmentations, which have to be manu-
ally picked per dataset, by either rules of thumb
or trial-and-errors, owing to the diverse nature of
graph data. That significantly limits the more gen-
eral applicability of GraphCL. Aiming to fill in
this crucial gap, this paper proposes a unified bi-
level optimization framework to automatically,
adaptively and dynamically select data augmen-
tations when performing GraphCL on specific
graph data. The general framework, dubbed JOint
Augmentation Optimization (JOAO), is instanti-
ated as min-max optimization. The selections
of augmentations made by JOAO are shown to
be in general aligned with previous “best prac-
tices” observed from handcrafted tuning: yet
now being automated, more flexible and versa-
tile. Moreover, we propose a new augmentation-
aware projection head mechanism, which will
route output features through different projec-
tion heads corresponding to different augmen-
tations chosen at each training step. Extensive
experiments demonstrate that JOAO performs on
par with or sometimes better than the state-of-
the-art competitors including GraphCL, on multi-
ple graph datasets of various scales and types,
yet without resorting to any laborious dataset-
specific tuning on augmentation selection. We
release the code at https://github.com/
Shen-Lab/GraphCL_Automated.
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1. Introduction
Self-supervised learning on graph-structured data has raised
significant interests recently (Hu et al., 2019; You et al.,
2020b; Jin et al., 2020; Hu et al., 2020b; Hwang et al.,
2020; Manessi & Rozza, 2020; Zhu et al., 2020a; Peng
et al., 2020a; Rong et al., 2020; Jin et al., 2021b; Wu et al.,
2021; Roy et al., 2021; Huang et al., 2021; Li et al., 2021).
Among many others, graph contrastive learning methods
extend the contrastive learning idea (He et al., 2020; Chen
et al., 2020c), originally developed in the computer vision
domain, to learn generalizable, transferable and robust rep-
resentations from unlabeled graph data (Veličković et al.,
2018; Sun et al., 2019; You et al., 2020a; Qiu et al., 2020;
Hassani & Khasahmadi, 2020; Zhu et al., 2020b;c; Chen
et al., 2020b;a; Ren et al., 2019; Park et al., 2020; Peng et al.,
2020b; Jin et al., 2021a; Wang & Liu, 2021).

Nevertheless, unlike images, graph datasets are abstractions
of diverse nature (e.g. pandemics, citation networks, bio-
chemical molecules, or social networks). Such a unique
diversity challenge was not fully addressed by prior graph
self-supervised learning approaches (Hu et al., 2019; You
et al., 2020a;b). For example, the state-of-the-art graph con-
trastive learning framework, GraphCL (You et al., 2020a),
constructs specific contrastive views of graph data via hand-
picking ad-hoc augmentations for every dataset (You et al.,
2020a; Zhao et al., 2020; Kong et al., 2020). The choice
of augmentation follows empirical rules of thumb, typi-
cally summarized from many trial-and-error experiments
per dataset. That seriously prohibits GraphCL and its vari-
ants from broader applicability, considering the tremendous
heterogeneity of practical graph data. Moreover, even such
trial-and-error selection of augmentations relies on a labeled
validation set for downstream evaluation, which is not al-
ways available (Dwivedi et al., 2020; Hu et al., 2020a).

Contributions. Given a new and unseen graph dataset, can
our graph contrastive learning methods automatically se-
lect their data augmentation, avoiding ad-hoc choices or te-
dious tuning? This paper targets at overcoming this crucial,
unique, and inherent hurdle. We propose joint augmentation
optimization (JOAO), a principled bi-level optimization
framework that learns to select data augmentations for the
first time. To highlight, the selection framework by JOAO is:
(i) automatic, completely free of human labor of trial-and-
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error on augmentation choices; (ii) adaptive, generalizing
smoothly to handling diverse graph data; and (iii) dynamic,
allowing for augmentation types varying at different training
stages. Compared to previous ad-hoc, per-dataset and pre-
fixed augmentation selection, JOAO achieves an unprece-
dented degree of flexibility and ease of use. We summarize
our contributions:

• Leveraging GraphCL (You et al., 2020a) as the base-
line model, we introduce joint augmentation optimization
(JOAO) as a plug-and-play framework. JOAO is the first
to automate the augmentation selection when perform-
ing contrastive learning on specific graph data. It frees
GraphCL from expensive trial-and-errors, or empirical
ad-hoc rules, or any validation based on labeled data.

• JOAO can be formulated as a unified bi-level optimization
framework, and be instantiated as min-max optimization.
It takes inspirations from adversarial perturbations as data
augmentations (Xie et al., 2020), and can be solved by an
alternating gradient-descent algorithm.

• In accordance with diverse and dynamic augmentations
enabled by JOAO, we design a new augmentation-aware
projection head for graph contrastive learning. The ra-
tionale is to avoid too many complicated augmentations
distorting the original data distribution. The idea is to
keep one nonlinear projection head per augmentation pair,
and each time using the single head corresponding to the
augmentation currently selected by JOAO.

• Extensive experiments demonstrate that GraphCL with
JOAO performs on par with or even sometimes better
than state-of-the-art (SOTA) competitors, across multiple
graph datasets of various types and scales, yet without
resorting to tedious dataset-specific manual tuning or do-
main knowledge. We also show the augmentation selec-
tions made by JOAO are in general informed and often
aligned with previous “best practices”.

We leave two additional remarks: (1) JOAO is designed to
be flexible and versatile. Although this paper mainly demon-
strates JOAO on GraphCL, they are not tied with each other.
The general optimization formulation of JOAO allows it to
be easily integrated with other graph contrastive learning
frameworks too. (2) JOAO is designed for automating the
tedious and ad-hoc augmentation selection. It intends to
match the state-of-the-art results achieved by exhaustive
manual tuning, but not necessarily to surpass them all. To
re-iterate, our aim is to scale up graph contrastive learning
to numerous types and scales of graph data in the real world,
via a hassle-free framework rather than tuning one by one.

2. Preliminaries and Notations
Graph neural networks (GNNs) have grown into powerful
tools to model non-Euclidean graph-structured data arising

from various fields (Xu et al., 2018; You et al., 2020c; You
& Shen, 2020; Liu et al., 2020; Zhang et al., 2020). Let
G = {V,E}1 denote an undirected graph in the space G
with V and E being the set of nodes and edges, respectively,
and Xv ∈ RD for v ∈ V being node features. A GNN is
defined as the mapping f : G → RD′ that encodes a sample
graph G into an D′-dimensional vector.

Self-supervised learning on graphs is shown to learn more
generalizable, transferable and robust graph representations,
through exploiting vast unlabelled data (Jin et al., 2020;
Hu et al., 2020b; Hwang et al., 2020; Manessi & Rozza,
2020; Zhu et al., 2020a; Peng et al., 2020a; Rong et al.,
2020; Jin et al., 2021b; Wu et al., 2021; Roy et al., 2021;
Huang et al., 2021; Li et al., 2021). However, earlier self-
supervised tasks often need to be carefully designed with
domain knowledge (You et al., 2020b; Hu et al., 2019) due
to the intrinsic complicacy of graph datasets.

Graph contrastive learning recently emerges as a promising
direction (Veličković et al., 2018; Sun et al., 2019; Qiu et al.,
2020; Hassani & Khasahmadi, 2020; Zhu et al., 2020b;c;
Chen et al., 2020b;a; Ren et al., 2019; Park et al., 2020; Peng
et al., 2020b; Jin et al., 2021a; Wang & Liu, 2021). For ex-
ample, the SOTA GraphCL framework (You et al., 2020a)
enforces the perturbation invariance in GNNs through maxi-
mizing agreement between two augmented views of graphs:
an overview is illustrated in Figure 1.

Contrastive loss
optimization

Figure 1: Overview of the GraphCL pipeline in (You et al., 2020a).

Specifically, we denote the input graph-structured
sample G from certain empirical distribution PG. Its
samples two random augmentation operators A1,A2

from a given pool of augmentation types as A =
{NodeDrop,Subgraph,EdgePert,AttrMask, Identical}
(You et al., 2020a) and A ∈ A : G → G. GraphCL (You
et al., 2020a) optimizes the following loss:

minθ L(G,A1,A2, θ)

= minθ

{
(−EPG×P(A1,A2)

sim(

Positive pairs︷ ︸︸ ︷
Tθ,1(G),Tθ,2(G)) (1)

+ EPG×PA1
log(EPG′×PA2

exp(sim(Tθ,1(G),Tθ,2(G′)︸ ︷︷ ︸
Negative pairs

)))
}
,

1We use the sans-serif typeface to denote a random variable
(e.g. G). The same letter in the italic font (e.g. G) denotes a sample,
and the calligraphic font (e.g. G) denotes the sample space.
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where Tθ,i = Ai ◦ fθ′ ◦ gθ′′ (i = 1, 2) is parameterized by
θ = {θ′, θ′′}, and fθ′ : G → RD′ , gθ′′ : RD′ → RD′′ are
the shared-weight GNN and projection head, respectively,
sim(u, v) = uTv

‖u‖‖v‖ is the cosine similarity function, PG′ =

PG acts as the negative sampling distribution, and PA1
and

PA2 are the marginal distributions. After the contrastive
pre-training, the pre-trained fθ′∗ can be further leveraged
for various downstream task fine-tuning.

In the current GraphCL framework, (A1,A2) are selected by
hand and pre-fixed for each dataset. In other words, P(A1,A2)

is a Dirac distribution with the only spike at the selected
augmentation pair. Yet given new graph data, how to select
(A1,A2) relies on no more than loose heuristics.

3. Methodology
3.1. JOAO: The Unified Framework

One clear limitation in (1) is that one needs to pre-define the
sampling distribution P(A1,A2) based on prior rules, and only
a Dirac distribution (i.e., only one pair for each dataset) was
explored. Rather, we propose to dynamically and automati-
cally learn to optimize P(A1,A2) when performing GraphCL
(1), via the following bi-level optimization framework:

minθ L(G,A1,A2, θ),

s.t. P(A1,A2) ∈ arg minP(A′1,A′2)
D(G,A′1,A

′
2, θ), (2)

We refer to (2) as joint augmentation optimization (JOAO),
where the upper-level objective L is the same as the
GraphCL objective (or the objective of any other graph
contrastive learning approach), and the lower-level objec-
tive D optimizes the sampling distribution P(A1,A2) jointly
for augmentation-pair selections. Notice that JOAO (2) only
exploits the signals from the self-supervised training itself,
without accessing downstream labeled data for evaluation.

3.2. Instantiation of JOAO as Min-Max Optimization

Motivated from adversarial training (Wang et al., 2019; Xie
et al., 2020), we follow the same philosophy to always ex-
ploit the most challenging data augmentation of the current
loss, hence instantiating the general JOAO framework as a
concrete min-max optimization form:

minθ L(G,A1,A2, θ),

s.t. P(A1,A2) ∈ arg maxP(A′1,A′2)

{
L(G,A′1,A

′
2, θ)

− γ

2
dist(P(A′1,A

′
2),Pprior)

}
, (3)

where γ ∈ R≥0, Pprior is the prior distribution on all possi-
ble augmentations, and dist : P × P → R≥0 is a distance
function between the sampling and the prior distribution
(P is the probability simplex). Thereby, JOAO’s formula-
tion aligns with the idea of model-based adversarial training

(Robey et al., 2020), where adversarial training is known to
boost generalization, robustness and transferability (Robey
et al., 2020; Wang et al., 2019).

In this work, we choose Pprior as the uniform distribu-
tion to promote diversity in the selections, following a
common principle of maximum entropy (Guiasu & Shen-
itzer, 1985) in Bayesian learning. No additional infor-
mation is assumed about the dataset or the augmentation
pool. In practice, it encourageds more diverse augmen-
tation selections rather than collapsing to few. Compari-
son between the formulations with and without the prior
is shown in Table S5 of Appendix E. We use a squared
Euclidean distance for dist(·, ·). Accordingly, we have
dist(P(A1,A2),Pprior) =

∑|A|
i=1

∑|A|
j=1(pij − 1

|A|2 )2 where
the probability pij = Prob(A1 = Ai,A2 = Aj).

We will next present how to optimize (3). Following (Wang
et al., 2019), we adopt the alternating gradient descent algo-
rithm (AGD), alternating between upper-level minimization
and lower-level maximization, as outlined in Algorithm 1.

Algorithm 1 AGD for optimization (3)

Input: initial parameter θ(0), sampling distribution
P(0)

(A1,A2), optimization step N .
for n = 1 to N do

1. Upper-level minimization: fix P(A1,A2) = P(n−1)
(A1,A2),

and call equation (4) to update θ(n).
2. Lower-level maximization: fix θ = θ(n), and call
equation (9) to update P(n)

(A1,A2).
end for
Return: Optimized parameter θ(N).

Upper-level minimization. The upper-level minimization
w.r.t. θ follows the conventional gradient descent proce-
dure as in the GraphCL optimization (1) given the sampling
distribution P(A1,A2), represented as:

θ(n) = θ(n−1) − α′OθL(G,A1,A2, θ), (4)

where α′ ∈ R>0 is the learning rate.

Lower-level maximization. Since it is not intuitive to di-
rectly calculate the gradient of the lower-level objective w.r.t.
P(A1,A2), we first rewrite the contrastive loss in (1) as:

L(G,A1,A2, θ) =

|A|∑
i=1

|A|∑
j=1

Targeted︷︸︸︷
pij

{
− EPG

sim(T iθ(G), T jθ (G))

+ EPG
log(

|A|∑
j′=1

pj′︸︷︷︸
Undesired

EPG′ exp(sim(T iθ(G), T j
′

θ (G′))))
}
,

(5)

where T iθ = Ai ◦ fθ′ ◦ gθ′′ , (i = 1, ..., 5), and the marginal
probabilities pj′ = pj = Prob(A2 = Aj). In the equation
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Figure 2: Empirical training curves of AGD in JOAO on datasets
NCI1 and PROTEINS with different γ values.

(5), we expand the expectation on augmentations A1,A2

into the form of weighted summation related to pij in order
to calculate the gradient. However, within the expectation
on G of the negative pair term there is the marginal proba-
bilities pj′ entangled, and therefore we make the following
numerical approximation for the lower bound of the negative
pair term to disentangle pij in the equation (5):

EPG×PA1
log(EPG′×PA2

exp(sim(Tθ,1(G),Tθ,2(G′))))

≥EPG×PA1
×PA2

log(EPG′ exp(sim(Tθ,1(G),Tθ,2(G′))))

≈EPG×P(A1,A1)
log(EPG′ exp(sim(Tθ,1(G),Tθ,2(G′)))),

(6)

where the first inequality comes from Jensen’s inequality,
and the second approximation is numerical. It results in the
approximated contrastive loss:

L(G,A1,A2, θ) ≈
|A|∑
i=1

|A|∑
j=1

Targeted︷︸︸︷
pij `(G, A

i, Aj , θ)

=

|A|∑
i=1

|A|∑
j=1

pij

{
− EPG

sim(T iθ(G), T jθ (G))

+ EPG
log(EPG′ exp(sim(T iθ(G), T jθ (G′))))

}
. (7)

Through approximating the contrastive loss, the lower-level
maximization in the optimization (3) is rewritten as:

P(A1,A2) ∈ arg maxp∈P,p=[pij ],i,j=1,...,|A|{ψ(p)},

ψ(p) =

|A|∑
i=1

|A|∑
j=1

pij`(G, A
i, Aj , θ)− γ

2

|A|∑
i=1

|A|∑
j=1

(pij −
1

|A|2
)2,

(8)

where ψ(p) is a strongly-concave function w.r.t. p in the
probability simplex P . Thus, a projected gradient descent
(Wang et al., 2019; Boyd et al., 2004) is performed to update
the sampling distribution P(A1,A2) for selecting augmenta-
tion pairs, expressed as:

b = p(n−1) + α′′Opψ(p(n−1)),p(n) = (b− µ1)+, (9)

where α′′ ∈ R>0 is the learning rate, µ is the root of the
equation 1T(b − µ1) = 1, and (·)+ is the element-wise

non-negative operator. µ can be efficiently found via the
bi-jection method (Wang et al., 2019; Boyd et al., 2004).

Even though an optimizer with theoretical guarantee of con-
vergence for non-convex non-concave min-max problems
remains an open challenge, we acknowledge that AGD is an
approximation of solving the bi-level optimization (3) pre-
cisely, which typically costs Bayesian optimization (Srinivas
et al., 2010; Snoek et al., 2012), automatic differentiation
(Luketina et al., 2016; Franceschi et al., 2017; Baydin et al.,
2017; Shaban et al., 2019), or first-order techniques based
on some inner-loop approximated solution (Maclaurin et al.,
2015; Pedregosa, 2016; Gould et al., 2016). As most of
them suffer from high time or space complexity, AGD was
adopted as an approximated heuristic mainly for saving
computational overhead. It showed some level of empirical
convergence as seen in Figure 2.

3.2.1. SANITY CHECK: JOAO RECOVERS
AUGMENTATION-PAIRS ALIGNED WITH
PREVIOUS “BEST PRACTICES”

How reasonable are the JOAO-selected augmentation pairs
per dataset? This section pass JOAO through a sanity check,
by comparing its selections with the previous trial-and-error
findings by manually and exhaustively combining differ-
ent augmentations (using downstream labels for validation)
(You et al., 2020a).

Table 1: Datasets statistics.

Datasets Category Graph Num. Avg. Node Avg. Degree
NCI1 Biochemical Molecules 4110 29.87 1.08

PROTEINS Biochemical Molecules 1113 39.06 1.86
COLLAB Social Networks 5000 74.49 32.99

RDT-B Social Networks 2000 429.63 1.15

To examine such alignment, we visualize in the top row
of Figure 3 the JOAO-optimized sampling distributions
P(A1,A2), and in the bottom row the GraphCL’s manual trial-
and-error results over various augmentation pairs, for four
different datasets (data statistics in Table 1). Please refer to
the caption on Figure 3 how to interpret the percentage num-
bers in the top and bottom rows respectively. Overall, we
observe a decent extent of alignments between the two rows’
trends and especially the high-value locations, indicating
that: if an augmentation pair was manually verified to yield
better GraphCL results, it is also more likely to be selected
by JOAO. More specifically we can see: (1) augmentation
pairs containing EdgePert and AttrMask are more likely to
be selected for biochemical molecules and denser graphs,
respectively; (2) NodeDrop and Subgraph are generally
adopted on all four datasets; and (3) the augmentation pairs
of two identy transformations are completely abandoned
by JOAO, and those pairs with more diverse transformation
types are more desired. All those observations are well
aligned with the “rules of thumb” summarized in (You et al.,
2020a). More discussions are provided in Appendix D.
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Figure 3: Top row: sampling distributions (%, defined as the percentage of this specific augmentation pair being selected during the
entire training process) for augmentation pairs selected by JOAO on four different datasets (NCI1, PROTEINS, COLLAB, and RDT-B ).
Bottom row: GraphCL performance gains (classification accuracy %, see (You et al., 2020a) for the detailed setting) when exhaustively
trying every possible augmentation pair. Note that the percentage numbers in the first and second rows have different meanings and are
not apple-to-apple comparable; however, the overall alignments between the two rows’ trends and high-value locations indicate that, if an
augmentation pair was manually verified to yield better GraphCL results, it is also more likely to be selected by JOAO. Warmer (colder)
colors indicate higher (lower) values, and white marks 0.

Therefore, the selections of augmentations made by JOAO
are shown to be generally consistent with previous “best
practices” observed from manual tuning – yet now being
fully automated, flexible, versatile. It is also achieved with-
out using any downstream task label, while (You et al.,
2020a) would hinge on a labeled set to compare two aug-
mentations by their downstream performance.

3.3. Augmentation-Aware Multi-Projection Heads:
Addressing A New Challenge from JOAO

JOAO conveys the blessing of diverse and dynamic augmen-
tations that are selected automatically during each GraphCL
training, which may yield more robust and invariant fea-
tures. However, that blessing could also bring up a new chal-
lenge: compared to one fixed augmentation pair through-
out training, those varying and more aggressive augmenta-
tions can distort the training distribution more (Lee et al.,
2020; Jun et al., 2020). Even mild augmentations, such as
adding/dropping nodes or edges, could result in graphs very
unlikely under the original distribution. Models trained with
these augmentations may fit the original distribution poorly.

To address this challenge arising from using JOAO, we intro-
duce multiple projection heads and an augmentation-aware
selection scheme into GraphCL, as glimpsed in Figure 4 (see
Figure S2 in Appendix D for a schematic diagram). Specif-
ically, we construct |A| projection heads each of which

corresponds to one augmentation type (|A| denotes the car-
dinality of the augmentation pool). Then during training,
once an augmentation is sampled, it will only go through
and update its corresponding projection head. The main idea
is to explicitly disentangle the distorted feature distributions
caused by various augmentation pairs, and each time we
only use the one head corresponding to the augmentation
currently selected by JOAO.

Contrastive loss
optimization

Figure 4: An overview of GraphCL with multiple augmentation-
aware projection heads where P(gΘ′′1

,gΘ′′2
) = P(A1,A2).

In mathematical forms, we route the output features
from f through the projection head sampled from
P(gΘ′′1

,gΘ′′2
) at each training step, where P(gΘ′′1

,gΘ′′2
) =

P(A1,A2), and Θ′′1 ,Θ
′′
2 denote the head parameters, re-

sulting in Tθ,i = Ai ◦ fθ′ ◦ gΘ′′i
, (i = 1, 2). Denot-

ing Lv2(G,A1,A2, θ
′,Θ′′1 ,Θ

′′
2) = EP(g

Θ′′1
,g

Θ′′2
)
L(G,A1,A2,

{θ′, (Θ′′1 ,Θ′′2)}), we could then integrate the augmentation-
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aware projection head mechanism into the JOAO framework,
referred to as JOAOv2:

minθ Lv2(G,A1,A2, θ
′,Θ′′1 ,Θ

′′
2),

s.t. P(A1,A2) ∈ arg maxP(A′1,A′2)

{
Lv2(G,A1,A2, θ

′,Θ′′1 ,Θ
′′
2)

− γ

2
dist(P(A′1,A

′
2),Pprior)

}
,

P(gΘ′′1
,gΘ′′2

) = P(A1,A2). (10)

Algorithm 1 could be easily adapted to solve (10) (see Al-
gorithm S1 of Appendix A).

Our preliminary experiments in Table 2 show that, without
bells and whistles, augmentation-aware projection heads
improve the performance upon JOAO under different aug-
mentation strengths. That aligns with the observations in
(Lee et al., 2020; Jun et al., 2020), showing that disentan-
gling augmented and original feature distributions could
have the model benefit more from stronger augmentations.

Table 2: Experiments with JOAO and JOAOv2 without explicit
hyper-parameter tuning under different augmentation strengths on
NCI1 and PROTEINS. A.S. is short for augmentation strength.

Datasets A.S. JOAO JOAOv2

NCI1 0.2 61.77±1.61 62.52±1.16
0.25 60.95±0.55 61.67±0.72

PROTEINS 0.2 71.45±0.89 71.66±1.10
0.25 71.61±1.65 73.01±1.02

We also plot the learned P(A1,A2) in Figure S1 of Appendix
D, where we can observe an ever stronger alignment than
presented in Figure 3.

4. Experiments
In this section, we evaluate our proposed methods, JOAO
and JOAOv2, against state-of-the-art (SOTA) competitors
including self-supervised approaches heuristically designed
with domain knowledge, and graph contrastive learning
(GraphCL) with pre-defined rules for augmentation selec-
tion, using the scenarios of datasets originated from diverse
sources, and datasets on specific bioinformatics domains.
An summary of main results can be found in Table 3.

Table 3: Summary of JOAO performance.

v.s. GraphCL v.s. Heuristic methods
Across diverse fields Comparable Better
On specific domains Better Worse

4.1. Datasets and Experiment Settings

Datasets. We use datasets of diverse nature from the bench-
mark TUDataset (Morris et al., 2020), including graph data

for small molecules & proteins (Riesen & Bunke, 2008;
Dobson & Doig, 2003), computer vision (Nene et al., 1996)
and various relation networks (Yanardag & Vishwanathan,
2015; Rozemberczki et al., 2020) of diverse statistics (see
Table S1 of Appendix B), under semi-supervised and unsu-
pervised learning. Additionally we gather domain-specific
bioinformatics datasets from the benchmark (Hu et al., 2019)
of relatively similar statistics (see Table S2 of Appendix
B), under transfer-learning tasks for predicting molecules’
chemical property or proteins’ biological function. Lastly
we take two large-scale benchmark datasets, ogbg-ppa &
ogbg-code from Open Graph Benchmark (OGB) (Hu et al.,
2020a) (see Table S3 of Appendix B for statistics) to evalu-
ate scalability under semi-supervised learning.

Learning protocols. Learning experiments are performed
in three settings, following the same protocols as in SOTA
work. (1) In semi-supervised learning (You et al., 2020a)
on datasets without the explicit training/validation/test split,
we perform pre-training with all data and did finetuning
& evaluation with K folds where K = 1

label rate ; and on
datasets with the train/validation/test split, we only perform
pre-training with the training data, finetuning on the partial
training data and evaluation on the validation/test sets. (2) In
unsupervised representation learning (Sun et al., 2019), we
pre-train using the whole dataset to learn graph embeddings
and feed them into a downstream SVM classifier with 10-
fold cross-validation. (3) In transfer learning (Hu et al.,
2019), we pre-train on a larger dataset then finetune and
evaluate on smaller datasets of the same category using the
given training/validation/test split.

GNN architectures & augmentations. We adopt the same
GNN architectures with default hyper-parameters as in the
SOTA methods under individual experiment settings. Specif-
ically, (1) in semi-supervised learning, ResGCN (Chen et al.,
2019) is used with 5 layers and 128 hidden dimensions, (2)
in unsupervised representation learning, GIN (Xu et al.,
2018) is used with 3 layers and 32 hidden dimensions, and
(3) in transfer learning and on large-scale OGB datasets,
GIN is used with 5 layers and 300 hidden dimensions. Plus,
we adopt the same graph data augmentations as in GraphCL
(You et al., 2020a) with the default augmentation strength
0.2. We tune the hyper-parameter γ controlling the trade-off
in the optimization (3) in the range of {0.01, 0.1, 1}.

4.2. Compared Algorithms.

Training from scratch (with augmentations) and graph
kernels. The naı̈ve baseline training from the random initial-
ization (with same augmentations as in GraphCL (You et al.,
2020a)) is compared, as well as SOTA graph kernel methods
including GL (Shervashidze et al., 2009), WL (Shervashidze
et al., 2011) and DGK (Yanardag & Vishwanathan, 2015).

Heuristic self-supervised methods. Heuristic self-
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Table 4: Semi-supervised learning on TUDataset. Shown in red are the best accuracy (%) and those within the standard deviation of the
best accuracy or the best average ranks. - indicates that label rate is too low for a given dataset size. L.R. and A.R. are short for label rate
and average rank, respectively. The compared results except those for ContextPred are as published under the same experiment setting.

L.R. Methods NCI1 PROTEINS DD COLLAB RDT-B RDT-M5K GITHUB A.R.↓
1% No pre-train. 60.72±0.45 - - 57.46±0.25 - - 54.25±0.22 7.6

Augmentations 60.49±0.46 - - 58.40±0.97 - - 56.36±0.42 6.6
GAE 61.63±0.84 - - 63.20±0.67 - - 59.44±0.44 4.0

Infomax 62.72±0.65 - - 61.70±0.77 - - 58.99±0.50 3.3
ContextPred 61.21±0.77 - - 57.60±2.07 - - 56.20±0.49 6.6

GraphCL 62.55±0.86 - - 64.57±1.15 - - 58.56±0.59 2.6
JOAO 61.97±0.72 - - 63.71±0.84 - - 60.35±0.24 3.0

JOAOv2 62.52±1.16 - - 64.51±2.21 - - 61.05±0.31 2.0
10% No pre-train. 73.72±0.24 70.40±1.54 73.56±0.41 73.71±0.27 86.63±0.27 51.33±0.44 60.87±0.17 7.0

Augmentations 73.59±0.32 70.29±0.64 74.30±0.81 74.19±0.13 87.74±0.39 52.01±0.20 60.91±0.32 6.2
GAE 74.36±0.24 70.51±0.17 74.54±0.68 75.09±0.19 87.69±0.40 53.58±0.13 63.89±0.52 4.5

Infomax 74.86±0.26 72.27±0.40 75.78±0.34 73.76±0.29 88.66±0.95 53.61±0.31 65.21±0.88 3.0
ContextPred 73.00±0.30 70.23±0.63 74.66±0.51 73.69±0.37 84.76±0.52 51.23±0.84 62.35±0.73 7.2

GraphCL 74.63±0.25 74.17±0.34 76.17±1.37 74.23±0.21 89.11±0.19 52.55±0.45 65.81±0.79 2.4
JOAO 74.48±0.27 72.13±0.92 75.69±0.67 75.30±0.32 88.14±0.25 52.83±0.54 65.00±0.30 3.5

JOAOv2 74.86±0.39 73.31±0.48 75.81±0.73 75.53±0.18 88.79±0.65 52.71±0.28 66.66±0.60 1.8

Table 5: Unsupervised representation learning on TUDataset. Red numbers indicate the top-3 accuracy (%) or the top-2 average ranks.
The compared results are from the published papers, and - indicates that results were not available in published papers. For MVGRL we
report the numbers with the NT-Xent loss to be comparable with GraphCL.

Methods NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B A.R.↓
GL - - - 81.66±2.11 - 77.34±0.18 41.01±0.17 65.87±0.98 7.4
WL 80.01±0.50 72.92±0.56 - 80.72±3.00 - 68.82±0.41 46.06±0.21 72.30±3.44 5.7

DGK 80.31±0.46 73.30±0.82 - 87.44±2.72 - 78.04±0.39 41.27±0.18 66.96±0.56 4.9
node2vec 54.89±1.61 57.49±3.57 - 72.63±10.20 - - - - 8.6
sub2vec 52.84±1.47 53.03±5.55 - 61.05±15.80 - 71.48±0.41 36.68±0.42 55.26±1.54 9.5

graph2vec 73.22±1.81 73.30±2.05 - 83.15±9.25 - 75.78±1.03 47.86±0.26 71.10±0.54 5.7
MVGRL - - - 75.40±7.80 - 82.00±1.10 - 63.60±4.20 7.2

InfoGraph 76.20±1.06 74.44±0.31 72.85±1.78 89.01±1.13 70.65±1.13 82.50±1.42 53.46±1.03 73.03±0.87 3.0
GraphCL 77.87±0.41 74.39±0.45 78.62±0.40 86.80±1.34 71.36±1.15 89.53±0.84 55.99±0.28 71.14±0.44 2.6

JOAO 78.07±0.47 74.55±0.41 77.32±0.54 87.35±1.02 69.50±0.36 85.29±1.35 55.74±0.63 70.21±3.08 3.3
JOAOv2 78.36±0.53 74.07±1.10 77.40±1.15 87.67±0.79 69.33±0.34 86.42±1.45 56.03±0.27 70.83±0.25 2.8

supervised methods are designed based on certain domain
knowledge, which work well when such knowledge is avail-
able and benefits downstream tasks. The compared ones
include: (1) edge-based reconstruction including GAE (Kipf
& Welling, 2016), node2vec (Grover & Leskovec, 2016)
and EdgePred (Hu et al., 2019), (2) vertex feature mask-
ing & recover, namely AttrMasking (Hu et al., 2019), (3)
sub-structure information preserving such as sub2vec (Ad-
hikari et al., 2018), graph2vec (Narayanan et al., 2017) and
ContextPred (Hu et al., 2019), and (4) global-local repre-
sentation consistency such as Infomax (Veličković et al.,
2018) & InfoGraph (Sun et al., 2019). We adopt the default
hyper-parameters published for these methods.

GraphCL with pre-fixed augmentation sampling rules.
For constructing the sampling pool of augmentations, we
follow the same rule as in (You et al., 2020a) that uses (1)
NodeDrop and Subgraph for biochemical molecules, (2) all
for dense relation networks, and (3) all except AttrMask for
sparse relation networks. The exact augmentations for each
dataset are shown in Table S4 of Appendix C.

4.3. Results

4.3.1. ON DIVERSE DATASETS FROM TUDATASET

The results of semi-supervised learning & unsupervised
representation learning on TUDataset are in Tables 4 & 5,
respectively. Through comparisons between (1) JOAO and
GraphCL, (2) JOAOv2 and JOAO, and (3) JOAOv2 and
heuristic self-supervised methods, we have the following
observations.

(i) With automated selection, JOAO is comparable to
GraphCL with ad hoc rules from exhaustive manual
tuning. With the automatic, adaptive, and dynamic aug-
mentation selection procedure, JOAO performs comparably
to GraphCL whose augmentations are based on empirical
ad-hoc rules gained from expensive trial-and-errors on the
same TUDatase. Specifically in semi-supervised learning
(Table 4), JOAO matches or beats GraphCL in 7 out of
10 experiments, albeit with a slightly worse average rank.
Similar observations were made in unsupervised learning
(Table 5). These results echo our earlier results in Section
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Table 6: Transfer learning on bioinformatics datasets. Red numbers indicate the top-3 performances (AUC of ROC in %). Results for
SOTA methods are as published.

Methods BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE PPI A.R.↓
No pre-train. 65.8±4.5 74.0±0.8 63.4±0.6 57.3±1.6 58.0±4.4 71.8±2.5 75.3±1.9 70.1±5.4 64.8±1.0 6.6

Infomax 68.8±0.8 75.3±0.5 62.7±0.4 58.4±0.8 69.9±3.0 75.3±2.5 76.0±0.7 75.9±1.6 64.1±1.5 5.3
EdgePred 67.3±2.4 76.0±0.6 64.1±0.6 60.4±0.7 64.1±3.7 74.1±2.1 76.3±1.0 79.9±0.9 65.7±1.3 3.8

AttrMasking 64.3±2.8 76.7±0.4 64.2±0.5 61.0±0.7 71.8±4.1 74.7±1.4 77.2±1.1 79.3±1.6 65.2±1.6 3.1
ContextPred 68.0±2.0 75.7±0.7 63.9±0.6 60.9±0.6 65.9±3.8 75.8±1.7 77.3±1.0 79.6±1.2 64.4±1.3 3.4

GraphCL 69.68±0.67 73.87±0.66 62.40±0.57 60.53±0.88 75.99±2.65 69.80±2.66 78.47±1.22 75.38±1.44 67.88±0.85 4.6
JOAO 70.22±0.98 74.98±0.29 62.94±0.48 59.97±0.79 81.32±2.49 71.66±1.43 76.73±1.23 77.34±0.48 64.43±1.38 4.5

JOAOv2 71.39±0.92 74.27±0.62 63.16±0.45 60.49±0.74 80.97±1.64 73.67±1.00 77.51±1.17 75.49±1.27 63.94±1.59 4.3

3.2.1 that automated selections of augmentation pairs made
by JOAO were generally consistent with GraphCL’s “best
practices” observed from manual tuning.

(ii) Augmentation-aware projection heads provide fur-
ther improvement upon JOAO. With augmentation-aware
projection heads introduced into JOAO, JOAOv2 further im-
proves the performance and sometimes even outperforms
GraphCL with the pre-defined rules of thumb for augmen-
tation selections. In semi-supervised learning (Table 4),
JOAOv2 achieves the best average ranks of 2.0 and 2.8 un-
der 1% and 10% label rate, respectively, and in unsupervised
representation learning (Table 5) its average rank (2.8) is
only edged by GraphCL (2.6). The performance acquired by
JOAOv2 echoes our conjecture in sec. 3.3 that such explicit
disentanglement of the distorted feature distributions caused
by various augmentation pairs would reel in the benefits
from stronger augmentations.

(iii) Across diverse datasets, JOAOv2 generally outper-
form heuristic self-supervised methods. On datasets orig-
inated from diverse sources, JOAOv2 generally outperforms
heuristic self-supervised methods. Specifically in Table 4,
JOAOv2 achieves no less than 0.3 average ranking gap with
all heuristic self-supervised methods under 1% label rate,
and 1.0 with all but Infomax under 10% label rate, which
outperforms JOAO but still underperforms JOAOv2, and in
Table 5 only InfoGraph outperforms JOAO but underper-
forms JOAOv2 where there is no less that 1.5 average rank-
ing gap between others and JOAOv2. This in general meets
our expectation that heuristic self-supervised methods can
work well when guided by useful domain knowledge, which
is hard to guarantee across diverse datasets. In contrast
JOAOv2 can dynamically and automatically adapt augmen-
tation selections during self-supervised training, exploiting
the signals (knowledge) from data.

4.3.2. ON SPECIFIC BIOINFORMATICS DATASETS.

The results of transfer learning on bioinfomatics datasets
are in Table 6. Similarly, through comparisons among
JOAO(v2), GraphCL and heuristic self-supervised meth-
ods, we make the following findings.

(iv) Without domain expertise incorporated, JOAOv2
underperforms some heuristic self-supervised methods
in specific domains. Nevertheless, converse to that on
diverse datasets, on the specific bioinformatics datasets,
JOAOv2 underperforms some heuristic self-supervised
methods designed with dataset-specific domain knowledge
(Hu et al., 2019) even though it improves average rank
against GraphCL and JOAO. As stated in Section 4.2, the
specific domain knowledge encoded in the compared heuris-
tically designed methods correlates with the downstream
datasets as shown in (Hu et al., 2019), which is not made
available to benefit JOAOv2 that works well for a general
dataset (as shown in Section 4.3.1), which may not suffice
to capture the sophisticated domain expertise. Therefore, to
make JOAOv2 even more competitive, domain knowledge
can be introduced into the framework, for instance through
proposing dataset-specific augmentation types and/or priors.
We leave this to future work.

(v) With better generalizability, JOAOv2 outperforms
GraphCL on unseen datasets. Different from results on
diverse datasets from TUDataset, both JOAO and JOAOv2
outperform GraphCL with empirically pre-defined rules for
augmentation selection on the unseen bioinfomatics datasets.
Specifically in Table 6 JOAO improves the average rank by
0.1 and JOAOv2 did by 0.3 compared to GraphCL. Note
that the sampling rules of GraphCL were empirically de-
rived from TUDataset hence these rules are not necessarily
effective for the previously-unseen bioinfomatics datasets.
In contrast, JOAOv2 dynamically and automatically learns
the sampling distributions during self-supervised training,
possessing the better generalizability.

4.3.3. ON LARGE-SCALE OGB DATASETS.

(vi) JOAOv2 scales up well for large datasets. Both
JOAO and JOAOv2 scale up for large datasets at least
as well as GraphCL does. In Table 7, for the ogbg-ppa
dataset, JOAO improved even more significantly compared
to GraphCL (by reference to earlier, smaller datasets), with
>3.49% and >1.55% accuracy gains at 1% and 10% label
rates, respectively.
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Table 7: Semi-supervised learning on large-scale OGB datasets.
Red numbers indicate the top-2 performances (accuracy in % on
ogbg-ppa, F1 score in % on ogbg-code).

L.R. Methods ogbg-ppa ogbg-code
1% No pre-train. 16.04±0.74 6.06±0.01

GraphCL 40.81±1.33 7.66±0.25
JOAO 47.19±1.30 6.84±0.31

JOAOv2 44.30±1.67 7.74±0.24
10% No pre-train. 56.01±1.05 17.85±0.60

GraphCL 57.77±1.25 22.45±0.17
JOAO 60.91±0.83 22.06±0.30

JOAOv2 59.32±1.11 22.65±0.22

4.4. Summary of Main Findings

We briefly summarize the aforementioned results as follows:
• Across datasets originated from diverse sources, JOAO

with adaptive augmentation selection performs compa-
rably to GraphCL, a strong baseline with exhaustively
tuned augmentation rules by hand.

• With augmentation-aware projection heads, JOAOv2
further boosts the performance and sometimes even
outperforms GraphCL.

• On datasets from specific bioinformatics domains,
JOAOv2 achieves better performance than GraphCL
whose empirical rules were not derived from such data,
indicating its better generalizability to unseen datasets.

• Both JOAO and JOAOv2 outperform heuristic self-
supervised methods with few exceptions. They might
be further enhanced by encoding domain knowledge.

• JOAOv2 scales up to large datasets as well as GraphCL
does, sometimes with even more significant improve-
ment compared with that for smaller datasets.

5. Conclusions & Discussions
In this paper, we propose a unified bi-level optimization
framework to dynamically and automatically select aug-
mentations in GraphCL, named JOint Augmentation Opti-
mization (JOAO). The general framework is instantiated as
min-max optimization, with empirical analysis showing that
JOAO makes augmentation selections in general accordance
with previous “best practices” from exhaustive hand tuning
for every dataset. Furthermore, a new augmentation-aware
projection head mechanism is proposed to overcome the
potential training distribution distortion, resulting from the
more aggressive and varying augmentations by JOAO. Ex-
periments demonstrate that JOAO and its variant performs
on par with and sometimes better than the state-of-the-art
competitors including GraphCL on multiple graph datasets
of various scales and types, yet without resorting to tedious
dataset-specific manual tuning.

Although JOAO automates GraphCL in selecting augmen-
tation pairs, it still relies on human prior knowledge in

constructing and configuring the augmentation pool to se-
lect from. In this sense “full” automation is still desired
and will be pursued in future work. Meanwhile, in paral-
lel to the principled formulation of bi-level optimization, a
meta-learning formulation can also be pursued.
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