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Abstract
We study multi-objective reinforcement learning
(RL) where an agent’s reward is represented as
a vector. In settings where an agent competes
against opponents, its performance is measured
by the distance of its average return vector to a
target set. We develop statistically and computa-
tionally efficient algorithms to approach the asso-
ciated target set. Our results extend Blackwell’s
approachability theorem (Blackwell, 1956) to tab-
ular RL, where strategic exploration becomes es-
sential. The algorithms presented are adaptive;
their guarantees hold even without Blackwell’s
approachability condition. If the opponents use
fixed policies, we give an improved rate of ap-
proaching the target set while also tackling the
more ambitious goal of simultaneously minimiz-
ing a scalar cost function. We discuss our analysis
for this special case by relating our results to previ-
ous works on constrained RL. To our knowledge,
this work provides the first provably efficient algo-
rithms for vector-valued Markov games and our
theoretical guarantees are near-optimal.

1. Introduction
What can a player expect to achieve in competitive games
when pursuing multiple objectives? If the player has a single
objective, the answer is clear from von Neumann’s minimax
theorem (Neumann, 1928): the player can follow a fixed
strategy to ensure that its cost is no worse than a certain
threshold, the minimax value of the game, no matter how
the opponents play. But if the player has multiple objectives,
the answer is less clear and it must define some tradeoffs.
One important way to capture tradeoffs is to define a certain
target set of vectors, and then to ensure that player’s vector
of returns lies in this set. The player’s performance can then
be measured via the distance of its reward vector from the
target set. In 1956, Blackwell showed that in a repeated
game, the player of interest can make the distance of its
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average return to a target set small as long as this set satisfies
a condition called approachability (Blackwell, 1956).

The approachability theorem applies to multi-objective
games with a decision horizon of a single time step. How-
ever, in many practical domains such as robotics, self-
driving, video games, and recommendation systems, the
decision horizons span multiple time steps. For example, in
a robot control task, we may hope the robot arm reaches a
certain region in a 3D space; while, in self-driving, we may
hope the car takes care of speed, safety and comfort simulta-
neously. In these problems, the state of the decision process
transitions based on both the actions taken by the players and
the unknown dynamics. Though a generalization (Assump-
tion 3) of Blackwell’s approachability condition Blackwell
(1956) is relatively direct, efficient exploration and the need
to learn the unknown transitions is what poses a challenge
in the multiple time step setting.

This challenge motivates us to ask: How can a player ap-
proach a target set that satisfies a generalized notion of
approachability? We answer this question by modeling
multi-objective competitive reinforcement learning (RL) as
an online learning problem in a vector-valued Markov game
(MG), for which we provide efficient algorithms as instances
of a generic meta-algorithm that we propose.

Going one step further, we can ask a more ambitious ques-
tion: Can we minimize a scalar cost function while also
satisfying approachability? Our answer is affirmative if
the opponents play fixed policies; equivalently, if the agent
interacts with a fixed environment (without opponents), in
which case the model reduces to a vector-valued Markov
decision process (MDP). In this setting, the target set can be
viewed as a set of constraints, and our results improve on
the rich literature on constrained MDP in multiple aspects.

In Table 1 we give a comparison of different multi-objective
RL settings. Our work can be seen as a generalization of
both (Blackwell, 1956) and (Agrawal & Devanur, 2014) to
cases with an H step horizon.

Summary of our contributions.

I For online learning in vector-valued Markov games, we
propose two provably efficient algorithms to approach
a target set under a generic framework. Strategic explo-
ration is essential to obtain statistical efficiency (Theo-
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Table 1. The settings of this work with reference to the literature

w/o opponents w/ adversarial opponents

single-state single-horizon
constrained bandits

(e.g., (Agrawal & Devanur, 2014))
vector-valued games

(e.g., (Blackwell, 1956))

multi-state H-horizon
constrained MDPs

(e.g., (Brantley et al., 2020); this work)
vector-valued Markov games

(this work)

rems 1 and 3) for both algorithms. The second algorithm
has the merit of being more computationally efficient.

I When the chosen target set is not approachable, both our
algorithms adapt automatically. Concretely, we describe
the guarantees (Theorems 2 and 3) of the algorithms using
a notion of δ-approachability (Assumption 4).

I For vector-valued MDPs, via a more dedicated design of
the exploration bonus, we obtain a near-optimal rate of
making the average reward vector approach (Theorem 4)
the target set. Moreover, under a mild assumption, we
present a modified algorithm that can simultaneously min-
imize a convex cost function (Theorem 5). Comparing
with existing results in constrained MDP, our bounds on
regret and constraint violation are the sharpest with re-
spect to their dependence on the parameters S, A, and
K, where S is the number of states, A is the number of
actions and K is the number of episodes.

1.1. Related Work

Blackwell’s approachability. Blackwell (1956) initiated
the study of multi-objective learning in repeated matrix
games by introducing the notion of approachability and an
algorithm to approach a given set. Using a dual formulation
of the distance from a point to a convex cone, Abernethy
et al. (2011) show the equivalence of approachability prob-
lems and online linear optimization. Shimkin (2016) fur-
ther extends the equivalence to online convex optimization
(OCO) via a dual formulation of the distance from a point to
a convex set. Our primal and dual algorithms generalize re-
spectively Blackwell’s algorithm (Blackwell, 1956) and the
OCO-based algorithm (Shimkin, 2016) to Markov games.

Learning in Markov games. Markov games, also known
as stochastic games (Shapley, 1953; Littman, 1994), are a
general model for multi-agent reinforcement learning. In
recent years, much attention has been given to learning
in scalar-valued Markov games with unknown transitions.
One popular aplication is to study constrained RL as a MG
(Miryoosefi et al., 2019).

In the self-play setting (Bai & Jin, 2020; Xie et al., 2020;
Bai et al., 2020; Liu et al., 2020), the goal is to learn a Nash
equlibrium with sample complexity guarantees. Bai & Jin
(2020); Xie et al. (2020); Bai et al. (2020) consider zero-sum
Markov games while Liu et al. (2020) provide results for

general-sum Markov games. In the online setting (Brafman
& Tennenholtz, 2002; Xie et al., 2020; Tian et al., 2020b),
the goal is to achieve low regret in presence of an adversarial
opponent. We also study the online setting, but in contrast,
we consider vector-valued returns and the goal is to make
the average return approach a given set.

Online learning with constraints. Multi-objective RL is
closely related to RL with constraints since satisfying the
constraints is tantamount to having extra objectives. Badani-
diyuru et al. (2013) study bandits with knapsacks, and
Agrawal & Devanur (2014) study the more general set-
ting with concave rewards and convex constraints that the
method needs to approach. Beyond bandits, Jenatton et al.
(2016); Yuan & Lamperski (2018) study online convex opti-
mization with constraints given by convex functions.

Constrained MDPs. For MDPs with linear constraints,
Efroni et al. (2020); Ding et al. (2020); Qiu et al. (2020);
Brantley et al. (2020) provide algorithms with both regret
and total constraint violation guarantees. As a generaliza-
tion of (Agrawal & Devanur, 2014), Brantley et al. (2020)
also consider MDPs with convex constraints and concave
rewards and discuss as a special case MDPs with knapsacks
on all episodes. Chen et al. (2020) formulate MDPs with
knapsacks on each episode as factored MDPs, to which the
regret bounds of factored MDPs (Osband & Van Roy, 2014;
Tian et al., 2020a; Chen et al., 2020) apply. See the discus-
sion at the end of Section 6.1 for a detailed comparison.

Multi-objective RL with preference. More recently, Wu
et al. (2020) study single-agent multi-objective RL to ac-
commodate potentially adversarial preference vectors. In
contrast, we assume a potentially adversarial opponent that
influences both the transition and the return vector. Their
goal also differs from ours in that they aim to maximize the
cumulative rewards defined by the observed preference vec-
tors in each episode. The preference vector in their setting
is similar to the dual variable in our algorithm. Nonetheless,
our dual variable is learned by an update procedure.

All of the aforementioned works on MGs or MDPs focus on
the episodic setting. See, e.g., (Cheung et al., 2019; Singh
et al., 2020), for the studies of multi-objective or constrained
RL in the nonepisodic setting.
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2. Background and Problem Setup
In this section, we formulate the problem of two-player zero-
sum Markov Games. We control one of the players, whom
we call the agent. The other player is referred to as the
adversary. We use the two-player zero-sum condition for
simplicity. We can handle multi-player general-sum games
by considering the product of all the opponents’ actions
as an augmented action (an idea also recently exploited
in (Tian et al., 2020b)). Now we are ready to explain how
players interact and learn in the Markov game setup.

2.1. Vector-valued Markov Games
Model. Let [N ] := {1, 2, . . . , N}, and let ∆(X) be the
set of probability distribution on set X. Then, an episodic
two-player zero-sum vector-valued MG can be denoted by
the tuple MG(S,A,B,P, r, H), where

– H is the number of steps in each episode,
– S is the state space,
– A and B are the action spaces of both players,
– P is a collection of unknown transition kernels {Ph :
S ×A× B → ∆(S)}h∈[H], and

– r is a collection of known d-dimensional return functions
{rh : S × A × B → [0, 1]d}h∈[H], where d ≥ 2 is the
dimensionality of the MG. We assume known r only
for simplicity; learning r poses no real difficulty–see
e.g., (Azar et al., 2017; Jin et al., 2018).

Let | · | denote set cardinality. Then, we define the three key
cardinalities S := |S|, A := |A|, and B := |B|.

Interaction protocol. Without loss of generality, in each
episode the MG starts at a fixed initial state s1 ∈ S1. At each
step h ∈ [H], the two players observe the state sh ∈ S and
simultaneously take actions ah ∈ A, bh ∈ B. This decision
is specified by the players’ policies µh(sh) ∈ ∆(A) and
νh(sh) ∈ ∆(B). Then the environment transitions to the
next state sh+1 ∼ Ph(·|sh, ah, bh) and outputs the return
rh(sh, ah, bh). Let Fkh be the filtration generated by all
these random variables until the k-th episode and i-th step.

Value functions. Analogous to usual MDPs, for a policy
pair (µ, ν), step h ∈ [H], state s ∈ S and actions a ∈
A, b ∈ B, we define the State- and Q-value functions as:

Vµ,ν
h (s) := Eµ,ν

[∑H

l=h
rl(sl, al, bl)|sh = s

]
,

Qµ,ν
h (s, a, b) :=

Eµ,ν
[∑H

l=h
rl(sl, al, bl)|sh = s, ah = a, bh = b

]
.

For compactness of notation, for any V ∈ [0, H]dS and
Q ∈ [0, H]dSAB we introduce the operators P and D by

Ph[V](s, a, b) := Es′∼Ph(·|s,a,b)[V(s′)],

Dµ,ν [Q](s) := Ea∼µ(·|s),b∼ν(·|s)[Q(s, a, b)].

With this notation we obtain the Bellman equations:

Vµ,ν
h (s) = Dµh,νh [Qµ,ν

h ](s),

Qµ,ν
h (s, a, b) = (rh + Ph[Vµ,ν

h+1])(s, a, b).

For convenience define Vµ,ν
H+1(s) = 0 for any s ∈ S.

Satisfiability. Let W? denote a desired target set. Hence-
forth, we assume that W? is a is closed and convex subset
of [0, H]d. Let V̂k be the cumulative return received by the
agent in the kth episode and WK := 1

K

∑K
k=1 V̂

k be the
average for the first K episodes. The goal of the agent is to
guarantee that WK ∈ W?. This goal is achievable under
the following satisfiability assumption.
Assumption 1 (Satisfiability). Given a vector-valued MG
MG(S,A,B,P, r, H), we say a closed and convex target
set W? is satisfiable, if there exists a policy µ such that for
any policy ν, the vector value Vµ,ν

1 (s1) ∈W?.

Informally, satisfiability means that the agent can ensure the
cumulative return is contained in the target set, regardless of
the opponent’s action. A weaker notion is if upon knowing
the opponent’s policy the agent can satisfy the target set.
Thus, we call it Response-satisfiability.
Assumption 2 (Response-satisfiability). Given a vector-
valued MG MG(S,A,B,P, r, H), we say a closed and con-
vex target set W? is response-satisfiable, if for any policy
ν,there exists a policy µ such that Vµ,ν

1 (s1) ∈W?.

Both notions coincide in a scalar-valued zero-sum game,
as a result of von Neumann’s minimax theorem. However,
for vector-valued games, satisfiability is strictly stronger.
Indeed, satisfiability fails even in some simple games while
response-satisfiability holds. See the discussion at the end
of Section 2.2 in (Abernethy et al., 2011) for a concrete
example.

Without satisfiability, we cannot expect to reach the target
set W?. Luckily, approaching a response-satisfiable set W?

on average is still possible. To that end, we can reduce the
vector-valued MG to a scalar-valued one, as shown below.

2.2. Scalar Reduction and Minimax Theorem

We can convert a vector-valued MG to a scalar-valued one
by replacing the return vector r by the scalar r · θ, where
θ ∈ Rd is a fixed vector. Importantly, we will treat θ as a
dual variable in our algorithms. For the resulting MG we
can define V µ,νh (θ, s) and Qµ,νh (θ, s, a, b) similarly.

We call the two players the “min-player” and the “max-
player”1. Let ν be a policy of the max-player. There exists

1To accommodate conventions in Approachability, we make
the agent the min-player (usually the max-player in MG literature).
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a best response µ† to ν, such that for any step h ∈ [H] and
state s ∈ S we have V µ

†,ν
h (s) = V †,νh (s) := minµ V

µ,ν
h (s).

A symmetric discussion applies to the best response to a
min-player’s policy. The following minimax equality holds:
for any step h ∈ [H] and state s ∈ S,

min
µ

max
ν

V µ,νh (θ, s) = max
ν

min
µ
V µ,νh (θ, s).

A policy pair (µ?, ν?) that achieves the equality is known
as a Nash equilibrium. We use V ?h (θ, s) := V µ

?,ν?

h (θ, s) to
denote the value at the Nash equilibrium, which is unique
for the MG and we call the minimax value of the MG.

Approachability. Scalarizing a vector-valued MG is
equivalent to considering a half-space that contains W?

instead of W? itself. If we can reach W?, then we can reach
any half-space that contains W?. Therefore, satisfiability of
half-spaces that contain W? is weaker than satisfiability of
W? itself. We state this condition formally below.

Assumption 3 (Approachability). Given a vector-valued
MG MG(S,A,B,P, r, H), we say a closed and convex tar-
get set W? is approachable, if for any vector θ,

max
x∈W?

θ · x ≥ V ?1 (θ, s1) .

Assumption 3 is also known as “half-space satisfiability” in
the literature (Blackwell, 1956). Indeed, it is equivalent to
response-satisfiability (See Lemma 7 in (Abernethy et al.,
2011). The proof therein carries over for MGs directly, since
it only depends on the geometric property of W?.). We will
only use this approachability condition in the sequel; it
results in no loss of generality, and moreover, it is easier to
extend to the non-approachable case.

So far we assumed that the target set W? is approachable.
In practice, this assumption may or may not hold. In both
cases, we can still seek to minimize the Euclidean distance
dist(WK ,W?) of the average return to the target set. This
is analogous to the agnostic learning setting for supervised
learning. Toward this end, the following condition is useful.

Assumption 4 (δ-Approachability). Given a vector-valued
MG MG(S,A,B,P, r, H), we say a closed and convex tar-
get set W? is δ-approachable, if for any unit vector θ,

max
x∈W?

θ · x + δ ≥ V ?1 (θ, s1) .

Equivalently, this means the δ-expansion of W? is approach-
able. So, a larger δ means W? is harder to approach.

2.3. Justification of knowing W?

In the whole paper, we assume W? is known. To see this is
reasonable, notice the target set is usually introduced in two
cases:

1. W? is defined explicitly by constraints. In the case W?

is clearly known, otherwise it is impossible to measure
if the current return satisfies the constraints.

2. (Usually in one dimension) We want to maximize the
return, so ideally we should define W? to be [V ?,∞).
However, in general there is no way to know V ? in
prior. Luckily, if we know V ? ∈ [0, H], then we
can set W? to be [H,∞) and the non-approachability
results below will guarantee we can perform almost as
well as knowing V ?.

3. Multi-objective Meta-algorithm
Equipped with the generalized concepts of approachability
for vector-valued MGs, we are ready to present our algorith-
mic framework. To make the exposition modular, we first
present Multi-Objective Meta-Algorithm (MOMA), our
generic learning algorithm that is displayed as Algorithm 1.
Subsequently, we explain its key components.

Algorithm 1 Multi-objective Meta-algorithm (MOMA)

1: Initialize: for any (s, a, b, h, s′), Qh(s, a, b)←
√
dH ,

Nh(s, a, b) ← 0, Nh(s, a, b, s′) ← 0, W ← 0, θ ←
any unit verctor, P̂← any probability distribution.

2: for Episode k = 1, . . . ,K do
3: π ← PLANNING(θ, r, N, P̂)

4: V̂← 0.
5: for step h = 1, . . . ,H do
6: take action (ah, ·) ∼ πh(·, ·|sh).
7: Observe opponent’s action bh ∼ νh(sh) and next

state sh+1.
8: V̂← V̂ + rh(sh, ah, bh).
9: Nh(sh, ah, bh)← Nh(sh, ah, bh) + 1.

10: Nh(sh, ah, bh, sh+1)← Nh(sh, ah, bh, sh+1)+1

11: P̂h(·|sh, ah, bh)← Nh(sh,ah,bh,·)
Nh(sh,ah,bh) .

12: end for
13: W← ((k − 1)W + V̂)/k.
14: θ ← DUAL-UPDATE(W,W?, V̂)
15: end for

MOMA is partitioned into into three components:

– Planning (Line 3): In each episode, we convert the
vector-valued MG into a scalar-valued one by projecting
onto the direction specified by the dual variable θ and
by computing the policy π.

– Model Update (Line 4 to 13): We accumulate the
(vector-valued) return in each episode in V̂, and W
is the average cumulative return. Then, we update the
empirical estimators of the transition kernel.

– Dual Update (Line 14): Finally, we need to determine
which direction we want to project the vector-valued
MG onto in the next episode.
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Notice that π actually defines policies for both players, but
we only execute it for the agent. Let µh(·|sh) and ωh(·|sh)
be the marginal distributions of πh(·, ·|sh). Then action ah
is indeed sampled from the marginal µh(·|sh), while bh is
sampled from νh(·|sh), which is not necessarily equal to
ωh(·|sh). Using this notation, we can observe that V̂ is
unbiased in the sense that E[θ · V̂] = V µ,ω1 (θ, s1).

The idea behind Algorithm 1 is simple: In each episode
we fix a direction and try to approach the target set W?. In
this way, we can reduce the problem to a scalar-valued MG
and benefit from existing work on scalar-valued MGs (Bai
& Jin, 2020; Xie et al., 2020; Bai et al., 2020; Liu et al.,
2020). The implementation of model updates is described
in Algorithm 1. The other two sub-procedures vary slightly
in different settings as follows:

– PLANNING: A planning algorithm to determine the pol-
icy π based on the current estimated transition kernel
P̂. For MGs we will use VI-HOEFFDING (Algorithm 2).
For MDPs, we can design a finer VI-BERNSTEIN (Algo-
rithm 3) to achieve a sharper convergence rate. In Line
11 of VI-HOEFFDING, we use NASH to denote comput-
ing the minimax policy w.r.t. a matrix game, which is
standard in model-based method for MGs (Bai & Jin,
2020; Xie et al., 2020; Liu et al., 2020).

– DUAL-UPDATE: A dual update algorithm to update the
variable θ, which describes the direction to approach
W? in the next episode. We propose two different can-
didates: (PROJECTION-BASED-DUAL-UPDATE) and
(PROJECTION-FREE-DUAL-UPDATE) in the following
two sections. A variant of PROJECTION-FREE-DUAL-
UPDATE, DOUBLE-DUAL-UPDATE is proposed in Sec-
tion 6.1 to simutaneously optimize a cost function.

Algorithm 2 VI-Hoeffding (VI-HOEFFDING)
1: for step h = H,H − 1, . . . , 1 do
2: for (s, a, b) ∈ S ×A× B do
3: t← Nh(s, a, b).
4: if t > 0 then
5: rh(s, a, b) = θ · rh(s, a, b);
6: β ← c

√
min{d, S}H2dι/t.

7: Qh(s, a, b) ← max{(rh + P̂hVh+1)(s, a, b) −
β,−
√
dH}.

8: end if
9: end for

10: for s ∈ S do
11: πh(·, ·|s)← NASH(Qh(s, ·, ·)).
12: Vh(s)← (DπhQh)(s).
13: end for
14: end for

4. Projection-based Dual Update
We begin with the most intuitive way to choose the dual
variable: follow the direction that minimizes the distance of
a candidate vector W to the target set W?:

θ ←

{
W−ΠW? (W)
‖W−ΠW? (W)‖2

, if W /∈W?,

any unit vector, otherwise.
(PROJECTION-BASED-DUAL-UPDATE)

To find this direction, we need to compute the orthogonal
projection onto W?, thus we call it PROJECTION-BASED-
DUAL-UPDATE.

To give theoretical guarantees, we will prove upper bounds
on the Euclidean distance from our average cumulative re-
turn in the first K episodes WK to the target set W?. If W?

is approachable, dist(WK ,W?) will converge to zero.

Theorem 1. Following MOMA with VI-HOEFFDING
(Algorithm 2) for PLANNING and PROJECTION-BASED-
DUAL-UPDATE for DUAL-UPDATE, if W? is approachable,
with probability 1− p,

dist(WK ,W?) ≤ O
(√

min{d, S}dH4SABι/K
)
,

where ι = log(SABKH/p).

The approachability condition (Assumption 3) is standard
in the literature (Blackwell, 1956). However in practice,
the desired target set W? may rarely also happen to be
approachable (since it is chosen to meet the needs of an
application, not to meet our demands on approachability).
In this case, one may be unable to guarantee dist(WK ,W?)
converges to zero, but can only minimize the distance. A
natural way to model this scenario is to assume W? is δ-
approachable, whence the following Theorem 2 applies.

Theorem 2. If we use VI-HOEFFDING (Algorithm 2) for
PLANNING and (PROJECTION-BASED-DUAL-UPDATE) for
DUAL-UPDATE in MOMA, and if W ∗ is δ-approachable,
then with probability 1− p,

dist
(
WK ,W ∗

)
≤ δ +O

(√
min{d, S}dH4SABι/K

)
where ι = log (SABKH/p).

Remark. Although we assume W? is δ-approachable, the
algorithm does not need to know δ. Instead, we just run the
same algorithm and the guarantee is adaptive.

Rationale behind the criterion. When characterizing the
performance of our method, we choose to compete with
δ, the “non-approachability gap”. This choice is simple
and similar to the notion of regret used in scalar-valued
MGs (Xie et al., 2020; Tian et al., 2020b). One may aim
to be more ambitious: compete with the best response in
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hindsight, as in (Mannor et al., 2014) for the bandit (single-
horizon) setting. Unfortunately, such a choice is not com-
putationally feasible for MGs. It is computationally hard
even for scalar-valued MGs; see (Bai et al., 2020) for an
exponential lower bound.

5. Projection-free Dual Update
The per-iteration computational bottleneck of PROJECTION-
BASED-DUAL-UPDATE is to compute the projection onto
W?, which requires solving a convex program (a quadratic
program when the constrains are linear) and can be
computationally demanding. However, if we can find
arg maxx∈W? θ · x efficiently (e.g., when W? is a poly-
tope), then we can develop a computation-friendly dual
update based on online convex optimization (OCO) tech-
niques (Abernethy et al., 2011; Shimkin, 2016).

To show the intuition behind PROJECTION-FREE-DUAL-
UPDATE, we proceed via Fenchel duality. Consider a con-
vex, closed, 1-Lipschitz function f : [0, H]

d → R. Its
Fenchel conjugate is

f∗ (θ) := max
x∈X
{θ · x− f (x)} .

Then f∗ is
√
dH2-Lipschitz by Corollary 13.3.3 in (Rock-

afellar, 1970). Fenchel duality implies

f (x) = max
‖θ‖≤1

{θ · x− f∗ (θ)} . (1)

In particular, if f(x) = dist(x,W?), its Fenchel dual is
f∗(θ) = maxx∈W? θ·x and its subdifferential is ∂f∗ (θ) =
arg maxx∈W? θ · x. Therefore, we can use its dual repre-
sentation to “linearize” the distance. That is,

Kdist(Wk,W?) = max
‖θ‖≤1

{
θ ·

K∑
k=1

V̂k −
K∑
k=1

max
x∈W?

θ · x
}
.

Ideally, if we can find the dual variable θ? that maximizes
the right-hand side above, minimizing the distance will be
equivalent to minimizing a linear function in V̂k, which
can be handled as before if we use VI-HOEFFDING as
the planning algorithm. Although we can not find θ? di-
rectly, we can find a sequence of dual variables {θ}Kk=1 such
that

∑K
k=1

{
θk · V̂k −

∑K
k=1 maxx∈W? θk · x

}
is close to

max‖θ‖≤1

{
θ ·
∑K
k=1 V̂

k −
∑K
k=1 maxx∈W? θ · x

}
.

This task is precisely what online convex optimization
(OCO) performs. The simplest solution is to use online
subgradient method with step size ηk =

√
1/dH2k. We

define PROJECTION-FREE-DUAL-UPDATE formally below:

θk+1 := ΠBd
{
θk + ηk

(
V̂k − ∂f∗

(
θk
))}

,
(PROJECTION-FREE-DUAL-UPDATE)

where ΠBd denotes projection onto the d-dimensional unit
Euclidean ball and ∂f∗

(
θk
)

is a subgradient vector of f∗

at θk (not a set).

Similarly, we provide theoretical guarantees for the new
dual update rule. The proof is much simpler compared with
that of Theorem 1 and Theorem 2.

Theorem 3. Following MOMA with VI-HOEFFDING (Al-
gorithm 2) for PLANNING and PROJECTION-FREE-DUAL-
UPDATE for DUAL-UPDATE, if W? is δ-approachable, with
probability 1− p,

dist
(
WK ,W?

)
≤ δ +O

(√
min{d, S}dH4SABι/K

)
,

where ι = log (SABKH/p).

6. Application to CMDPs: Near Optimal Rate
In this section, we apply our algorithmic framework to
MDPs, which can be considered as a special case of
MGs where the adversary cannot change the game. The
stationary environment enables us to use the Bernstein-
type concentration and achieve sharper dependence on
the horizon H . The corresponding planning algorithm
VI-BERNSTEIN is formalized in Algorithm 3. In Line
6 we use the empirical variance operator defined by
V̂kh[V ](s, a) := Vars′∼P̂kh(·|s,a)V (s′) for any function V ∈
[−
√
dH,
√
dH]S . Notice that this approach does not work

for MGs, because we need to estimate the variance of the
value function V µ,υ, a task that is impossible when the
adversary’s policy υ is unknown.

Algorithm 3 VI-BERNSTEIN

1: for step h = H,H − 1, . . . , 1 do
2: for (s, a) ∈ S ×A do
3: t← Nh(s, a).
4: if t > 0 then
5: rh(s, a) = θ · rh(s, a);
6: β ← c

(√
V̂hV h+1(s, a) min{d, S}ι/t + P̂h(V h+1 −

V h+1)(s, a)/H + min{d, S}
√
dH2ι/t

)
.

7: Qh(s, a)← max{(rh + P̂hV h+1)(s, a)− β,−
√
dH}.

8: Q
h

(s, a)← min{(rh + P̂hV h+1)(s, a) + β,
√
dH}.

9: end if
10: end for
11: for s ∈ S do
12: πh(s)← arg min(Q

h
(s, ·)).

13: V h(s)← Q
h
(s, πh(s)), V h(s)← Qh(s, πh(s)).

14: end for
15: end for

The sharper theoretical guarantee is as follows:

Theorem 4. If we use VI-BERNSTEIN (Algorithm 3) for
PLANNING and (PROJECTION-BASED-DUAL-UPDATE) or
(PROJECTION-FREE-DUAL-UPDATE) for DUAL-UPDATE
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in MOMA, and if W? is δ-approachable, then with proba-
bility 1− p,

dist(WK ,W∗) ≤ δ +O
(√

min{d, S}dH3SAι2/K
)
,

where ι = log (SAKH/p).

When d ≤ S (as is in most cases), our result is minimax
optimal up to log-factors in S,A,H,K according to the
lower bound Ω

(√
H3SA/K

)
proven in (Domingues et al.,

2020). The tightness of our result in d remains open. In par-
ticular, we can get a naive Ω

(√
dH3SA/K

)
lower bound

by duplicating the negative MDP example from (Domingues
et al., 2020) d times in d dimensions, and the distance natu-
rally scales up by d. With such a lower bound, there is still
a
√
d gap open. More details on the difficulty of providing

a tigher lower bound are discussed in Section 7.

The upper bound in Theorem 4 allows us to find a policy that
approaches the target set W? efficiently. Next, we generalize
the result to the constrained MDP setting where we want to
simultaneously minimize a cost function.

6.1. Optimizing a Cost Function Simultaneously
In this section, we show how to extend our algorithm to
the constrained MDP setup (Efroni et al., 2020; Ding et al.,
2020; Qiu et al., 2020; Brantley et al., 2020), in which one
wants to simultaneously minimize a cost function g : Rd →
[0, 1] defined on the return vector space. The goal is two-
fold: (i) satisfy constraints defined by the target set; and (ii)
minimize the cumulative cost. Note that our setup subsumes
the canonical cost function in which the cost function is
defined on the state-action pair (e.g., (Efroni et al., 2020)).
Particularly, we can add an extra coordinate in the return
vector space to denote the cost for each state-action pair,
and pick g to solely extract that cost coordinate. A more
detailed comparison against constrained MDP setups from
previous works can be found in Appendix C.

For our analysis, we assume that the cost function g(·) is 1-
Lipschitz and convex. Following (Efroni et al., 2020; Ding
et al., 2020; Qiu et al., 2020; Brantley et al., 2020), we also
assume W? is satisfiable and that we want to compete with
a policy µ? such that Vµ?

1 (s1) ∈ W?. One might hope
to bound the regret

∑K
k=1 g(V̂k) − Kg(Vµ?

1 (s1)). But
this goal is hard. Its counterpart is unknown even in the
bandit setup Agrawal & Devanur (2014). Instead, we aim
to upper bound both the regret [g(WK)− g(Vµ?

1 (s1))] and
the constraint violation dist(WK ,W?).

Constraint geometry. Toward achieving our aim, we
need to impose some geometric requirements on the con-
straints that will help us quantify algorithmic complexity
in a non-asymptotic manner. Previous works that use a
primal-dual approach (e.g., (Efroni et al., 2020; Qiu et al.,

2020; Ding et al., 2020)) assume knowledge of explicit
structure of the constraint set, concretely by requiring
W? = {x | ∀i, gi(x) ≤ 0}. Subsequently, they control
complexity of the constraint set by assuming Lipschitzness
of the gi and a strong Slater condition, i.e., there is a strictly
feasible interior point x0 such that gi(x0) ≤ −ε for a uni-
versal constant ε > 0. In contrast, we do not impose explicit
structure on W?. Instead, we assume that we can solve
linear or quadratic optimization over W? ⊂ Rd. A naive
way to cast our setup into the previous form would be use
the inequality g0(·) := dist(·,W?) ≤ 0. But since g0 is
a distance function, we cannot satisfy the strict interiority
condition needed by the previous setup. Consequently, we
need to limit the complexity of our constraint set through a
more refined alternative.

To this end, we propose a geometric condition. In particular,
we assume that the target set W? intersects with the set
of achievable value vectors V = {Vπ

1 (s1)| any policy π}
nonsingularly—Figure 1 illustrates this concept. Formally,
denote the set of achievable returns within the target set as
W = V ∩W? and ∂W = ∂V ∩ ∂W? as the intersection of
the boundaries of W? and the achievable value vector set V .
Then, Assumption 5 describes nonsingular intersection.

Assumption 5. If ∂W is not empty, then for each vector
W ∈ ∂W , denote the maximum angle α ∈ [0, π] between
the support vectors ~a of W? at W and the support vectors
~b of V at W as

α(W) := min{∠(~a,~b) | ~a,~b are support

vectors of sets W? and V at W}.

We assume there exists a constant αmax ∈ [π/2, π) such
that maxw∈∂W α(w) < αmax. With this upper bound on α,
we denote γmin = sin(π − αmax) > 0.

Figure 1. The target set intersects with the achievable return vectors
nonsingularly. The angle α(

∏
W Wk) is upper bounded.

Assumption 5 excludes the case where the sets V and W?

intersect tangentially (i.e., share the same supporting hyper-
plane) resulting in α = π. The necessity of such a geometric
assumption is discussed in Appendix E.1. At a high level,
Assumption 5 is a geometric analog of the previously noted
strict interiority condition that excludes a singular intersec-
tion of the constraint functions gi. Our assumption provides
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Algorithms Regret Constraint Violation
Nonlinear
Cost and

Constraints

Computionally
Efficient

OptCMDP-bonus
(Efroni et al., 2020) Õ

(√
H4S2AK

)
Õ
(√

dH4S2AK
)

X

(Brantley et al., 2020) Õ
(√

H3S2AK
)

Õ
(√

d3H3S2AK
)

X

OptPD-CMDP
(Efroni et al., 2020) Õ

(√
(S2A+ d2)H4K

)
Õ
(√

(S2Ad2 + d3)H4K
)

X

OPDOP
(Ding et al., 2020) Õ

(√
H5S4A2K

)
Õ
(√

H5S4A2K
)

X

UCPD
(Qiu et al., 2020) Õ

(√
H5S2AK

)
Õ
(√

H5S2AK
)

X

This Paper Õ
(√

min{d, S}dH3SAK
)

Õ
(√

min{d, S}dH3SAK
)

X X

Table 2. Comparison with constrained MDP literature.

a way to lower-bound the distance to the target set W? by the
distance to the actual constraint setW = V ∩W?, and thus
prevent an algorithm from trading off too much constraint
violation in exchange for a lower cost value g(Vk).

To minimize cost and avoid constraint violation simultane-
ously we need a “double” version of dual variable update.
This idea is formalized in DOUBLE-DUAL-UPDATE below:

ϕk+1 = ΠBd
{
ϕk + ηk

(
V̂k − arg max

x∈W?

ϕk · x
)}
,

φk+1 = ΠBd
{
φk + ηk

(
V̂k − ∂g∗(φk)

)}
,

θk+1 = ρϕk+1 + φk+1 (DOUBLE-DUAL-UPDATE)

where ΠBd denotes projection onto the d-dimensional unit
Euclidean ball and ∂g∗

(
ϕk
)

is a subgradient vector of g∗

at ϕk (not a set).

Here comes our theoretical guarantee for both constraint
violation and regret.

Theorem 5. Following MOMA with VI-BERNSTEIN (Al-
gorithm 3) for PLANNING and DOUBLE-DUAL-UPDATE
for DUAL-UPDATE, if W? is approachable and µ? is a
policy s.t. Vµ?

1 (s1) ∈ W?, with probability 1 − p we can
bound the constraint violation and the regret respectively as
follows:

dist(WK ,W ?) ≤ O
(√

min{d, S}dH3SAι/K
)
,

g(WK)− g(Vµ?

1 (s1)) ≤ O
(
ρ
√

min{d, S}dH3SAι/K
)
,

where ι = log (SAKH/p), ρ = 2/γmin.

Known results on constrained MDP problems do not share a
common setup and hence make a precise comparison tricky.
In short, our result aims to provide a computationally effi-
cient algorithm for non-linear constraints (target set) and a
convex cost function (see Table 2). Please see Appendix C
for a more detailed discussion of the subtleties among differ-
ent constrained MDP setups, and some minor modifications

needed to unify the exposition. With the existing results,
our result is significant in the following aspects:

• First, our algorithm is the most general in terms of being
able to handle non-linearity in the cost and constraints.
The constrained MDP setting we study in Section 6.1 is a
direct generalization of (Agrawal & Devanur, 2014), and
is closest to (Brantley et al., 2020). While our constraint
assumption is equivalent to the one in (Brantley et al.,
2020), our cost functions are more general. The domain
of Brantley et al.’s cost function is scalars, while that of
ours is vectors.

• Furthermore, our proposed algorithm is computationally
efficient because we do not require solving a large-scale
convex optimization sub-problem with the number of
variables and constraints scaling as O(SAH) per iter-
ation (see Table 2). Indeed, our algorithms only com-
prise planning and model update procedures with a total
of O(S2AH) basic algebraic updates in each episode,
along with a dual space optimization procedure whose
computational complexity is free of S, A and H .

• Our bounds on regret and constraint violation are also
the sharpest with respect to their dependence on the
parameters S, A, and K.

7. Conclusion and Future Work
In this paper, we formulate online learning in vector-valued
Markov games through the lens of approaching a fixed
convex target set within which the vector-valued objective
should lie. We provide efficient model-based algorithms
as instances of a generic meta-algorithm. Two key ideas
contribute to our algorithmic design: (i) reduction of the
vector-valued Markov game to a scalar-valued one, where
the scalarization is iteratively updated; and (ii) strategic
exploration of the environment. For vector-valued MDPs,
our algorithms, after some modifications, achieve a tight
rate in approaching the target set (in terms of S,A,H,K),
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while simultaneously minimizing a convex cost function.
Moreover, when the given target set is non-approachable,
our algorithms automatically adapt to the degree of non-
approachability.

Several problems are left open. Currently, there is still a√
d gap (d is the dimensionality of the vector-valued cost)

between our upper bound and the lower bound. How to
close this gap to achieve the minimax rate remains unknown.
The challenge in providing a tighter lower bound is that
estimating a discrete distribution under the L2 distance does
not get harder as the dimensionality increases. Since we use
the Euclidean distance to measure the performance of our
algorithms, we cannot get stronger dependence on d. Lower
bounds such as the one in (Jin et al., 2020) use a multiple
hypothesis testing approach successfully because they work
with an L1 loss, whereas we study the standard Euclidean
loss. A second question is that our result in Section 6.1 has
somewhat worse dependence on d and ρ compared to previ-
ous results. We leave improving the dimension dependency
as a future direction.

Another future direction that is worth pursuing is that of
redefining the notion of regret and error. Our work measures
approachability error using the Euclidean distance. In prac-
tice, this choice may not be the only useful measure. Can
we develop provably efficient algorithms under other ge-
ometries and measures of approachability? Answering this
question might help exploit the geometry of the target set
better, and potentially lead to tighter complexity analyses.
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