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A. Stationary Time Series Datasets
Two datasets from financial market index are employed in
order to show the capability of modeling stationary time
series with WSPNs. The first stationary time series dataset
is formed by the index values of 11 sectors from “Stan-
dard & Poor’s” (S&P) from October 16, 2013 to May 24,
2019. The second is global stock index (Stock) from 17 mar-
kets extracted from June 2, 1997 to June 30, 1999. Before
modeling the joint distribution in the spectral domain, the
real-world market data is first converted to its log-return:

rt = 100 log(x(t)/x(t− 1)). (1)

Both S&P and Stock datasets are transformed with a sliding
window of size 32. The S&P time series has length 1408
after the log-return transformation, and thus 44 time series
are extracted by sliding window without overlap. The Stock
series has length 522 after the log-return transformation.
The sliding window is enabled with a step size of 10 in
order to have more time series for training. In the end, 50
time series instances with length 32 are extracted. Tab. 1
lists all the names of the Stock index and the corresponding
markets. More details of the Stock dataset can be found
in Tank et al. (2015).

The VAR series is simulated from an order-1 vector autore-
gressive process, with p = 7 dimensions. Time series is
simulated from the model:

x(t) = Ax(t− 1) + ε(t), (2)

where x(t) ∈ Rp, A ∈ Rp×p and ε ∼ N (0, Ip×p). Follow-
ing Tank et al. (2015) and Songsiri & Vandenberghe (2010),
we first restrictA to be upper triangular, and set the diagonal
elements to a constant Aii = 0.5. Then, the upper diagonal
elements Aij are sampled from a Binomial distribution with
p = 0.2. The corresponding inverse spectral density matrix
of the process is:

S(λ)−1 = I +ATA+ e−iλA+ eiλAT . (3)

The conditional independencies between time series are en-
coded by zeros in the inverse spectral density matrix S(λ)−1.
The matrix A is accepted when 1) the absolute values of all
eigenvalues of A are less than one, making the series station-

Figure 1. Graph visualization of the conditional independencies of
the simulated VAR series.

ary, and 2) the graph G determined by A is decomposable.
We generate the 7-D series from the following matrix A =



0.5 1 0 0 0 0 0
0 0.5 0 1 0 0 0
0 0 0.5 0 1 0 0
0 0 0 0.5 0 1 0
0 0 0 0 0.5 0 0
0 0 0 0 0 0.5 1
0 0 0 0 0 0 0.5


. (4)

An example of the inverse spectral density matrix at fre-
quency λ = π/10 is S(λ = π/10)−1 ≈

2.2 k̄ 0 0 0 0 0
k 3.2 0 k̄ 0 0 0
0 0 2.2 0 k̄ 0 0
0 k 0 3.2 0 k̄ 0
0 0 k 0 3.2 0 0
0 0 0 k 0 3.2 k̄
0 0 0 0 0 k 3.2


, (5)

where k = 1.5 + 0.3i and k̄ being its conjugate.

This inverse spectral density matrix implies the conditional
independencies shown in Fig. 1, which is also shown in Fig.
7 (Left) in Section 5 in the paper. From the above matrix A,
a 7-D series with length 557056 is generated. With a sliding
window of size 32, 17408 series instances are extracted,
where 16384 form the training set and 1024 the test set.

B. General Time Series Datasets
In this paper, we investigated five non-stationary time series
datasets. The synthetic Sine data consists of 6 components:
3 trigonometric sines with same frequency while different
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Market Code Market Ticker Index Name
AT Austria ATX Austrian Traded Index
AU Australia AORD All Ordinary Composite
BE Belgium BFX BEL 20
CA Canada GSPTSE Toronto Stock Exchange 300
CH Switzerland SSMI Swiss Market Index
FN Finland OMXH25 OMX Helsinki 25
FR France FCHI CAC 40
GE Germany GDAX DAX 30
HK Hong Kong HSI Hang Seng Composite
IR Ireland ISEQ Irish Stock Exchange Index
IT Italy FTMIB FTSEMIB
JP Japan N225 Nikkei 225
NE Netherlands AEX Amsterdam Exchange Index
PO Portugal PSI20 Portugal Stock Index
SP Spain IBEX IBEX 35
UK United Kingdom FTSE FTSE 100
US United States SPX S&P 500

Table 1. The Stock dataset information.

phases (Sine11, Sine12, and Sine13) plus Gaussian noise;
2 sine series with another frequency with different phases
(Sine21 and Sine22) plus Gaussian noise; and one series of
pure Gaussian noise (Gauss1). The training and test sets
have the 6 components in the order of: “Sine11, Sine12,
Sine13, Sine21, Sine22, Gauss1”, while the ood set has the
following order: “Sine21, Sine22, Gauss1, Sine11, Sine12,
Sine13”. Each time series instance has length 32 with 6
components. In total, 16384 samples are generated for
training, 1024 for test and 1024 as ood samples.

The synthetic Billiards data contains simulations of trajec-
tories of three balls. The balls perform elastic collisions
with each other or against the walls of the environment.
The horizontal and vertical locations of the 3 balls form
a 6-dimensional state vector at each time step. The ood
data is generated by keeping the movement of one direc-
tion and replacing the movement of the other direction with
Gaussian noise. Additionally, in the ood set the balls pass
through each other instead of colliding. Therefore, the above
behaviour makes the trajectory of ood set unrealistic and un-
natural. Each trajectory has the locations of 100 time steps,
which forms a multivariate time series with 6 components
and a length of 100. We generate 9700 samples for training,
300 for test and 300 as ood.

The synthetic Mackey-Glass series is simulated from:

dx

dt
=

βxτ
1 + xnτ

− γx, (6)

where γ = 0.1, β = 0.2, n = 10. We simulate two series
independently, one with a delay of τ = 17, and another
with a delay of τ = 17/3, to form a 2-D multivariate time

series. In total, 3000 series instances with length 1024 are
generated, with the first 544 steps for training and last 480
steps for test.

Regarding MNIST, the training set consists of all the origi-
nal training samples with labels “0-4”. The test set consists
of original test samples with labels “0-4” and our ood set
consists of original test samples with labels “5-9”, namely
outlier1. The test set from Fashion-MNIST is also used as
another outlier set for the Whittle Networks experiment. In
order to have a similar number of samples in the second
outlier set, images labeled “Sandal, Shirt, Sneaker, Bag,
and Ankle boot” are used to form outlier2. The images are
down-sampled to 14× 14, with each row as one component
of a 14-dimensional multivariate time series.

Finally, we used hyperspectral images of plants for a quali-
tative analysis of anomaly detection. The images were taken
from leaves of sugar beet either healthy or inoculated with a
disease named Cercospora beticola, with 328 wavelengths
from 380nm to 1010nm. Each 328-D vector from one pixel
can be viewed as a single univariate time series. There are 3
classes of pixels in one image, healthy, inoculated, and back-
ground. Tab. 2 summarizes the statistics of the introduced
datasets.

C. Forecasting of Mackey-Glass Dataset
Forecasting is performed window by window. That is, given
a window of series Xt−1, we try to predict the value of the
next window Xt at once. Conditional distribution of the
two windows of series is modeled in order to do forecasting.
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L p |Ttrain| |Ttest| |Tood|
S&P 32 11 44 - -
Stock 32 17 50 - -
VAR 32 7 16384 1024 -
Sine 32 6 16384 1024 1024
Mackey-Glass 32/64 2 48000 45000 -
MNIST 14 14 30596 5139 4861
Billiards 100 6 9700 300 300

Table 2. Datasets statistics. L is the length of a sample, p is the
number of components in multivariate time series.

With a sliding window of size 64 with step size 32, 16
windows are extracted from each training instance with
length 544. In order to model the conditional distribution of
either p(Xt | Xt−1) in the time domain, or p(dt | dt−1) in
the Fourier domain, the first 32 steps in one window form
Xt−1, and the last 32 steps form Xt.

The hyperparameters of both CSPN and conditional WSPN
are: C = 1, as we want to model the conditional distribution
of data without class labels, and depth D = 2, number of
splittings R = 8, number of sum nodes in regions S = 8,
input distributions per leaf region I = 4. Both models are
trained with Adam optimizer for 10 epochs, with a learning
rate of 0.001 and a batch size of 64. Details of the CSPN
settings and hyperparameters can be found in Shao et al.
(2020).

In the test phase with conditional distributions, the true
value of Xt−1 is given, and the MPE of either p(Xt | Xt−1)
or p(dt | dt−1) is estimated as the prediction. Note that in
the basic LSTM experiment, the initial hidden state is set
to a 0 vector at the beginning of the test. This is the reason
why the prediction of LSTM from the 32nd step (start of
prediction) is far from the true value.

Regarding LSTM architecture, it is composed by stacking
one LSTM recurrent layer having 32 hidden units and one
linear layer that transforms the 32-dimensional vectors in
2-dimensional vectors. We trained the network for 100
epochs with Adam on min-max scaled data. We employed a
learning rate of 0.05, batch size of 512 samples, and MSE as
loss function. The model has been implemented in PyTorch
1.7.1 using the default values for the other hyperparameters.

D. Independence Structure of Sine Dataset
In order to explore the ability of discovering conditional
independencies of non-stationary time series, we apply
WSPNs to the Sine dataset and extract independence struc-
tures (DAGs) from it. The resulting structures are shown in
Fig. 2. One can clearly see that the three sine components
(“Sine11, Sine12 and Sine13”) that have the same frequency
are highly correlated. The other two components (“Sine21
and Sine22”) are also highly correlated while the Gaussian
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Figure 2. Directed independence structure among the 6 compo-
nents discovered by Whittle sum-product network (Left) and non-
Bayesian TGM (Right).

noise component is independent of the others. As a compar-
ison, non-Bayesian TGM produces the same directed graph
structure since the synthetic sine dataset is relatively simple.

E. RAT-SPN Hyperparameters
The RAT-SPN hyperparameters, see Peharz et al. (2020) for
details, were set as follows: C = 1, as we want to model
the joint distribution of data without class labels, and depth
D = 7, number of splittings R = 2, number of sum nodes
in regions S = 2, input distributions per leaf region I = 2.
We use the Adam optimizer with a learning rate of 0.003
on plants dataset, and a learning rate of 0.004 on MNIST
dataset.

F. Whittle Network Results
Additional results from Whittle Network, instantiated as
Whittle AE, on MNIST are shown in Fig. 3. The results
support our claim that Whittle Networks indeed provide
meaningful probabilities to neural networks. Both outlier1
(images of digits “5-9”) and outlier2 (images from Fashion-
MNIST) have a lower average likelihood compared to the
average likelihood of our MNIST test data which is com-
posed of in-domain samples, in other words, unseen sam-
ples of the same “0-4” digits (i.e. labels) as the training
set. Furthermore, outlier2 (clothes images) has even lower
likelihood than outlier1 (handwritten digits images) given
it is from a very different domain. This shows that Whittle
Network is also able to clearly distinguish very different
domains.

G. Computational Complexity and Running
Times
The following running times were estimated on a worksta-
tion with AMD Ryzen Threadripper 1950X 16-Core Pro-
cessor with 128GB of RAM. The deep neural network ex-
periments were executed on a GPU NVIDIA GeForce GTX
1080 Ti with 11GB of RAM. Learning both the structure
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Figure 3. Additional qualitative results of Whittle Network, instantiated as Whittle AE. Visualization and likelihood (log-scale) of input
(In) and output (Out) from (1st & 2nd Row) MNIST test set (digits “0-4”), (3rd & 4th Row) outlier1 (MNIST test set digits “5-9”), and
(5th & 6th Row) outlier2 (Fashion-MNIST test set). Whittle Network provides higher likelihood to in-domain samples of “0-4” digits
(same digits of training set samples) and lower likelihood to both outlier sets. Moreover, Whittle Network attributes lower likelihood to
outlier2 w.r.t. outlier1 showing that is also able to clearly distinguish very different domains (clothes and handwritten digits).

and the parameters of the WSPN on CPU takes 15min on
Sine dataset, 106min on MNIST, 23min on S&P, 76min
on Stock, and 65min on Billiards. Computing the Whittle
likelihood for all training, test, and OOD data takes 8min
in total on MNIST and less than 1min on the other datasets.
As a comparison, MADE takes 14min on Sine, 12min on
MNIST, 15.4s on S&P, 18s on Stock, and 7min on Billiards.
ResSPN takes 194min on Sine, 45h on MNIST, 35min on
S&P, 64min on Stock, and 248min on Billiards.

We summarize the running times (in minutes) and the num-
ber of generated edges from the conditional independencies
extraction procedure performed on CPU in Tab. 3. The re-
sults show that, when applying BIC, the complexity of the
generated graphs can be reduced, resulting also in shorter
running times. When BIC is not employed, the computa-
tional complexity of the graph generation is linear in the
data size N and quadratic in the number of graph nodes k,
i.e. O(N · k2).

In the forecasting scenario, both CSPN and WSPN are
trained on GPU, taking 3min 24s for training 10 epochs,

with BIC without BIC

p # edges time # edges time

VAR (undir.) 7 5 16 7 19
VAR 7 5 44 8 53
Sine 6 3 26 5 31
Stock 17 19 288 28 308
S&P 11 11 40 17 42

Table 3. Running times (in minutes) and number of generated
edges from the independencies extraction procedure on various
datasets. VAR (undir.) refers to the generation of undirected graph
while the others are DAGs.

and 16s for test. Training Whittle AE takes about 146min
for 200 epochs on MNIST on GPU. Testing the Whittle AE
on MNIST takes 20s in total.


