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Abstract

Deep learning for graph matching (GM) has
emerged as an important research topic due to
its superior performance over traditional methods
and insights it provides for solving other combi-
natorial problems on graph. While recent deep
methods for GM extensively investigated effective
node/edge feature learning or downstream GM
solvers given such learned features, there is little
existing work questioning if the fixed connectiv-
ity/topology typically constructed using heuristics
(e.g., Delaunay or k-nearest) is indeed suitable for
GM. From a learning perspective, we argue that
the fixed topology may restrict the model capacity
and thus potentially hinder the performance. To
address this, we propose to learn the (distribution
of) latent topology, which can better support the
downstream GM task. We devise two latent graph
generation procedures, one deterministic and one
generative. Particularly, the generative procedure
emphasizes the across-graph consistency and thus
can be viewed as a matching-guided co-generative
model. Our methods deliver superior performance
over previous state-of-the-arts on public bench-
marks, hence supporting our hypothesis.

1. Introduction
With the strong learning ability of deep networks, recent
research on graph matching (GM) has migrated from tradi-
tional deterministic optimization (Schellewald & Schnörr,
2005; Cho et al., 2010; Zhou et al., 2015) towards learning-
based methods (Zanfir & Sminchisescu, 2018; Wang et al.,
2019; Yu et al., 2020). GM is a classic combinatorial and
NP-hard problem (Loiola et al., 2007). As the mathemati-
cal cornerstone for a series of real-world applications (e.g.,
image matching (Wang et al., 2018b), social mining (Chi-
asserini et al., 2018) and protein matching (Krissinel & Hen-
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rick, 2004)), GM has received persistent attention from the
machine learning and optimization communities for many
years. Formally, for two graphs with n nodes each, graph
matching seeks to solve1:

max
z

z>Mz s.t. Z ∈ {0, 1}n×n, Hz = 1 (1)

where the affinity matrix M ∈ Rn
2×n2

+ encodes node (di-
agonal elements) and edge (off-diagonal elements) affini-
ties/similarities and z is the column-wise vectorization form
of the permutation matrix Z. H is a selection matrix ensur-
ing each row and column of Z summing to 1. 1 is a column
vector filled with 1. Eq. (1) is the so-called quadratic as-
signment problem (QAP) (Cho et al., 2010). Maximizing
Eq. (1) amounts to maximizing the sum of the similarity
induced by the matching vector Z.

Recently, deep learning based GM solvers (Zanfir & Smin-
chisescu, 2018; Wang et al., 2019; Yu et al., 2020; Fey et al.,
2020; Rolı́nek et al., 2020) have enabled end-to-end training
of GM on high-quality human labelled datasets (e.g., Pascal
VOC (Everingham et al., 2010; Bourdev & Malik, 2009) and
SPair-71k (Min et al., 2019)), which greatly improved the
model capacity. Any of the aforementioned deep GM algo-
rithms behaves as an integral framework, of which the main
parts cover topology construction2, feature extraction and
differentiable GM solver. In this line of works, affinity M
(see Eq. (1)) is not obtained beforehand, but calculated us-
ing node/edge features from some feature backbones given
heuristically constructed connectivity, then fed to subse-
quent GM solvers. Therefore, recent investigation on deep
GM frameworks typically focuses on two essential parts: 1)
node/edge feature backbone (e.g., graph convolutional net-
works (Wang et al., 2019), channel-independent embedding
(Yu et al., 2020) and SplineCNN (Fey et al., 2018)); 2) GM
solvers (e.g., spectral (Zanfir & Sminchisescu, 2018), linear
(Wang et al., 2019) and black-box (Pogancic et al., 2020)).
In particular, since the feature backbones are variants of

1Without loss of generality, we discuss graph matching under
the setting of equal number of nodes without outliers. The unequal
case can be readily handled by introducing extra constraints or
dummy nodes. Bipartite matching and graph isomorphism are
subsets of this quadratic formulation (Loiola et al., 2007).

2Topology in some GM problems is pre-defined and needs to
be fixed, such as graph isomorphism. In this paper, we consider a
more generic case where topology construction is necessary.
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Graph Neural Networks, they requires initial heuristically-
constructed connectivity/topology (e.g., Delaunay (Wang
et al., 2019) or k-nearest (Zhang & Lee, 2019)), and the
topology remains fixed throughout the training procedure in
almost all the existing deep GM methods. In this sense, the
construction of graph topology is only a pre-processing step,
independent of the GM task. This fixed mechanism was
adopted in many GM applications ranging from computer
vision (Wang et al., 2019; Yu et al., 2020; Fey et al., 2020;
Rolı́nek et al., 2020) to social networks (Zhang & Tong,
2016; Heimann et al., 2018; Xiong & Yan, 2020).

From a learning perspective, we argue that freezing the
graph topology for matching can hinder the capacity of deep
GM frameworks. For a pre-defined graph topology, the
linked nodes sometimes result in less meaningful or even
misleading interaction. See schematic demonstrations in
Fig. 1 and Fig. 5. Though some earlier attempts (Cho & Lee,
2012; Cho et al., 2013) sought to adjust the graph topology
under traditional learning settings, such procedures cannot
be readily integrated into end-to-end deep frameworks due
to the undifferentiable nature. Our method is built upon the
following hypothesis:

• There exists some latent (distribution of) discrete topol-
ogy better than what is heuristically created for GM.

Based on this, in this paper, we set out to learn the topol-
ogy (or its distribution) that is more suitable for GM. We
propose an end-to-end framework, termed as deep latent
graph matching (DLGM), to jointly learn the latent graph
topology and perform GM. We leverage the power of graph
generative model to automatically produce graph topology
from given features and their geometric relations, under
two specific prior: locality and consistency. Different from
generative learning on singleton graphs (Kipf & Welling,
2016; Bojchevski et al., 2018), our graph generative learn-
ing is performed in a pairwise fashion, leading to a novel
matching-guided generative paradigm.

The paper makes the following contributions:

• We explore a new direction for more flexible GM by
actively learning latent topology, in contrast to previous
works using fixed topology as input;

• Under this setting, we propose a deterministic optimiza-
tion approach to learn graph topology for matching;

• We further present a generative way to produce la-
tent topology, which can be adapted to other problems
where graph topology is the latent structure to infer;

• With minimal modification to state-of-the-art GM
pipelines, our method achieves superior performance
on public benchmarks.

BBGM
	on	Delaunay

DLGM
	on	Generated

7/13
9/13

Figure 1. Matching of BBGM (Rolı́nek et al., 2020) 7/13 with
Delaunay triangulation and our DLGM-G 9/13 using generated
graph (Pascal VOC). Red edges are the ones different from blue
Delaunay edges. Green and yellow lines correspond to positive
and negative matchings, respectively. GM solver favors topology
generated from DLGM-G, and thus leads to better accuracy.

2. Related Works
In this section, we first discuss existing works for graph
topology and matching updating, whose motivation is some-
what similar to ours while the technique is largely different.
Then we discuss relevant works in learning graph matching
and generative graph models from the technical perspective.

Topology updating and matching. There are a few
works for joint graph topology updating and matching, in
the context of network alignment. Specifically, given two
initial networks for matching, Du et al. (2019) showed how
to alternatively perform link prediction within each net-
work and node matching across networks based on the ob-
servation that these two tasks can benefit each other. In
their extension (Du et al., 2020), a skip-gram embedding
framework was further established under the same setting.
These works involve random-walk-based node embedding
updating and classification-based link prediction, and the
whole algorithm runs in a one-shot optimization fashion.
There is neither explicit training dataset nor trained match-
ing model (except for the link classifier), which bears less
flavor of machine learning. In contrast, our method in-
volves training an explicit model for topology recovery and
matching solving. Specifically, our deterministic technique
(see Sec. 3.4.1) solves graph topology and matching in one-
shot, while the proposed generative method alternatively
estimates the topology and matching (see Sec. 3.4.2). Our
approach allows the algorithm to fully leverage multiple
training samples to boost the performance on the test set.
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Moreover, the combinatorial nature of the matching prob-
lem is not addressed in (Du et al., 2019; 2020), where a
greedy selection strategy was adopted instead. In contrast,
we develop a principled combinatorial learning approach to
this challenge. Also their methods rely on a considerable
amount of seed matchings, yet this paper directly learns the
latent topology from scratch which is more challenging and
practical but yet seldom studied.

Learning of graph matching. Early shallow models
sought to learn effective metric (e.g. weighted Euclid dis-
tance) for node and edge features or affinity kernel (e.g.
Gaussian kernel) in a parametric fashion (Caetano et al.,
2009; Cho et al., 2013). Recent deep graph matching meth-
ods have shown how to extract more dedicated features. The
work (Zanfir & Sminchisescu, 2018) adopts VGG16 (Si-
monyan & Zisserman, 2014) as the backbone for feature
extraction on images. Other efforts have been devoted to
developing more advanced pipelines, where graph embed-
ding (Wang et al., 2019; Yu et al., 2020; Fey et al., 2020)
and geometric learning (Zhang & Lee, 2019; Fey et al.,
2020) are involved. Rolı́nek et al. (2020) studied the way
of incorporating traditional non-differentiable combinato-
rial solvers by introducing a differentiatiable blackbox GM
solver (Pogancic et al., 2020). Recent works in tackling
combinatorial problem with deep learning (Huang et al.,
2019; Kool & Welling, 2018) also inspired development of
combinatorial deep solvers for GM problems formulated
by both Koopmans-Beckmann’s QAP (Nowak et al., 2018;
Wang et al., 2019) and Lawler’s QAP (Wang et al., 2021).
Specifically, Wang et al. (2019) devised a permutation loss
for supervised learning, with an improvement in (Yu et al.,
2020) via Hungarian attention. Wang et al. (2021) solved
the most general Lawler’s QAP with a graph embedding
technique.

Generative graph model. Early generative models for
graph can be dated back to (Erdos & Renyi, 1959), in which
edges are generated with fixed probability. Recently, Kipf
& Welling (2016) presented a graph generative model by
re-parameterizing the edge probability from Gaussian noise.
Johnson (2017) proposed to generate graph in an incremen-
tal fashion, and in each iteration a portion of the graph is
produced. Gómez-Bombarelli et al. (2018) utilized recur-
rent neural network to generate graph from a sequence of
molecule representation. Adversarial graph generation was
considered in (Pan et al., 2018; Wang et al., 2018a; Bo-
jchevski et al., 2018). Specifically, Wang et al. (2018a);
Bojchevski et al. (2018) sought to unify graph generative
model and generative adversarial networks. In parallel, re-
inforcement learning has been adopted to generate discrete
graphs (De Cao & Kipf, 2018).

3. Learning Latent Topology for GM
In this section, we describe details of the proposed frame-
work with two specific algorithms derived from determin-
istic and generative perspectives, respectively. Both algo-
rithms are motivated by the hypothesis that there exists
some latent topology more suitable for matching rather than
a fixed one. Note that the proposed deterministic algo-
rithm performs a standard forward-backward pass to jointly
learn the topology and matching, while our generative al-
gorithm consists of an alternative optimization procedure
between estimating latent topology and learning matching
under an Expectation-Maximization (EM) interpretation.
In general, the generative algorithm assumes that a latent
topology is sampled from a latent distribution, where the
expected matching accuracy under this distribution is maxi-
mized. Therefore, we expect to learn a topology generator
under such distribution. We reformulate GM in a Bayesian
fashion for consistent discussion in Sec. 3.1, detail deter-
ministic/generative latent module in Sec. 3.2 and discuss the
loss functions from a probabilistic perspective in Sec. 3.3.
We finally elaborate on the holistic framework and the opti-
mization procedure for both algorithms (deterministic and
generative) in Sec. 3.4.

3.1. Problem Definition and Background

Learning-based GM problem can be viewed as an exten-
sion to Eq. (1). Let G(s) and G(t) represent respectively
the source and target graphs for matching. We represent a
graph as G := {X,E,A}, where X ∈ Rn×d1 is the repre-
sentation of n nodes with dimension d1. E ∈ Rm×d2 are
d2-dimensional features of m edges and A ∈ {0, 1}n×n is
initial connectivity (i.e., topology) matrix by heuristics (e.g.,
Delaunay triangulation). For notational brevity, we assume
d1 and d2 remain intact after updating the features across
each convolutional layers of GNN (i.e., feature dimensions
of both nodes and edges will not change after each layer’s
update). Denote the matching Z ∈ {0, 1}n×n between two
graphs, where Zij = 1 indicates a correspondence exists
between node i in G(s) and node j in G(t), and Zij = 0

otherwise. Given training samples {Zk,G(s)k ,G(t)k } with
k = 1, 2, ..., N , the objective of learning-based GM aims to
maximize the likelihood:

max
θ

∏
k

Pθ

(
Zk|G(s)k ,G(t)k

)
(2)

where θ denotes model parameters. Pθ(·) measures the prob-
ability of matching Zk given the k-th pair, and is instantiated
via a network parameterized by θ.

Being a generic module for producing latent topology,
our method can be flexibly and easily integrated into ex-
isting deep GM frameworks. We build up our method
based on state-of-the-art (Rolı́nek et al., 2020), which uti-
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lizes SplineCNN (Fey et al., 2018) for node/edge feature
learning and black-box GM solver (Pogancic et al., 2020).
SplineCNN is a specific graph neural networks which up-
dates a node representation via a weighted summation of
its neighbors. The update rule at node i of a standard
SplineCNN reads:

(x ∗ g)(i) = 1

|N (i)|

d1∑
l=1

∑
j∈N (i)

xl(j) · gl(e(i, j)) (3)

where xl(j) performs the convolution on node j and outputs
a d1-dimensional feature. gl(·) delivers the message weight
given the edge feature e(i, j). N (i) refers to i’s neighboring
nodes. Summation over neighbors follows the topology A.
Since our algorithm learns to generate topology, we need to
explicitly express Eq. (3) in a differentiable way w.r.t. A.
To this end, we rewrite Eq. (3) as:

(x ∗ g|A) = (Â ◦G)X̂ (4)

where Â is the normalized connectivity with each row nor-
malized by the degree |N (i)| (see Eq. (3)) of the correspond-
ing node i. G and X̂ correspond to outputs of gl(·) and xl(·)
operators, respectively. (·◦·) is the Hadamard product. With
Eq. (4), we thus can perform back-propagation on connec-
tivity/topology A. See more details in Appendix A.3.

3.2. Latent Topology Learning

Existing learning-based graph matching algorithms consider
A to be fixed throughout the computation without question-
ing if the input topology is optimal or not. This can be
problematic since input graph construction is heuristic, and
it never takes into account how suitable it is for the subse-
quent GM task. In our framework, instead of utilizing a
fixed pre-defined topology, we consider to produce latent
topology under two settings: 1) a deterministic and 2) a
generative way. The former is often more efficient while
the latter method can be more accurate at the cost of explor-
ing more latent topology. Note that both methods produce
discrete topology to verify our hypothesis about the exis-
tence of more suitable discrete latent topology for GM. The
corresponding two deep structures are described below.

Deterministic learning: Given input features X and ini-
tial topology A, the deterministic way of generating latent
topology A ∈ {0, 1}n×n is3:

Aij = Rounding(sigmoid(y>i Wyj))

with Y = GCN(X,A)
(5)

where GCN(·) is the graph convolutional networks (GCN)
(Kipf & Welling, 2017) and yi corresponds to the feature

3We here consider the node feature X and topology A. Edge
feature E can be readily integrated as another input.

of node i in feature map Y. W is the learnable parameter
matrix. Note that function Rounding(·) is undifferentiable,
and will be discussed in Sec. 3.4.1.

Generative learning: We reparameterize the representa-
tion:

P (yi|X,A) = N (yi|µi,diag(σ2)) (6)

with µ = GCNµ(X,A) and σ = GCNσ(X,A) are two
GCNs producing mean and covariance. It is equivalent to
sampling a random vector from i.i.d. uniform distribution
s ∼ U(0,1), then applying y = µ + s · σ, where (·) is
element-wise product.

Similar to Eq. (5), by introducing learnable parameter W,
the generative latent topology is sampled following i.i.d.
distribution over each edge (i, j):

P (A|Y) =
∏
i

∏
j

P (Aij |yi,yj)

with P (Aij = 1|yi,yj) = sigmoid(y>i Wyj)

(7)

Since sigmoid(·) maps any input into (0, 1), Eq. (7) can
be interpreted as the probability of sampling edge (i, j).
As the sampling procedure is undifferentiable, we apply
Gumbel-softmax trick (Jang et al., 2017) as another repa-
rameterization procedure. As such, a latent graph topology
A can be sampled fully from distribution P (A) and the
procedure becomes differentiable.

3.3. Loss Functions

In this section, we explain three loss functions and the un-
derlying motivation: matching loss, locality loss and consis-
tency loss. The corresponding probabilistic interpretation of
each loss function can be found in Sec. 3.4.2. These func-
tions are selectively activated in DLGM-D and DLGM-G
(see Sec. 3.4). In DLGM-G, different loss functions are
activated in inference and learning steps.

i) Matching loss. This common term measures how the
predicted matching Ẑ diverges from ground-truth Z. Fol-
lowing Rolı́nek et al. (2020), we adopt Hamming distance
on node-wise matching:

LM = Hamming(Ẑ,Z) (8)

ii) Locality loss. This loss is devised to account for the
general prior that the produced/learnt graph topology should
advocate local connections rather than distant ones, since
two nodes may have less meaningful interaction once they
are too distant from each other. In this sense, locality loss
serves as a prior or regularizer in GM. As shown in multiple
GM methods (Yu et al., 2018; Wang et al., 2019; Fey et al.,
2020), Delaunay triangulation is an effective way to deliver
good locality. Therefore in our method, the locality loss
is the Hamming distance between the initial topology A
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(obtained from Delaunay) and predicted topology A for
both the source graph and the target graph:

LL = Hamming(A(s),A(s)) + Hamming(A(t),A(t))
(9)

We emphasize that the locality loss serves as a prior for
latent graph. It focuses on advocating locality, but not re-
constructing the initial Delaunay triangulation (as in Graph
VAE (Kipf & Welling, 2016)).

iii) Consistency loss. One can imagine that a GM solver
is likely to deliver better performance if two graphs in a
training pair are similar. In particular, we anticipate the
latent topology A(s) and A(t) to be isomorphic under a
specific matching, since isomorphic topological structures
tend to be easier to match. Driven by this consideration,
we devise the consistency loss which measures the level of
isomorphism between latent topology A(s) and A(t):

LC(·|Z) = |Z>A(s)Z−A(t)|+ |ZA(t)Z>−A(s)| (10)

Note that Z does not necessarily refer to the ground-truth,
but can be any predicted matching. In this sense, latent
topology A(s) and A(t) can be generated jointly given the
matching Z as guidance. This term can also serve as a
consistency prior or regularization. We give a schematic
example showing the merit of introducing the consistency
loss in Fig. 2(b).

3.4. Framework

A schematic diagram of our framework is given in Fig. 2(a)
which consists of a singleton pipeline for processing a single
image. It consists of three essential modules: a feature back-
bone (NB), a latent topology module (NG) and a feature
refinement module (NR). Specifically, module NG corre-
sponds to Sec. 3.2 with deterministic or generative imple-
mentations. Note that the geometric relations of keypoints
provide some prior for generating topology A. We employ
VGG16 (Simonyan & Zisserman, 2014) as NB and feed the
produced node feature X and edge feature E to NG. NB
also produces a global feature for each image. After gener-
ating the latent topology A, we pass over X and E together
with A to NR (SplineCNN (Fey et al., 2018)). The holistic
pipeline handling pairwise graph inputs can be found in
Fig. 5 in Appendix A.2, which consists of two copies of
singleton pipeline processing source and target data (in a
Siamese fashion), respectively. Then the outputs of two sin-
gleton pipelines are formulated into affinity matrix, followed
by a differentiable Blackbox GM solver (Pogancic et al.,
2020) with message-passing mechanism (Swoboda et al.,
2017). Note that, if NG is removed, the holistic pipeline
with only NB +NR is identical to the method in (Rolı́nek
et al., 2020). Readers are referred to this strong baseline
(Rolı́nek et al., 2020) for more mutual algorithmic details.

3.4.1. OPTIMIZATION WITH DETERMINISTIC LATENT
GRAPH

We now show how to optimize with the deterministic latent
graph module, where the topology A is produced by Eq. (5).
The objective of matching conditioned on the produced
latent topology A becomes:

max
∏
k

P
(
Zk|A(s)

k ,A
(t)
k ,G(s)k ,G(t)k

)
(11)

Eq. (11) can be optimized with standard back-propagation
with three loss terms activated, except for the Rounding
function (see Eq. (5)), which makes the procedure undiffer-
entiable. To address this, we use straight-through operator
(Bengio et al., 2013) which performs a standard rounding
during the forward pass but approximates it with the gradi-
ent of identity during the backward pass on [0, 1]:

∂Rounding(x)/∂x = 1 (12)

Though there exist some unbiased gradient estimators (e.g.,
REINFORCE (Williams, 1992)), the biased straight-through
estimator proved to be more efficient and has been suc-
cessfully applied in several applications (Chung et al.,
2017; Campos et al., 2018). All the network modules
(NG + NB + NR) are simultaneously learned during the
training. All three losses are activated in the learning pro-
cedure (see Sec. 3.3), which are applied on the predicted
matching Ẑ, the latent topology A(s) and A(t). We term
the algorithm under this setting DLGM-D.

3.4.2. OPTIMIZATION WITH GENERATIVE LATENT
GRAPH

See more details in Appendix A.4. In this setting, the source
and target latent topology A(s) and A(t) are sampled ac-
cording to Eq. (6) and (7). The objective becomes:

max
∏
k

∫
A

(s)
k ,A

(t)
k

Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
(13)

Unfortunately, directly optimizing Eq. (13) is difficult due
to the integration over A, which is intractable. Instead, we
maximize the evidence lower bound (ELBO) (Bishop, 2006)
as follows:

logPθ(Z|G(s),G(t)) ≥

EQφ(A(s),A(t)|G(s),G(t))

[
logPθ(Z,A

(s),A(t)|G(s),G(t))

− logQφ(A
(s),A(t)|G(s),G(t))

]
(14)

where Qφ(A
(s),A(t)|G(s),G(t)) can be any joint dis-

tribution of A(s) and A(t) given the input graphs
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Figure 2. (a) One of the two branches of our DLGM framework (see the complete version in Appendix A.2). NB : VGG16 as backbone
producing a global feature of input image, and initial X and E; NG: deterministic or generative module producing latent topology A;
NR: SplineCNN for feature refinement producing updated X and E. (b) A schematic figure showing the merit of introducing consistency
loss Lc for training. Initial topology A(s) and A(t) are constructed using Delaunay triangulation. Given matching Z as guidance,
latent topology A(s) and A(t) are generated from inputs A(s) and A(t), respectively. Note that the learned topology A(s) and A(t) are
isomorphic (Lc = 0) w.r.t. Z, which is easier to match in test, compared to non-isomorphic input structures (Lc = 4).

G(s) and G(t). Equality of Eq. (14) holds when
Qφ(A

(s),A(t)|G(s),G(t)) = Pθ(A
(s),A(t)|Z,G(s),G(t)).

For tractability, we introduce the independence by assum-
ing that we can use an identical latent topology module Qφ
(corresponding to NG in Fig. 2(a)) to separately handle each
input graph:

Qφ(A
(s),A(t)|G(s),G(t)) = Qφ(A

(s)|G(s))Qφ(A(t)|G(t))
(15)

which can greatly simplify the model complexity. Then we
can utilize a neural network to model Qφ (similar to mod-
eling Pθ). The optimization of Eq. (14) is studied in (Neal
& Hinton, 1998), known as the Expectation-Maximization
(EM) algorithm. Optimization of Eq. (14) alternates be-
tween E-step and M-step. During E-step (inference), Pθ
is fixed and the algorithm seeks to find an optimal Qφ to
approximate the true posterior distribution (see Appendix
A.4 for explanation):

Pθ(A
(s),A(t)|Z,G(s),G(t)) (16)

During M-step (learning), Qφ is instead fixed and algorithm
alters to maximize the likelihood:

EQφ(A(s)|G(s)),Qφ(A
(t)|G(t))

[
logPθ(Z,A

(s),A(t)|G(s),G(t))
]

∝ −LM
(17)

We detail on the inference and learning steps as follows.

Inference. This step focuses on deriving posterior distri-
bution Pθ(A(s),A(t)|Z,G(s),G(t)) using its approximation
Qφ. To this end, we fix the parameters θ in modules NB
and NR, and only update the parameters φ in module NG
corresponding to Qφ. As stated in Sec. 3.2, we employ
the Gumbel-softmax trick for sampling discrete A (Jang

et al., 2017). To this end, we can formulate a 2D vector
aij = [P (Aij = 1), 1 − P (Aij = 1)]>. Then the sam-
pling becomes:

softmax (log(aij) + hij ; τ) (18)

where hij is a random 2D vector from Gumbel distribution,
and τ is a small temperature parameter. We further impose
prior on latent topology A given A through locality loss:

log
∏
i,j

P (Aij |Aij) ∝ −LL(A,A) (19)

which is to preserve the locality in initial topology A. It
should also be noted that Z is the predicted matching from
current Pθ, as Qφ is an approximation. Besides, we also
anticipate two generated topology A(s) and A(t) from a
graph pair should be similar (isomorphic) given Z:

logP
(
A(s),A(t)|Z

)
∝ −LC

(
A(s),A(t)|Z

)
(20)

In summary, we activate locality loss and consistency loss
as αLL + βLC during the inference step, where the latter
loss is conditioned with the predicted matching rather than
the ground-truth. Note that the inference step involves twice
re-parameterization tricks corresponding to Eq. (6) and (18),
respectively. While the first generates the continuous topol-
ogy distribution under edge independence assumption, the
second performs discrete sampling according to the gener-
ated topology distribution.

Learning. This step optimizes Pθ by fixing Qφ. We sample
discrete graph topologies As completely from the proba-
bility of edge P (Aij = 1). Once latent topology As are
sampled, we feed them to module NR together with the
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Algorithm 1 DLGM-D

1: Input: Gs, Gt and ground-truth Z;
2: Output: matching Ẑ;
3: Pretrain Pθ using Eq. (11), given Delaunay as input

topology;
4: repeat
5: # Inference (E-step):
6: Obtain predicted matching Ẑ using fixed Pθ;
7: UpdateQφ (i.e. NG) with loss LL+LC(·|Ẑ) accord-

ing to Eq. (16);
8: # Learning (M-step):
9: Obtain predicted graph topology A(s) and A(t) using

Qφ;
10: Update Pθ (i.e. NB and NR) with loss LM given

A(s) and A(t) according to Eq. (17);
11: until converge
12: Predict topology and the matching Ẑ with whole net-

work activated (i.e. NG +NB +NR);

node-level features from NB . Only NB and NR are updated
in this step, and only matching loss LM is activated.

Remark. Note for each pair of graphs in training, we use
an identical random vector s for generating both graphs’
topology (see Eq. (6)). We pretrain the network Pθ before
alternativly training Pθ and Qφ. During pretraining, we
activate NB +NR modules and LM loss during pretraining,
and feed the network the topology obtained from Delaunay
as the latent topology. After pretraining, the optimization
will switch between inference and learning steps until con-
vergence. We term the setting of generative latent graph
matching as DLGM-G and summarize it in Alg. 1.

4. Experiment
We conduct experiments on datasets including Pascal VOC
with Berkeley annotation (Everingham et al., 2010; Bourdev
& Malik, 2009), Willow ObjectClass (Cho et al., 2013) and
SPair-71K (Min et al., 2019). We report the per-category
and average performance. The objective of all experiments
is to maximize the average matching accuracy. Both our
DLGM-D and DLGM-G are tested. Except for the ablation
study, we consistently conduct experiments under α = 5.0
and β = 0.3. We will test different combinations of αs and
βs in the ablation study (Sec. 4.4).

Peer methods. We conduct comparison experiments
against the following algorithms: 1) GMN (Zanfir & Smin-
chisescu, 2018), which is a seminal work incorporating
graph matching into deep learning framework equipped with
a spectral solver (Egozi et al., 2012); 2) PCA (Wang et al.,
2019). This method treats graph matching as feature match-
ing problem and employs GCN (Kipf & Welling, 2017)
to learn better features; 3) CIE1/GAT-H (Yu et al., 2020).

This paper develops an embedding and attention mechanism,
where GAT-H is the version by replacing the basic embed-
ding block with Graph Attention Networks (Veličković et al.,
2018); 4) DGMC (Fey et al., 2020). This method devises
a post-processing step by emphasizing the neighborhood
similarity; 5) BBGM (Rolı́nek et al., 2020). It integrates a
differentiable linear combinatorial solver (Pogancic et al.,
2020) into a deep learning framework and achieves state-of-
the-art performance.

4.1. Results on Pascal VOC.

This dataset (Everingham et al., 2010; Bourdev & Malik,
2009) consists of 7,020 training images and 1,682 testing
images with 20 classes in total, together with the object
bounding boxing for each. Following the data preparation
in (Wang et al., 2019), each object within the bounding box
is cropped and resized to 256× 256. The number of nodes
per graph ranges from 6 to 23. We further follow (Rolı́nek
et al., 2020) under two evaluating metrics: 1) Accuracy: this
is the standard metric evaluated on the keypoints by filtering
out the outliers; 2) F1-score: this metric is evaluated without
keypoint filtering, being the harmonic mean of precision
and recall. Therefore, task 2) can be viewed as common
sub-graph matching with outliers. Experimental results on
the two setting are shown in Tab. 1 and Tab. 2. The proposed
method under either settings of DLGM-D and DLGM-G out-
performs counterparts by accuracy and f1-score. DLGM-G
generally outperforms DLGM-D. Discussion can be found
in Appendix A.5.

Quality of generated topology. We further show the consis-
tency/locality curve vs epoch in Fig. 3, since both consis-
tency and locality losses can somewhat reflect the quality
of topology generation. It shows that both locality and con-
sistency losses descend during the training. Note that the
consistency loss with Delaunay triangulation (green dashed
line) is far more larger than our generated ones (blue/red
dashed line). This clearly supports the claim that our method
generates similar (more isomorphic) typologies, as well as
preserving locality.

4.2. Results on Willow Object.

The benchmark (Cho et al., 2013) consists of 256 images
in 5 categories, where two categories (car and motorbike)
are subsets from Pascal VOC. Following the protocol in
Wang et al. (2019), we crop the image within the object
bounding box and resize it to 256× 256. Since the dataset
is relatively small, we conduct the experiment to verify
the transfer ability of different methods under two settings:
1) trained on Pascal VOC and directly applied to Willow
(Pt); 2) trained on Pascal VOC then finetuned on Willow
(Wt). Results under the two settings are shown in Tab. 4.
Since this dataset is relatively small, further improvement
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Table 1. Accuracy (%) on Pascal VOC (best in bold). Only inlier keypoints are considered.
METHOD AERO BIKE BIRD BOAT BOTTLE BUS CAR CAT CHAIR COW TABLE DOG HORSE MBIKE PERSON PLANT SHEEP SOFA TRAIN TV AVE

GMN 31.1 46.2 58.2 45.9 70.6 76.4 61.2 61.7 35.5 53.7 58.9 57.5 56.9 49.3 34.1 77.5 57.1 53.6 83.2 88.6 57.9
GAT-H 47.2 61.6 63.2 53.3 79.7 70.1 65.3 70.5 38.4 64.7 62.9 65.1 66.2 62.5 41.1 78.8 67.1 61.6 81.4 91.0 64.6

PCA 40.9 55.0 65.8 47.9 76.9 77.9 63.5 67.4 33.7 65.5 63.6 61.3 68.9 62.8 44.9 77.5 67.4 57.5 86.7 90.9 63.8
CIE1-H 51.2 69.2 70.1 55.0 82.8 72.8 69.0 74.2 39.6 68.8 71.8 70.0 71.8 66.8 44.8 85.2 69.9 65.4 85.2 92.4 68.9
DGMC 50.4 67.6 70.7 70.5 87.2 85.2 82.5 74.3 46.2 69.4 69.9 73.9 73.8 65.4 51.6 98.0 73.2 69.6 94.3 89.6 73.2
BBGM 61.5 75.0 78.1 80.0 87.4 93.0 89.1 80.2 58.1 77.6 76.5 79.3 78.6 78.8 66.7 97.4 76.4 77.5 97.7 94.4 80.1

DLGM-D (OURS) 60.8 76.0 77.5 79.6 88.0 95.0 90.4 81.6 67.3 82.4 94.1 79.6 81.2 80.5 68.9 98.6 77.1 87.5 97.0 95.3 82.9
DLGM-G (OURS) 64.7 78.1 78.4 81.0 87.2 94.6 89.7 82.5 68.5 83.0 93.9 82.3 82.8 82.7 69.6 98.6 78.9 88.9 97.4 96.7 83.8

Table 2. F1-score (%) on Pascal VOC. Experiment are performed on a pair of images where both inlier and outlier keypoints are considered.
BBGM-max is a setting in Rolı́nek et al. (2020).

METHOD AERO BIKE BIRD BOAT BOTTLE BUS CAR CAT CHAIR COW TABLE DOG HORSE MBIKE PERSON PLANT SHEEP SOFA TRAIN TV AVE

BBGM-MAX 35.5 68.6 46.7 36.1 85.4 58.1 25.6 51.7 27.3 51.0 46.0 46.7 48.9 58.9 29.6 93.6 42.6 35.3 70.7 79.5 51.9
BBGM 42.7 70.9 57.5 46.6 85.8 64.1 51.0 63.8 42.4 63.7 47.9 61.5 63.4 69.0 46.1 94.2 57.4 39.0 78.0 82.7 61.4

DLGM-D (OURS) 42.5 71.8 57.8 46.8 86.9 70.3 53.4 66.7 53.8 67.6 64.7 64.6 65.2 70.1 47.9 95.5 59.6 47.7 77.7 82.6 63.9
DLGM-G (OURS) 43.8 72.9 58.5 47.4 86.4 71.2 53.1 66.9 54.6 67.8 64.9 65.7 66.9 70.8 47.4 96.5 61.4 48.4 77.5 83.9 64.8

Table 3. Accuracy (%) on SPair-71K compared with state-of-the-art methods (best in bold).
METHOD AERO BIKE BIRD BOAT BOTTLE BUS CAR CAT CHAIR COW DOG HORSE MBIKE PERSON PLANT SHEEP TRAIN TV AVE

DGMC 54.8 44.8 80.3 70.9 65.5 90.1 78.5 66.7 66.4 73.2 66.2 66.5 65.7 59.1 98.7 68.5 84.9 98.0 72.2
BBGM 66.9 57.7 85.8 78.5 66.9 95.4 86.1 74.6 68.3 78.9 73.0 67.5 79.3 73.0 99.1 74.8 95.0 98.6 78.9

DLGM-D (OURS) 69.8 64.4 86.8 79.9 69.8 96.8 87.3 77.7 77.5 83.1 76.7 69.6 85.1 75.1 98.7 76.4 95.8 97.9 81.3
DLGM-G (OURS) 70.4 66.8 86.7 81.7 69.2 96.4 85.8 79.5 78.4 84.0 79.4 69.4 84.5 76.6 99.1 75.9 96.4 98.5 82.0
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Figure 3. Consistency loss (Eq. (9) and locality loss (Eq. 10)) keep
decrease over training which suggests the effectiveness for adaptive
topology learning for matching.

is difficult. It is shown both DLGM-D and DLGM-G have
good transfer ability.

4.3. Results on SPair-71K.

This dataset (Min et al., 2019) is much larger than Pascal
VOC and WillowObject. It consists of 70,958 image pairs
collected from Pascal VOC 2012 and Pascal 3D+ (53,340

Table 4. Accuracy (%) on Willow Object.
METHOD SETTING FACE MBIKE CAR DUCK WBOTTLE

GMN PT 98.1 65.0 72.9 74.3 70.5
WT 99.3 71.4 74.3 82.8 76.7

PCA PT 100.0 69.8 78.6 82.4 95.1
WT 100.0 76.7 84.0 93.5 96.9

CIE PT 99.9 71.5 75.4 73.2 97.6
WT 100.0 90.0 82.2 81.2 97.6

DGMC PT 98.6 69.8 84.6 76.8 90.7
WT 100.0 98.8 96.5 93.2 99.9

BBGM PT 100.0 95.8 89.1 89.8 97.9
WT 100.0 98.9 95.7 93.1 99.1

DLGM-D (OURS) PT 100.0 95.5 91.3 91.4 97.9
WT 100.0 99.4 95.9 92.8 99.3

DLGM-G (OURS) PT 99.9 96.4 92.0 91.8 98.0
WT 100.0 99.3 96.5 93.7 99.3

for training, 5,384 for validation and 12,234 for testing). It
improves Pascal VOC by removing ambiguous categories
sofa and dining table. This dataset is considered to contain
more difficult matching instances and higher annotation
quality. Results are summarized in Tab. 3. Our method
consistently improves the matching performance, agreeing
with those in Pascal VOC and Willow.
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Table 5. Selectively deactivating loss functions on Pascal VOC.
LM , LC andLL are selectively activated in DLGM-D and DLGM-
G. “full” indicates all loss functions are activated. Average accu-
racy (%) is reported.

METHOD AVE

DLGM-D (LM + LC ) 79.8
DLGM-D (LM + LL) 79.5
DLGM-G (LM + LC ) 80.9
DLGM-G (LM + LL) 80.4

DLGM-D (FULL) 82.9
DLGM-G (FULL) 83.8

4.4. Ablation study

We conduct ablation to show the effectiveness of some fac-
tors involved in our framework (e.g., sampling size of the
generator and varying loss strength α and β).

In the first part, we evaluate the performance of DLGM-
D and DLGM-G by selectively deactivating different loss
functions LM , LC and LL. Since our method involves a
sampling procedure, we also conduct the test on DLGM-G
using different sample size of the generator. This ablation
test is conducted on Pascal VOC dataset and average accu-
racy is reported in Tab. 5 and 6.

We first test the performance of both settings of DLGM by
selectively activate the designated loss functions. Experi-
mental results are summarized in Tab. 5. As matching loss
LM is essential for GM task, we constantly activate this
loss for all settings. Note once LC and LL are both deac-
tivated, our method will degenerate into BBGM (Rolı́nek
et al., 2020). In this case, there will be no need to train the
generator Qφ. We see that the proposed novel losses LC
and LL can consistently enhance the matching performance.
Besides, DLGM-G indeed delivers better performance than
DLGM-D under fair comparison.

We then test the impact of sample size from the generator
Qφ under DLGM-G. Experimental results are summarized
in Tab. 6. We see that along with the increasing sample size,
the average accuracy ascends. The performance becomes
stable when the sample size reaches over 16.

Remark. In terms of the time efficiency, if we consider
the training time of the baseline (Rolı́nek et al., 2020) to
be 1x, the training time of our method under discriminative
setting is around 1.2x-1.3x. The time cost of our method
under generative setting is around 8x-9x with sample size
16. We didn’t observe any obvious efficiency gap for the
testing stage.

In the second part, we present more detailed results by
varying the loss strength αs and βs for DLGM-G. Letting

Table 6. Average matching accuracy under different sampling sizes
from the generator Qφ with “full” DLGM-G setting.

#SAMPLE AVE

1 82.5
2 83.2
4 83.2
8 83.5

16 83.8
32 83.7

Table 7. Ablation study of DLGM-G on Pascal VOC dataset. α and
β correspond to the strength of locality loss LL and consistency
loss LC , respectively. Average accuracy (%) is reported.

α
β

0.1 0.2 0.3 0.4 0.5

4.0 82.0 81.8 82.4 82.1 81.9
4.5 82.2 82.6 82.9 82.5 82.5
5.0 82.3 83.3 83.8 83.1 82.5
5.5 82.0 82.9 83.3 83.0 82.7

the loss at inference step be αLL + βLC , Tab. 7 shows the
performance of DLGM-G with varying α and β on Pascal
VOC with only inliers (Note we reported α = 5.0 and
β = 0.3 in all the previous experiments on each dataset):

5. Conclusion
Recent deep GM methods have delivered significant perfor-
mance gain over traditional ones through learning node/edge
features and GM solvers. However, beyond relying on
heuristics, there is little work on learning more effective
topology for improved matching. In this paper, we hypoth-
esize that learning a better (distribution of) discrete graph
topology can significantly improve the matching, thus be-
ing essential. As such, we propose to incorporate a latent
topology module under an end-to-end deep framework that
learns to produce better graph topology. We present the
interpretation and optimization of the topology learning
module from deterministic and generative perspectives re-
spectively. Experimental results show that, by learning the
latent topology, the matching performance can be consis-
tently and significantly enhanced on several public datasets,
with only minimal modification to existing method.
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Schellewald, C. and Schnörr, C. Probabilistic subgraph
matching based on convex relaxation. In EMMCVPR,
2005.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In ICLR,
2014.

Swoboda, P., Rother, C., Abu Alhaija, H., Kainmuller, D.,
and Savchynskyy, B. A study of lagrangean decompo-
sitions and dual ascent solvers for graph matching. In
CVPR, 2017.
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