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Abstract

Intersection over union (IoU) score, also named

Jaccard Index, is one of the most fundamental

evaluation methods in machine learning. The o-

riginal IoU computation cannot provide non-zero

gradients and thus cannot be directly optimized by

nowadays deep learning methods. Several recent

works generalized IoU for bounding box regres-

sion, but they are not straightforward to adapt for

pixelwise prediction. In particular, the original

IoU fails to provide effective gradients for the non-

overlapping and location-sensitive cases, which

results in performance plateau. In this paper, we

propose PixIoU, a generalized IoU for pixelwise

prediction that is sensitive to the distance for non-

overlapping cases and the locations in prediction.

We provide proofs that PixIoU holds nice proper-

ties as the original IoU. To optimize the PixIoU,

we also propose a loss function that is proved to

be submodular, hence we can apply the Lovász

functions, the efficient surrogates for submodular

functions for learning this loss. Experimental re-

sults show consistent performance improvements

by learning PixIoU over the original IoU for sev-

eral different pixelwise prediction tasks on Pascal

VOC, VOT-2020 and Cityscapes.

1. Introduction
Intersection over Union (IoU), also known as Jaccard Index

in statistics, is one of the most fundamental methods to com-

pare similarity between data samples in machine learning.

In computer vision tasks, IoU is one of the core evaluation

method in various benchmarks including object detection,

object tracking, semantic segmentation, etc. In general, IoU

is defined to calculate the overlap between two given set

of elements A and B: IoU = A∩B
A∪B . For example, for a

bounding box regression, A presents the ground-truth box
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(a) Non-overlap cases

(b) Different locations

Figure 1: An illustration of the advantages of PixIoU over

IoU: dark blue for groundtruth and light blue for predictions.

In 1(a), when the prediction pixels share no overlap with

the groundtruth, the original IoU stays always zero; PixIoU

continuously decreases if the prediction is getting further

(within the finite region). In 1(b), the original IoU stays

unchanged if the numbers of pixels in intersection and in

union stay unchanged; PixIoU achieves a higher score if the

prediction is more centered to the groundtruth.

and B presents the prediction box, then the IoU in this case

can be formulated as a function of the box location which is

often presented by the coordinates of the left-top corner, the

width and the height of the bounding box.

For dense pixelwise prediction such as a semantic segmenta-

tion task, however, the evaluation is carried out on different

variables. At test time, given an image with finite pixels and

a finite set of classes C to predict, the IoU for a label c ∈ C
measures the overlap between the set of ground-truth pixels

y and the set of predicted pixels ỹ as:

IoU =
|{y = c} ∩ {ỹ = c}|
|{y = c} ∪ {ỹ = c}| . (1)

Following the principle of empirical risk minimization (Vap-

nik, 1995), the optimal objective to learn for an evaluation
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is the evaluation itself. Learning a metric sensitive loss

function has proven to be better than a default option e.g. a

standard cross-entropy loss (Yu & Blaschko, 2015; Yu et al.,

2016; Berman et al., 2018; Rezatofighi et al., 2019; Zheng

et al., 2020). In general, a more structured and distance-

based objective often provides a better interpretation than

simply counting the number of mispredicted labels e.g. a

Hamming distance (Gillenwater et al., 2015; Ye et al., 2016).

To optimize IoU during training stage, the related loss func-

tion is usually denoted as the Jaccard loss:

Liou := 1− IoU. (2)

While learning IoU in training presents theoretical advan-

tages, empirically it is often found to suffer from a perfor-

mance plateau, e.g. in bounding box regression (Rezatofighi

et al., 2019). In this work, we also observe that the origi-

nal IoU fails to provide sufficient gradients to continuously

drive optimization in two frequently encountered cases in

pixelwise prediction. First, as shown in Figure 1, when the

prediction pixels share no overlap with the groundtruth, the

IoU stays zero no matter how far the prediction is. Second,

with different locations, the IoU stays unchanged as long

as the numbers of pixels in intersection and in union stay

unchanged, where the best prediction should be the most

centered prediction. For both the above cases, human cogni-

tion can clearly judge that the optimization should be further

performed, while learning over the original IoU will only

provide zero gradients in these cases, thus yields suboptimal

performance and leads to slower convergence.

In this paper, we propose a generalized IoU for dense pix-

elwise prediction. The contributions of the work can be

summarized as follows:

1. We propose PixIoU, a generalized IoU that is sensitive

to the distance and the location of the mispredicted

pixels, thus provides better interpretation and non-zero

gradients for such cases (Section 3);

2. We demonstrate that PixIoU is invariant to the scale,

maintains a lower bound of the standard IoU, and is

well-bounded (Section 3.1);

3. We propose a loss function to optimize PixIo, prove

that it is submodular w.r.t. the mispredictions, therefore,

the Lovász surrogate is applicable (Section 3.2);

4. On several large-scale datasets of pixelwise prediction,

experimental results verify that optimizing PixIoU pro-

vides efficient convergence rate and consistent improve-

ments comparing to the original IoU (Section 4).

2. Related Work
IoU for bounding box regression Learning IoU during

training has been actively investigated in recent years. Yu

(a) IoU (b) PixIoU

Figure 2: Illustration of the definitions of IoU and PixIoU.

et al. (2016) proposed to directly learn the IoU during train-

ing where the objective is defined as the negative logarithm

of the IoU score; the feasibility of the backpropagation is

achieved by computing the partial derivative w.r.t. the coor-

dinates i.e. the coordinates of the left-top corner, the width

and the height of the box. Rezatofighi et al. (2019) pro-

posed a generalized IoU namely the GIoU, where one need

to find the smallest enclosing shape of A and B, which is

feasible for two rectangles while not straightforward in prac-

tice for arbitrary shapes; GIoU generalizes the IoU so that

non-overlapping cases of two boxes can be better evaluated.

Zheng et al. (2020) further proposed a distance-based IoU

where the distance between two boxes is explicitly com-

puted, and a complete IoU where the ratios of the box is

additionally involved to constraint on the optimization.

IoU for pixelwise prediction Optimizing IoU for pixel-

wise prediction is not straightforward due to the fact that

all pixels are taken into consideration. Therefore, some

works proposed to use an approximation for learning IoU

during training (Nowozin, 2014; Rahman & Wang, 2016).

Li (2015) proposed an approach to estimate the Jaccard In-

dex in the presence of incomplete samples. Berman et al.

(2018) proposed a surrogate loss function called the Lovász

Softmax for semantic segmentation task. Proven that Jac-

card loss is submodular (Yu & Blaschko, 2020), the Lovász

surrogate yields a convex surface and provide a polynomial

computation complexity, thus a tractable surrogate for learn-

ing IoU during training. The surrogate have been actively

applied in many pixelwise prediction problems including

medical image segmentation (Bertels et al., 2019), video

object segmentation (Bhat et al., 2020) and general seg-

mentation tasks (Neven et al., 2019; Ying et al., 2019) for

learning the Jaccard loss.

3. Method
We first discuss the original definition of IoU for dense

pixelwise prediction. For a given set of groundtruth pixels

y = {yi|i ∈ V }, where V is the set of all pixels of size N ,

and a set of predicted pixels ỹ, we note n = {y = c, ỹ �= c}
the set of false negative pixels, p = {y �= c, ỹ = c} the set

of false positive pixels for the class c. Denote m = {y = c}
the set of pixels that belongs to c in y. Then m\n is the set

of the true positives for the class c. We can reformulate the
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IoU in Equation (1) as follows:

IoU =
|m\n|
|m ∪ p| =

|m| − |n|
|m|+ |p| , (3)

where |·| presents the size of the set, namely |m| the number

of pixels belongs to c in the groundtruth y, |n| is the number

of false negatives and |p| is the number of false positives.

Thus, the IoU can be written as a function of two sample sets

in general, a function of the set of groundtruth and predicted

pixels, or a function of the false negatives and the false

positives. In the sequel, we will omit the difference between

IoU(A,B), IoU(y, ỹ), and IoU(n,p). An illustration of

IoU is shown in Figure 2(a).

From Equation (3), given a groundtruth y then |m| is fixed,

the IoU depends only on the number of the false negatives

and false positives, while ignoring the form of their exis-

tence. For instance, a false positive that is at further distance
to the groundtruth is currently penalized equally to one that

just locates next to the boundary; a set of predicted pix-

els with zero overlapping i.e. |m| − |n| = 0 will lead to

IoU = 0 no matter p is.

3.1. PixIoU: a generalized IoU for pixelwise prediction

Motivated by the fact that the weakness of the original IoU

mainly comes from the lack of the distance or the location

information for each false negative and false positive, we

seek to integrate the coordinates information of each mis-

predictions into the IoU calculation. We propose to penalize

each misprediction differently. Formally, we propose the

Pixelwise Intersection over Union as follows:

Definition 1 (PixIoU). Given a set of groundtruth pixels y
and a set of predicted pixels ỹ, the PixIoU is defined as:

PixIoU =
|m| − 〈dn,1n〉
|m|+ 〈dp,1p〉 + IoU − 1 (4)

where dn is the set of the distance from {y = c} to ỹ, dp

is the set of the distance from {ỹ = c} to y; 1n and 1p are
the indicator vectors, e.g. 1n := (xi) with xi = 1 if i ∈ n,
x = 0 otherwise; 〈·, ·〉 is a dot product.

Intuitively, the dot product is carried out in such a way that

we compute a sum of the distance from all the false positives

to the y, and from all the false negatives to ỹ, respectively.

The illustration is shown in Figure 2(b).

In this paper, we propose to calculate the distance as follows:

dn(n) is the L2 distances in Euclidean space from a false

negative pixel n to the center of ỹ, and dp(p) is the one

from a false positive p to the center of y:

dn(n) = g ◦ Euclidean(n, cỹ), (5a)

dp(p) = g ◦ Euclidean(p, cy). (5b)

Algorithm 1 Computation of PixIoU in Equation (4)

1: Given the groundtruth y, the prediction ỹ
2: Identify m = {y = c}, n = {y = c, ỹ �= c},p =

{y �= c, ỹ = c}, same as for the original IoU

3: Compute cy and cỹ, the center of y and of ỹ
4: Compute dn and dp as in Equation (5)

5: IoU = |m|−|n|
|m|+|p| , PixIoU = |m|−〈dn,1n〉

|m|+〈dp,1p〉 + IoU − 1

where g is a normalization operator. For an arbitrary shape,

we can calculate a box center of which the box is the mini-

mal surrounding closure of the shape. We can also calculate

a geometric center i.e. the gravity center. In our experi-

ments, we compute the mean value of all pixel coordinates

of the foreground pixels as the center. We did not observe

significant difference by using different methods.

For the normalization function, a linear normalization e.g.

min-max would brings theoretically benefits (c.f. Proposi-

tion 1). Empirically, we observe a slight improvement by

using the log normalization. We expect that it provides a

practical balance for different distances, namely that will not

largely reduce effect the of the pixels close to the boundary.

The computation complexity of PixIoU involves marginal

additions comparing to the original IoU. Explicitly, given N
the number of pixels, the original IoU need O(N) to iden-

tify each misprediction, while the computation of PixIoU

is O(kN) with k additionally involves a mean operation to

compute the center coordinates and an Euclidean distance

calculation, followed by a dot product between the misprec-

tions and the distance vector. The calculation of PixIoU is

summarized in Algorithm 1 (c.f. the supplementary materi-

als for a pseudo code).

Lemma 1. The distance dp defined in Equation (5) has
the following properties : (i) dp(p) ∈ [0, 1], ∀p ∈ p; (ii)
dp(p) = 0 ⇐⇒ p = cy, which only happens when the
center cy is not on the area of {y = c} and the prediction
for this center pixel is wrong. Similarly with dn.

Proof. (i) can be directly proved by Equation (5) that we

design the distance to be normalized. (ii) Zero-distance only

occurs when the center pixel cy and one p overlap, which

means cy is not on the area of {y = c} and is incorrectly

predicted by the prediction action.

With Definition 1 and Lemma 1, the PixIoU holds the fol-

lowing properties:

Proposition 1. PixIoU is invariant to the scale of the prob-
lem if dn and dp are the Euclidean distance in general, or,
if g is a linear normalization in Equation (5).

Proof. For an arbitrary set of pixels which forms an
area/volume A, if it is scaled by a factor γ, given the dis-
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tances are defined as linear, any pairwise distance within A
will be also scaled by γ, which gives us:

IoU(γA, γB) =
γA ∩ γB

γA ∪ γB
=

γ (A ∩B)

γ (A ∪B)
=

A ∩B

A ∪B

= IoU(A,B), (6a)

PixIoU(γA, γB) =
|γA| − 〈γdn,1n〉
|γA|+ 〈γdp,1p〉 + IoU(γA, γB)− 1

=
γ|A| − γ〈dn,1n〉
γ|A|+ γ〈dp,1p〉 + IoU(A,B)− 1

= PixIoU(A,B). (6b)

This proves the scale-invariance of PixIoU.

Proposition 2. PixIoU is always a lower bound of
IoU: PixIoU(A,B) ≤ IoU(A,B), ∀A,B ⊆ V ; it
becomes tighter when the predictions get better and
limB→A PixIoU(A,B) = IoU(A,B).

Proof. By definition, n is the set of false negatives which is

actually one subset of m = {y = c}, therefore |n| ≤ |m|.
By Lemma 1, we have dn ∈ [0, 1], then 〈dn,1n〉 ≥ 0 leads

to |m| − 〈dn,1n〉 ≤ |m|, therefore:

|m| − 〈dn,1n〉
|m|+ 〈dp,1p〉 ≤ |m|

|m|+ 〈dp,1p〉 ≤ 1, (7)

which proves that PixIoU ≤ IoU always holds.

When two sets of predicted pixels getting closer i.e. B →
A, which means |n| → 0 and/or dn → 0, ∀n, as well as

|p| → 0 and/or dp → 0, ∀p. Therefore:

lim
B→A

PixIoU(A,B) =
|m| −

≈0︷ ︸︸ ︷
〈dn,1n〉

|m|+ 〈dp,1p〉︸ ︷︷ ︸
≈0

+ IoU(A,B)− 1

= 1 + IoU(A,B)− 1 = IoU(A,B). (8)

Proposition 3. PixIoU is well-bounded: PixIoU ∈ [α −
1, 1] where α = |m|−〈dm,m〉

|m|+〈dV\m,V\m〉 .

Proof. By Proposition 2, we already know the upper bound

of PixIoU ≤ IoU ≤ 1. The maximal is achieved if and only

if when A and B overlap perfectly, that is to say:

PixIoU =
|m| −

=0︷ ︸︸ ︷
〈dn,1n〉

|m|+ 〈dp,1p〉︸ ︷︷ ︸
=0

+

=1︷ ︸︸ ︷
IoU(A,B)−1

= 1 + 1− 1 = 1 ⇐⇒ A = B. (9)

Figure 3: Correlation between IoU and PixIoU over 10k

random samples.

For the lower bound, we know that IoU ≥ 0 and IoU = 0,

∀ A and B s.t. A ∩ B = 0. The lower bound of the first

part of PixIoU, however, exits when 〈dn,1n〉 achieves the

maximal, and 〈dp,1p〉 achieves its maximal at the same

time. This happens when the prediction B is entirely inverse

to A, namely the prediction action causes all possible false

negatives and all possible false positives in the given finite

region V :

n = m, p = V \m, (10)

which proves the lower bound of the PixIoU exists at
|m|−〈dm,m〉

|m|+〈dV\m,V\m〉 − 1.

We illustrate the aforementioned properties as well as the

advantages of PixIoU to IoU in Figure 1 and in Figure 3.

3.2. Learning PixIoU for pixelwise prediction

We propose to learn an objective function that directly de-

fined on the PixIoU:

Lpix := 1− PixIoU. (11)

Corollary 1. Lpix holds that: (i) Lpix ≥ 0;(ii) the identity
of indiscernible: Lpix(A,B) = 0 ⇐⇒ A = B.

Proof. By Proposition 3, PixIoU ≤ 1 always holds, thus

Lpix = 1 − PixIoU ≥ 0 is true. By Equation 9,

Lpix(A,B) = 0 ⇐⇒ PixIoU = 1 ⇐⇒ A = B.

We notice that Lpix and PixIoU do not hold the symme-

try. In general, it does not hold that PixIoU(A,B) ≈
PixIoU(B,A), ∀A,B ⊆ V . Other asymmetry distance

measure can be found such as the KullbackLeibler diver-

gence for probability distribution. Regarding the triangle

inequality, for special cases, it can be easily checked for

special overlapping status between A, B and C. For ex-

ample, A ∩ C = ∅ ⇐⇒ nCA = mA,pCA = mC .

For general case, following the proof of GIoU (Rezatofighi

et al., 2019), we randomly generate 106 triples of arbitrary

polygons (A,B,C) and compute Lpix(A,C), Lpix(A,B),
Lpix(B,C). Throughout all samples, it all holds that

Lpix(A,C) ≤ Lpix(A,B) + Lpix(B,C) which empirical-

ly validates the triangle inequality.
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In brief, PixIoU extends IoU to a more general aspect for

measuring the predictions given a groundtruth. Empirical-

ly, we observe in our experiments that optimizing PixIoU

benefits the performance even when evaluating with IoU.

Motivated by the efficient Lovász surrogates for learning

Jaccard loss (Yu & Blaschko, 2020; Berman et al., 2018),

we here study the submodularity of Lpix.

Proposition 4. Given a groundtruth, Lpix(·, A) is submod-
ular w.r.t. the set of mispredictions of A to the groundtruth.

Proof. By definition (Lovász, 1983), a function L is sub-

modular if and only if ∀B ⊆ A ⊂ V , and ∀x ∈ V \A:

L (B ∪ {x})− L(B) ≥ L (A ∪ {x})− L(A). (12)

In our case, given a groundtruth and two sets of predicted
pixels ∀B ⊆ A ∈ V , it holds that:

nB⊆nA⊆m =⇒ 〈dnB ,1nB 〉≤〈dnA ,1nA〉≤|m| (13a)

pB⊆pA⊆m =⇒ 〈dpB ,1pB 〉≤〈dpA ,1pA〉≤|m| (13b)

We have Lpix = 1 − PixIoU = Liou + 1 − |m|−〈dn,1n〉
|m|+〈dp,1p〉 .

It has been already demonstrated that Liou is submodular

w.r.t. the set of mispredictions (Yu & Blaschko, 2020). As

the sum of two submodular functions is submodular (Bach,

2013; Fujishige, 1991), we now prove that L′
pix = 1 −

|m|−〈dn,1n〉
|m|+〈dp,1p〉 =

〈dp,1p〉+〈dn,1n〉
|m|+〈dp,1p〉 is also submodular.

We first prove that L′
pix is submodular w.r.t. false negatives.

For ∀x ∈ V \A and x is a false negative,

L (B ∪ {x})− L(B)

=
〈dpB ,1pB 〉+ 〈dnB ,1nB 〉+ dxx

|m|+ 〈dpB ,1pB 〉 − 〈dpB ,1pB 〉+ 〈dnB ,1nB 〉
|m|+ 〈dpB ,1pB 〉

=
dxx

|m|+ 〈dpB ,1pB 〉 ≥ dxx

|m|+ 〈dpA ,1pA〉
= L (A ∪ {x})− L(A). (14)

The inequality holds owe to Equation (13) and dx ∈ [0, 1].

We then prove that L′
pix is submodular w.r.t. false positives.

For ∀x ∈ V \A and x is a false positive,

L (B ∪ {x})− L(B)

=
〈dpB ,1pB 〉+ 〈dnB ,1nB 〉+ dxx

|m|+ 〈dpB ,1pB 〉+ dxx
− 〈dpB ,1pB 〉+ 〈dnB ,1nB 〉

|m|+ 〈dpB ,1pB 〉
=

dxx (|m| − 〈dnB ,1nB 〉)
(|m|+ 〈dpB ,1pB 〉+ dxx) (|m|+ 〈dpB ,1pB 〉)

≥ dxx (|m| − 〈dnA ,1nA〉)
(|m|+ 〈dpA ,1pA〉+ dxx) (|m|+ 〈dpA ,1pA〉)

= L (A ∪ {x})− L(A). (15)

The inequality holds again owe to Equation (13) and dx ∈
[0, 1].

Algorithm 2 Gradient computation of the Lovász PixIoU

Inputs: vector of errors s(c) ∈ R
N
+ , for a class label c,

distance vectors dn and dp as calculated in Algorithm 1,

class of foreground pixels m = {y = c}
Output: the gradients g

1: π ← permutation s.t. s in decreasing order

2: mπ ← (mπi
)i∈[1,N ]; dnπ

← (nπi
)i∈[i,N ]; dpπ

←
(pπi

)i∈[i,N ]

3: n ← cumsum(mπ); p ← cumsum(1−mπ)

4: iou ← sum(mπ)−n
sum(m)+p

5: piou ← sum(mπ)−cumsum(dnπ
mπ)
sum(m)+cumsum(dpπ
(1−mπ))

6: g ← 1− iou + 1− piou
7: if N > 1 then
8: g[2 : N ] ← g[2 : N ]− g[1 : N − 1]
9: end if

10: return g

As discussed in prior works, the convex closure of submod-

ular set functions is tight and computable in polynomial

time (Lovász, 1983), it corresponds to its Lovász exten-

sion (Bach, 2013):

L̄ : s ∈ R
p →

p∑
i=1

sigi(s), (16)

with gi(s) = L ({π1, . . . , πi})− L ({π1, . . . , πi−1}) ,
where π = {π1, . . . , πp} is a permutation s.t. s is in decreas-

ing order sπ1 ≥ sπ2 ≥ . . . ≥ sπp . The vector g(s) directly

corresponds to the derivative of L̄ w.r.t. s (Lovász, 1983).

The Lovász surrogates apply s as the vector of all pixel er-

rors. Specifically, the Lovász Softmax (Berman et al., 2018)

is proposed based on the logistic output using a softmax

unit. We refer to (Berman et al., 2018) regarding the details

of Lovász surrogates for submodular functions.

On the other hand, Lovász Softmax applies L in Equa-

tion (16) only as the original Jaccard loss Liou namely on

IoU (c.f. Algorithm 1 in (Berman et al., 2018)):

Liou ({π1, . . . , πi}) = 1− |m| − | {πn1
, . . . , πni

} |
|m|+ | {πp1 , . . . , πpi} |

, (17)

In this paper, we propose to apply L in Equation (16) fol-

lowing the definition of Lpix, namely we have:

Lpix ({π1, . . . , πi}) = 1−
|m| − 〈dn,1{πn1 ,...,πni}〉
|m|+ 〈dp,1{πp1

,...,πpi}〉

− |m| − | {πn1
, . . . , πni

} |
|m|+ | {πp1 , . . . , πpi} |

+ 1. (18)

Compare to the Lovász Softmax in (Berman et al., 2018), the

Lovász surrogate applying to Lpix only additionally involves
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Figure 4: Synthetic experiment. Different classes are shown

in different color with the center in the darkest blue and

the distance maps for false positives in each case. Training

Lovász PixIoU can achieve better PixIoU and IoU scores.

Train loss CE Lv. IoU Lv. Pix

mIoU(%) 71.6 74.2 75.6

Table 1: Performance evaluated by mIoU(%) on VOT-

ST2020 at test time with different train losses.

applying a dot product between the set of false negatives,

the false positives and the distance vectors corresponding

to each of them, respectively. The computation complexi-

ty for the gradient of the loss surface thus stays the same

which is O(N logN). The gradient computation of the

Lovász PixIoU is summarized in Algorithm 2.

4. Experimental Results
In this section, we show experimental results on several

pixelwise prediction tasks. Denote Lovász IoU (Lv. IoU)

for the existing surrogate on optimizing IoU i.e. the Lovász

Softmax, and Lovász PixIoU (Lv. Pix) for the method we

proposed in this paper.

4.1. Synthetic experiments

We first carry out a synthetic experiment. We generate

50 images of size 200 ∗ 200 which contain 3 foreground

classes in each image, labelled from 1 to 3 in arbitrary

triangle-like shapes. Objects can overlap each other which

results in non-convex shapes that simulates the real-world

scenario (c.f. Figure 4). We train a simple a linear model of

a 3 ∗ 3 convolution layer with features that are synthetically

generated using different Gaussian perturbations.

We test the models trained by cross-entropy, Lovász IoU

and Lovász PixIoU during training. From the results in Fig-

ure 4: (i) training with Lovász PixIoU achieves reasonable

convergence rate; (ii) training with Lovász PixIoU achieves

better mean PixIoU scores, which validates the effective-

ness of the Lovász PixIoU for learning Lpix; (iii) training

Train loss CE Lv. IoU Lv. Pix

mIoU(%) 71.6 74.2 75.6

Table 2: Performance evaluated by mIoU(%) on VOT-

ST2020 at test time with different train losses.

CE Lv. IoU Lv. Pix

Resnet-50 80.1 80.5 80.8
Resnet-101 82.9 82.8 83.1

Table 3: Performance of Deeplabv3 models evaluated by

mIoU(%) on Pascal VOC val set with different backbones.

Lovász PixIoU achieves better mean IoU scores than train-

ing with Lovász IoU, which validates the benefits of PixIoU

to IoU as discussed in the previous sections.

4.2. Pixelwise Object Tracking on VOT2020

For real-world datasets, we first experiment on the

VOT2020 1, a pixelwise object tracking benchmark. This

dataset consists not only the bounding box annotations of the

target, but also segmentation mask on each frame. There-

fore, it forms a binary segmentation problem (target vs.

background) for each frame.

We compare with the method AFOD (Chen et al., 2020)

where the Lovász IoU is used for training, and we swap it

by the Lovász PixIoU. Models are trained on the Youtube-

VOS-18 (Xu et al., 2018) and DAVIS-16 (Perazzi et al.,

2016) dataset, with the backbone Resnet-50 pretrained on

ImageNet (Krizhevsky et al., 2017). For evaluation, we fix

the online updating module and only evaluate the segmenta-

tion performance using mIoU on all testing frames.

Shown in Figure 5, with comparable training convergence,

training with Lovász PixIoU achieves better IoU scores at

test time than training with the Lovász IoU within the same

training epoch. Quantitative results are shown in Table 2.

Training with cross-entropy only provide a suboptimal ap-

proximation to optimize IoU and the performance degrades.

On the contrast, training with Lovász PixIoU provides a

significant gain on the IoU score at test time.

4.3. Semantic segmentation on Pascal VOC

We then perform a semantic segmentation task on Pas-

cal VOC 2012. We use the Deeplabv3 models (Chen

et al., 2017) implemented by PyTorch framework with

Resnet-50 and Resnet-101 (He et al., 2016) as back-

bones. Models are pre-trained on COCO (Lin et al.,

2014), then trained by using the cross-entropy loss,

the Lovász IoU and Lovász PixIoU. SGD is used for

the optimization with a polynomial learning rate policy

1https://votchallenge.net/vot2020/
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(a) Qualitative results on “fernando” sequence

(b) Train/Test performance with different losses for training

Figure 5: Performance on VOT-2020. Training with

Lovász PixIoU provides a comparable convergence rate as

well as a significant gain on the IoU score at test time.

(a) GT (b) CE (c) Lv. IoU (d) Lv. Pix

Figure 6: Qualitative results on Pascal VOC 2012 of the

model Deeplabv3-Resnet101.

2.5 ∗ 10−4 (1− iter/max iter)
0.9

, with momuntum 0.9 and

weight decay 1 ∗ 10−4. We train 50 epochs on 2 GPUs with

a batch size of 16. Worth to mention, the results are reported

without using particular data strategy such as the equibatch
in previous work (Berman et al., 2018) for Lovász IoU and

Lovász PixIoU.

As shown in Table 3 and Figure 6, training with

Lovász PixIoU achieves consistently better performance at

test time (see more in supplementary materials). In Table 4

we show the per-class mIoU for each category.

4.4. Semantic segmentation on Cityscapes

Next, we train and test on the Cityscapes (Cordts et al.,

2016), a large-scale dataset contains 30 classes, 8 categories

in total, with 5k fine annotations and 2k coarse annotations

on urban street scenes. We now perform a semantic seg-

mentation task using the DeeplabV3+ model (Chen et al.,

2018) implemented the Detectron2 system (Wu et al., 2019).

To compare with its released model 2, we use a modified

2https://github.com/facebookresearch/
detectron2/tree/master/projects/DeepLab

mIoU iIoU IoU sup iIoU sup mPixIoU

released 79.98 62.04 90.09 79.65 63.76
WCE 79.98 62.31 90.90 79.68 63.91

Lv. IoU 79.80 62.54 90.87 79.85 63.53
Lv. Pix 80.62 63.19 91.04 80.42 65.00

Table 5: Performance of Deeplabv3+ models evaluated on

Cityscapes val set, numbers in percentage (%).

Figure 7: Performance of evaluating Deeplabv3+ models

on val set during training.

version of the ResNet-101 pretrained on ImageNet. We

compare the performance by training on Cityscapes train-

set with the original loss (a weighted cross-entropy, in which

the hard pixels are kicked off and the loss is only mining on

the top K percent pixels, denoted as WCE), the Lovász IoU

and the Lovász PixIoU.

For training with the IoU-related losses, in prior work-

s (Berman et al., 2018), Lovász IoU is mostly used for

fine-tuning, which involves additional training iterations

in total (90k+20k). Otherwise, training Lovász IoU from

scratch only provides suboptimal performance (76.64 mIoU

in our experiments). In this work, we here propose a

pseudo-pretrain strategy. We first train a model with the

WCE for only 5k iterations, then we train as normal for

90k iterations using different loss functions. This strategy

provides a balance between the number of iterations (95k

vs. 90k+20k) and the performance (79.8 mIoU vs. 76.64
mIoU). All training procedures are carried on with batch-

size 16 on 8 P40, with a polynomial learning rate policy

0.008 ∗ (1− iter/maxiter)
0.9

and a warming-up by 1k iter-

ations for the 90k-iteration training.

Shown in Table 5 are the experimental results. The released

model (denoted “released”) is trained from scratch by WCE

for just 90k iterations. Other rows (WCE, Lv. IoU, Lv. Pix)

are all carried out with the pseudo-pretrain strategy. We

can see that applying the pseudo-pretrain strategy using

WCE, which equivalents to train for 95k iterations, does

not significantly improve the performance. However, using

Lovász PixIoU for training improves the performance for

0.6 mIoU and 1.15 iIoU scores, as well as achieves the best

PixIoU score. It provides a consistent improvements over

all IoU-related evaluation. Especially, in Table 6 shows

the per-class performance, that training with Lovász PixIoU

significantly improves the performance on the classes that

contain more meaningful values on distance or shapes, such

as wall, traffic light/sign, person, rider, etc, which empir-
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Res50 all airpl. cycle bird boat bottle bus car cat chair cow table dog horse mbike pers. plant sheep sofa train tv

CE 80.1 93.5 58.3 89.4 72.0 77.7 94.9 85.0 90.9 47.8 88.1 68.1 86.8 85.1 87.0 90.2 66.4 90.1 55.5 87.7 72.4
Lv. IoU 80.5 94.0 57.0 88.9 72.2 77.5 95.3 86.6 91.4 46.3 88.7 68.8 87.2 86.6 88.8 90.2 66.2 91.7 56.2 87.7 72.8
Lv. Pix 80.8 94.1 62.3 90.0 74.5 76.0 94.7 87.9 90.7 49.7 87.5 65.2 87.9 86.1 87.2 90.1 64.8 90.2 59.7 87.3 75.5
Res101 all airpl. cycle bird boat bottle bus car cat chair cow table dog horse mbike pers. plant sheep sofa train tv

CE 82.9 93.3 61.0 90.6 77.5 80.3 93.9 87.4 94.4 49.7 93.5 68.7 91.7 93.7 91.2 91.5 67.3 90.2 59.0 89.3 80.7
Lv. IoU 82.8 93.1 62.4 90.0 77.1 80.7 93.6 88.7 93.9 50.6 92.5 70.4 90.9 92.4 91.5 91.7 69.7 90.0 59.5 89.5 75.2
Lv. Pix 83.1 92.8 71.1 90.1 78.9 78.6 93.3 88.5 90.9 50.3 93.5 71.1 87.2 93.3 90.3 91.3 67.5 90.0 58.9 90.1 80.9

Table 4: Per-class mIoU (%) on Pascal VOC 2012 val set by training with different losses

mIoU 63.39
wall 21.42
fence 8.50

mIoU 70.56
wall 85.03
fence 40.42

mIoU 81.56
wall 87.57
fence 48.49

(a) groundtruth (b) WCE

mIoU 73.85
traf. light 43.56
rider 80.75

(c) Lv.IoU

mIoU 69.97
traf. light 64.86
rider 73.49

(d) Lv.PixIoU

mIoU 75.33
traf. light 69.62
rider 87.24

Figure 8: Qualitative results on Cityscapes of the model Deeplabv3+ trained with different loss functions.

ically validates that PixIoU constraints more on the shape

and the distance of the set of the pixels.

Another widely used related function is the Dice loss (Mil-

letari et al., 2016). The comparison between Dice loss and

Lovász IoU has been carried on in prior works (Li et al.,

2021), shows that optimizing Dice loss provides superior

performance on Cityscapes (79.30 vs. 77.67) while inferior

on Pascal VOC (77.78 vs. 79.72).

Some qualitative results are shown in Figure 8 and 9 (see

more in supplementary). Particularly, in Figure 9 shown

some examples, for which by using Lovász PixIoU for learn-

ing, we achieve only similar IoU scores but better PixIoU

scores. However, the one with larger PixIoU score provides

better visualization and steeper gradients for learning, which

validates the effectiveness of optimizing on PixIoU.

While we look into the worst labels in Table 6 and ob-

serve qualitatively that some false negatives are produced

by semantically and geographically nearing labels, such as

predicting “train” pixels as “bus”, “sidewalk” as “road”. We

speculate that PixIoU does not emphasis for intertwining

shapes. While the overall performance is increased, it is still

challenging for specific labels.

4.5. Panoptic segmentation on Cityscapes

Last, on Cityscapes dataset, we additionally perform a

panoptic segmentation task. This task aims at labeling all

pixels in the scene, as well as distinguishing different in-

stance for certain classes. Multiple metrics are involved for

evaluating the panoptic task, while the IoU-related evalu-

IoU 57.0
PixIoU 29.3

IoU 57.0
PixIoU 30.7

(a) groundtruth (b) Lv. IoU

IoU 57.8
PixIoU 25.2

(c) Lv. PixIoU

IoU 57.9
PixIoU 29.8

Figure 9: Examples of the cases that PixIoU provides larger

gradients than those of IoU, and the predictions with larger

PixIoU provides better qualitative results.

ations are mostly used for the semantic subtask. We train

the state-of-the-art model Panoptic-DeepLab (Cheng et al.,

2020) with backbone Resnet-50 in order to compare with

the released model 3. The original loss for the semantic

head is a weighted bootstrapped cross-entropy loss which

weights different pixels differently depending on the aver-

age size of the class instance. For the pixels in the same

class, the weight is same. This differs with the PixIoU that

different pixels in the same instance could be evaluated d-

ifferently. Training is performed with batchsize 16 on 8

P40 for 90k iterations with a cosine learning rate policy

and base learning rate 0.0008. Experimental results can be

found in Table 7. We again observe an improvements on

the IoU-related evaluation, with comparable performance

3https://github.com/facebookresearch/
detectron2/tree/master/projects/
Panoptic-DeepLab
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class WCE Lv. IoU Lv. Pix

road 98.34 98.22 (↓ 0.12) 98.14 (↓ 0.21)

sidewalk 86.36 85.80 (↓ 0.64) 85.37 (↓ 1.14)

building 93.21 93.05 (↓ 0.17) 93.26 (↑ 0.05)

wall 57.05 55.54 (↓ 2.65) 62.88 (↑ 10.21)

fence 64.01 63.94 (↓ 0.12) 63.51 (↓ 0.78)

pole 69.12 69.18 (↑ 0.09) 69.64 (↑ 0.76)

traf. light 74.00 75.35 (↑ 1.83) 76.15 (↑ 2.90)

traf. sign 81.54 82.36 (↑ 1.00) 83.18 (↑ 2.01)

vegetation 92.87 92.77 (↓ 0.11) 92.85 (↓ 0.03)

terrain 64.61 65.37 (↑ 1.17) 65.46 (↑ 1.32)

sky 95.40 95.36 (↓ 0.04) 95.31 (↓ 0.09)

person 84.09 84.45 (↑ 0.42) 84.60 (↑ 0.60)

rider 65.43 68.21 (↑ 4.26) 68.87 (↑ 5.27)

car 95.65 95.55 (↓ 0.10) 95.60 (↓ 0.05)

truck 79.63 75.32 (↓ 5.41) 78.65 (↓ 1.24)

bus 89.10 89.53 (↑ 0.48) 89.48 (↑ 0.43)

train 78.78 78.46 (↓ 0.40) 77.84 (↓ 1.19)

motorcycle 70.81 67.54 (↓ 4.62) 70.32 (↓ 0.70)

bicycle 79.63 80.15 (↑ 0.65) 80.68 (↑ 1.31)

all 79.98 79.80 (↓ 0.23) 80.62 (↑ 0.80)

Table 6: Per-class performance by mIoU (%) on Cityscapes

val set. In parentheses shows the relative improvements (in

percentage) compared to the performance with WCE.

mIoU iIoU PQ SQ RQ AP AP50

WCE 78.72 62.83 60.28 81.02 73.18 32.05 54.53
Lv. IoU 78.45 63.18 59.47 80.71 72.57 30.12 53.87
Lv. Pix 79.01 64.22 60.26 81.36 72.93 31.88 55.55

Table 7: Performance of Panoptic-Deeplab models evaluat-

ed on Cityscapes val set, numbers in percentage (%).

by other metrics.

5. Conclusion
In this work, we propose a novel evaluation method named

PixIoU for dense pixelwise prediction. Compared to the

original IoU, PixIoU evaluates differently on the false nega-

tives and false positives. By our definition, PixIoU provides

steeper gradients for learning. We demonstrate in theory

the feasibility and applicability using the Lovász surrogate

for learning PixIoU, and breakthrough empirically the per-

formance plateau by learning for the original IoU during

training for various tasks. To the best of our knowledge,

this is the first work that generalizes IoU computation to

provides better interpretation and evaluation for pixelwise

prediction, and provide feasible and efficient learning strat-

egy that shows improvement over optimizing the original

IoU. We expect this work to be an important step on recon-

sidering the evaluation methods in various benchmarks, and

arouse, again, the attention of an objective-based learning

in various computer vision tasks in general.
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