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Abstract
Deep AUC (area under the ROC curve)
Maximization (DAM) has attracted much atten-
tion recently due to its great potential for imbal-
anced data classification. However, the research
on Federated Deep AUC Maximization (FDAM)
is still limited. Compared with standard federated
learning (FL) approaches that focus on decom-
posable minimization objectives, FDAM is more
complicated due to its minimization objective is
non-decomposable over individual examples. In
this paper, we propose improved FDAM algo-
rithms for heterogeneous data by solving the popu-
lar non-convex strongly-concave min-max formu-
lation of DAM in a distributed fashion, which can
also be applied to a class of non-convex strongly-
concave min-max problems. A striking result of
this paper is that the communication complexity
of the proposed algorithm is a constant indepen-
dent of the number of machines and also inde-
pendent of the accuracy level, which improves
an existing result by orders of magnitude. The
experiments have demonstrated the effectiveness
of our FDAM algorithm on benchmark datasets,
and on medical chest X-ray images from differ-
ent organizations. Our experiment shows that
the performance of FDAM using data from multi-
ple hospitals can improve the AUC score on test-
ing data from a single hospital for detecting life-
threatening diseases based on chest radiographs.

1. Introduction
Federated learning (FL) is an emerging paradigm for large-
scale learning to deal with data that are (geographically)

*Equal contribution 1Department of Computer Science, Uni-
versity of Iowa 2Machine Intelligence Technology, Alibaba Group
3Department of Mathematics and Statistics, State University of
New York at Albany. Correspondence to: Tianbao Yang <tianbao-
yang@uiowa.edu>.

Proceedings of the 38 th
International Conference on Machine

Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

distributed over multiple clients, e.g., mobile phones, organi-
zations. An important feature of FL is that the data remains
at its own clients, allowing the preservation of data privacy.
This feature makes FL attractive not only to internet com-
panies such as Google and Apple but also to conventional
industries such as those that provide services to hospitals
and banks in the big data era (Rieke et al., 2020; Long et al.,
2020). Data in these industries is usually collected from
people who are concerned about data leakage. But in order
to provide better services, large-scale machine learning from
diverse data sources is important for addressing model bias.
For example, most patients in hospitals located in urban
areas could have dramatic differences in demographic data,
lifestyles, and diseases from patients who are from rural
areas. Machine learning models (in particular, deep neural
networks) trained based on patients’ data from one hospital
could dramatically bias towards its major population, which
could bring serious ethical concerns (Pooch et al., 2020).

One of the fundamental issues that could cause model bias
is data imbalance, where the number of samples from differ-
ent classes are skewed. Although FL provides an effective
framework for leveraging multiple data sources, most exist-

ing FL methods still lack the capability to tackle the model

bias caused by data imbalance. The reason is that most ex-
isting FL methods are developed for minimizing the conven-
tional objective function, e.g., the average of a standard loss
function on all data, which are not amenable to optimizing
more suitable measures such as area under the ROC curve
(AUC) for imbalanced data. It has been recently shown
that directly maximizing AUC for deep learning can lead
to great improvements on real-world difficult classification
tasks (Yuan et al., 2020b). For example, Yuan et al. (2020b)
reported the best performance by DAM on the Stanford
CheXpert Competition for interpreting chest X-ray images
like radiologists (Irvin et al., 2019).

However, the research on FDAM is still limited. To the
best of our knowledge, Guo et al. (2020a) is the only work
that was dedicated to FDAM by solving the non-convex
strongly-concave min-max problem in a distributed man-
ner. Their algorithm (CODA) is similar to the standard
FedAvg method (McMahan et al., 2017) except that the
periodic averaging is applied both to the primal and the
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Table 1. The summary of sample and communication complexities of different algorithms for FDAM under a µ-PL condition in both
heterogeneous and homogeneous settings, where K is the number of machines and µ  1. NPA denotes the naive parallel (large
mini-batch) version of PPD-SG (Liu et al., 2020) for DAM, where M denotes the batch size in the NPA. The ⇤ indicate the results that are
derived by us. eO(·) suppresses a logarithmic factor.
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dual variables. Nevertheless, their results on FDAM are
not comprehensive. By a deep investigation of their algo-
rithms and analysis, we found that (i) although their FL
algorithm CODA was shown to be better than the naive
parallel algorithm (NPA) with a small mini-batch for DAM,
the NPA using a larger mini-batch at local machines can
enjoy a smaller communication complexity than CODA; (ii)
the communication complexity of CODA for homogeneous
data becomes better than that was established for the hetero-
geneous data, but is still worse than that of NPA with a large
mini-batch at local clients. These shortcomings of CODA
for FDAM motivate us to develop better federated averag-
ing algorithms and analysis with a better communication
complexity without sacrificing the sample complexity.

This paper aims to provide more comprehensive results
for FDAM, with a focus on improving the communication
complexity of CODA for heterogeneous data. In particular,
our contributions are summarized below:

• First, we provide a stronger baseline with a simpler al-
gorithm than CODA named CODA+, and establish its
complexity in both homogeneous and heterogeneous data
settings. Although CODA+ has a slight change from
CODA, its analysis is much more involved than that of
CODA, which is based on the duality gap analysis instead
of the primal objective gap analysis.

• Second, we propose a new variant of CODA+ named CO-
DASCA with a much improved communication complex-
ity than CODA+. The key thrust is to incorporate the idea
of stochastic controlled averaging of SCAFFOLD (Karim-
ireddy et al., 2020) into the framework of CODA+ to cor-
rect the client-drift for both local primal updates and local
dual updates. A striking result of CODASCA under a PL
condition for deep learning is that its communication com-
plexity is independent of the number of machines and the
targeted accuracy level, which is even better than CODA+
in the homogeneous data setting. The analysis of CO-
DASCA is also non-trivial that combines the duality gap
analysis of CODA+ for a non-convex strongly-concave
min-max problem and the variance reduction analysis of
SCAFFOLD. The comparison between CODASCA and
CODA+ and the NPA for FDAM is shown in Table 1.

• Third, we conduct experiments on benchmark datasets
to verify our theory by showing CODASCA can enjoy a
larger communication window size than CODA+ without
sacrificing the performance. Moreover, we conduct empir-
ical studies on medical chest X-ray images from different
hospitals by showing that the performance of CODASCA
using data from multiple organizations can improve the
performance on testing data from a single hospital.

2. Related Work
Federated Learning (FL). Many empirical stud-
ies (Povey et al., 2014; Su & Chen, 2015; McMahan et al.,
2016; Chen & Huo, 2016; Lin et al., 2020b; Kamp et al.,
2018; Yuan et al., 2020a) have shown that FL exhibits
good empirical performance for distributed deep learning.
For a more thorough survey of FL, we refer the readers
to (McMahan et al., 2019). This paper is closely related
to recent studies on the design of distributed stochastic
algorithms for FL with provable convergence guarantee.

The most popular FL algorithm is Federated Averaging (Fe-
dAvg) (McMahan et al., 2017), also referred to as local
SGD (Stich, 2019). Stich (2019) is the first that establishes
the convergence of local SGD for strongly convex functions.
Yu et al. (2019b;a) establishes the convergence of local SGD
and their momentum variants for non-convex functions. The
analysis in (Yu et al., 2019b) has exhibited the difference of
communication complexities of local SGD in homogeneous
and heterogeneous data settings, which is also discovered
in recent works (Khaled et al., 2020; Woodworth et al.,
2020b;a). These latter studies provide a tight analysis of
local SGD in homogeneous and/or heterogeneous data set-
tings, improving its upper bounds for convex functions and
strongly convex functions than some earlier works, which
sometimes improve over large mini-batch SGD, e.g., when
the level of heterogeneity is sufficiently small.

Haddadpour et al. (2019) improve the complexities of lo-
cal SGD for non-convex optimization by leveraging the
Polyak-Łojasiewicz (PL) condition. (Karimireddy et al.,
2020) propose a new FedAvg algorithm SCAFFOLD by
introducing control variates (variance reduction) to correct
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for the ‘client-drift’ in the local updates for heterogeneous
data. The communication complexities of SCAFFOLD
are no worse than that of large mini-batch SGD for both
strongly convex and non-convex functions. The proposed
algorithm CODASCA is inspired by the idea of stochastic
controlled averaging of SCAFFOLD. However, the analysis
of CODASCA for non-convex min-max optimization under
a PL condition of the primal objective function is non-trivial
compared to that of SCAFFOLD.

AUC Maximization. This work builds on the foundations
of stochastic AUC maximization developed in many previ-
ous works. Ying et al. (2016) address the scalability issue
of optimizing AUC by introducing a min-max reformula-
tion of the AUC square surrogate loss and solving it by a
convex-concave stochastic gradient method (Nemirovski
et al., 2009). Natole et al. (2018) improve the conver-
gence rate by adding a strongly convex regularizer into the
original formulation. Based on the same min-max formu-
lation as in (Ying et al., 2016), Liu et al. (2018) achieve
an improved convergence rate by developing a multi-stage
algorithm by leveraging the quadratic growth condition of
the problem. However, all of these studies focus on learning
a linear model, whose corresponding problem is convex and
strongly concave. Yuan et al. (2020b) propose a more robust
margin-based surrogate loss for the AUC score, which can
be formulated as a similar min-max problem to the AUC
square surrogate loss.

Deep AUC Maximization (DAM). (Rafique et al., 2018)
is the first work that develops algorithms and convergence
theories for weakly convex and strongly concave min-max
problems, which is applicable to DAM. However, their con-
vergence rate is slow for a practical purpose. Liu et al. (2020)
consider improving the convergence rate for DAM under
a practical PL condition of the primal objective function.
Guo et al. (2020b) further develop more generic algorithms
for non-convex strongly-concave min-max problems, which
can also be applied to DAM. There are also several stud-
ies (Yan et al., 2020; Lin et al., 2020a; Luo et al., 2020;
Yang et al., 2020) focusing on non-convex strongly concave
min-max problems without considering the application to
DAM. Based on Liu et al. (2020)’s algorithm, Guo et al.
(2020a) propose a communication-efficient FL algorithm
(CODA) for DAM. However, its communication cost is still
high for heterogeneous data.

DL for Medical Image Analysis. In past decades, machine
learning, especially deep learning methods have revolution-
ized many domains such as machine vision, natural language
processing. For medical image analysis, deep learning meth-
ods are also showing great potential such as in classification
of skin lesions (Esteva et al., 2017; Li & Shen, 2018), in-
terpretation of chest radiographs (Ardila et al., 2019; Irvin
et al., 2019), and breast cancer screening (Bejnordi et al.,

2017; McKinney et al., 2020; Wang et al., 2016). Some
works have already achieved expert-level performance in
different tasks (Ardila et al., 2019; McKinney et al., 2020;
Litjens et al., 2017). Recently, Yuan et al. (2020b) employ
DAM for medical image classification and achieve great
success on two challenging tasks, namely CheXpert com-
petition for chest X-ray image classification and Kaggle
competition for melanoma classification based on skin le-
sion images. However, to the best of our knowledge, the
application of FDAM methods on medical datasets from
different hospitals have not be thoroughly investigated.

3. Preliminaries and Notations
We consider federated learning of deep neural networks
by maximizing the AUC score. The setting is the same to
that was considered as in (Guo et al., 2020a). Below, we
present some preliminaries and notations, which are mostly
the same as in (Guo et al., 2020a). In this paper, we consider
the following min-max formulation for distributed problem:

min
w2Rd

(a,b)2R2

max
↵2R

f(w, a, b,↵) =
1

K

KX

k=1

fk(w, a, b,↵), (1)

where K is the total number of machines. This formula-
tion covers a class of non-convex strongly concave min-
max problems and specifically for the AUC maximization,
fk(w, a, b,↵) is defined below.

fk(w, a, b,↵) = Ezk [Fk(w, a, b,↵; zk)]

= Ezk

⇥
(1� p)(h(w;xk)� a)2I[yk=1]

+ p(h(w;xk)� b)2I[yk=�1]

+ 2(1 + ↵)(ph(w;xk)I[yk=�1]

� (1� p)h(w,xk)I[yk=1])� p(1� p)↵2
⇤
.

(2)

where zk = (xk
, y

k) ⇠ Pk, Pk is the data distribution on
machine k, p is the ratio of positive data. When �k =
�l, 8k 6= l, this is referred to as the homogeneous data
setting; otherwise heterogeneous data setting.

Notations. We define the following notations:

v = (wT
, a, b)T , �(v) = max

↵
f(v,↵),

�s(v) = �(v) +
1

2�
kv � vs�1k2,

f
s(v,↵) = f(v,↵) +

1

2�
kv � vs�1k2

F
s
k (v,↵; zk) = Fk(v,↵; zk) +

1

2�
kv � vs�1k2

v⇤
� = argmin

v
�(v), v⇤

�s
= argmin

v
�s(v).

Assumptions. Similar to (Guo et al., 2020a), we make the
following assumptions throughout this paper.
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Assumption 1.
(i) There exist v0,�0 > 0 such that �(v0)� �(v⇤

�)  �0.

(ii) PL condition: �(v) satisfies the µ-PL condition, i.e.,

µ(�(v) � �(v⇤))  1
2kr�(v)k2; (iii) Smoothness: For

any z, f(v,↵; z) is `-smooth in v and ↵. �(v) is L-smooth,

i.e., kr�(v1)�r�(v2)k  Lkv1 � v2k.

(iv) Bounded variance:

E[krvfk(v,↵)�rvFk(v,↵; z)k2]  �
2

E[|r↵fk(v,↵)�r↵Fk(v,↵; z)|2]  �
2
.

(3)

To quantify the drifts between different clients, we introduce
the following assumption.

Assumption 2. Bounded client drift:

1

K

KX

k=1

krvfk(v,↵)�rvf(v,↵)k2  D
2

1

K

KX

k=1

kr↵fk(v,↵)�r↵f(v,↵)k2  D
2
.

(4)

Remark. D quantifies the drift between the local objectives
and the global objective. D = 0 denotes the homogeneous
data setting that all the local objectives are identical. D > 0
corresponds to the heterogeneous data setting.

4. CODA+: A stronger baseline
In this section, we present a stronger baseline than
CODA (Guo et al., 2020a). The motivation is that (i) the
CODA algorithm uses a step to compute the dual variable
from the primal variable by using sampled data from all
clients; but we find this step is unnecessary by an improved
analysis; (ii) the complexity of CODA for homogeneous
data is not given in its original paper. Hence, CODA+ is a
simplified version of CODA but with much refined analysis.

We present the steps of CODA+ in Algorithm 1. It is similar
to CODA that uses stagewise updates. In s-th stage, a
strongly convex strongly concave subproblem is constructed:

min
v

max
↵

f(v,↵) +
�

2
kv � vs

0k2, (5)

where vs
0 is the output of the previous stage.

CODA+ improves upon CODA in two folds. First, CODA+
algorithm is more concise since the output primal and dual
variables of each stage can be directly used as input for
the next stage, while CODA needs an extra large batch of
data after each stage to compute the dual variable. This
modification not only reduces the sample complexity, but
also makes the algorithm applicable to a boarder family
of nonconvex min-max problems. Second, CODA+ has a

Algorithm 1 CODA+
1: Initialization: (v0,↵0, �).
2: for s = 1, ..., S do
3: vs,↵s = DSG+(vs�1,↵s�1, ⌘s, Is, �);
4: end for
5: Return vS ,↵S .

Algorithm 2 DSG+(v0,↵0, ⌘, T, I, �)
Each machine does initialization: vk

0 = v0,↵
k
0 = ↵0,

for t = 0, 1, ..., T � 1 do
Each machine k updates its local solution in parallel:
vk
t+1 = vk

t � ⌘(rvFk(vk
t ,↵

k
t ; z

k
t ) + �(vk

t � v0)),
↵
k
t+1 = ↵

k
t + ⌘r↵Fk(vk

t ,↵
k
t ; z

k
t ),

if t+ 1 mod I = 0 then

vk
t+1 = 1

K

KP
k=1

vk
t+1, ⇧ communicate

↵
k
t+1 = 1

K

KP
k=1

↵
k
t+1, ⇧ communicate

end if
end for
Return

✓
v̄ = 1

K

KP
k=1

1
T

TP
t=1

vk
t , ↵̄ = 1

K

KP
k=1

1
T

TP
t=1

↵
k
t

◆
.

smaller communication complexity for homogeneous data
than that for heterogeneous data while the previous analysis
of CODA yields the same communication complexity for
homogeneous data and heterogeneous data.

We have the following lemma to bound the convergence for
the subproblem in each s-th stage.
Lemma 1. (One call of Algorithm 2) Let (v̄, ↵̄) be the

output of Algorithm 2. Suppose Assumption 1 and 2 hold.

By running Algorithm 2 with given input v0,↵0 for T

iterations, � = 2`, and ⌘  min( 1
3`+3`2/µ2

,
1
4` ), we have

for any v and ↵

E[fs(v̄,↵)� f
s(v, ↵̄)]  1

⌘T
kv0 � vk2 + 1

⌘T
(↵0 � ↵)2

+

✓
3`2

2µ2
+

3`

2

◆
(12⌘2I�2 + 36⌘2I2D2)II>1

| {z }
A1

+
3⌘�2

K
,

where µ2 = 2p(1� p) is the strong concavity coefficient of

f(v,↵) in ↵.

Remark. Note that the term A1 on the RHS is the drift of
clients caused by skipping communication. When D = 0,
i.e., the machines have homogeneous data distribution, we
need ⌘I = O

�
1
K

�
, then A1 can be merged with the last

term. When D > 0, we need ⌘I
2 = O

�
1
K

�
, which means

that I has to be smaller in heterogeneous data setting and
thus the communication complexity is higher.
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Remark. The key difference between the analysis of
CODA+ and that of CODA lies at how to handle the term
(↵0 � ↵)2 in Lemma 1. In CODA, the initial dual variable
↵0 is computed from the initial primal variable v0, which
reduces the error term (↵0�↵)2 to one similar to kv0�vk2,
which is then bounded by the primal objective gap due to
the PL condition. However, since we do not conduct the
extra computation of ↵0 from v0, our analysis directly deals
with such error term by using the duality gap of fs. This
technique is originally developed by (Yan et al., 2020).

Theorem 1. Define L̂ = L + 2`, c = µ/L̂

5+µ/L̂
.

Set � = 2`, ⌘s = ⌘0 exp(�(s � 1)c), Ts =
212

⌘0 min(`,µ2)
exp((s � 1)c). To return vS such that

E[�(vS) � �(v⇤
�)]  ✏, it suffices to choose S �

O

✓
5L̂+µ

µ max

⇢
log

�
2�0
✏

�
, logS + log


2⌘0

✏
12(�2)
5K

��◆
.

The iteration complexity is eO
✓
max

⇣
�0

µ✏⌘0K
,

L̂
µ2K✏

⌘◆

and the communication complexity is eO
⇣

K
µ

⌘

by setting Is = ⇥( 1
K⌘s

) if D = 0, and is

eO
✓
max

✓
K
µ + �1/2

0

µ(⌘0✏)1/2
,
K
µ + L̂1/2

µ3/2✏1/2

◆◆
by set-

ting Is = ⇥( 1p
K⌘s

) if D > 0, where eO suppresses

logarithmic factors.

Remark. Due to the PL condition, the step size ⌘ decreases
geometrically. Accordingly, I increases geometrically due
to Lemma 1, and I increases with a faster rate when the data
are homogeneous than that when data are heterogeneous. In
result, the total number of communications in homogeneous
setting is much less than that in heterogeneous setting.

5. CODASCA
Although CODA+ has a highly reduced communication
complexity for homogeneous data, it is still suffering from
a high communication complexity for heterogeneous data.
Even for the homogeneous data, CODA+ has a worse com-
munication complexity with a dependence on the number of
clients K than the NPA algorithm with a large batch size.◆
✓

⇣
⌘

Can we further reduce the communication complexity for

FDAM for both homogeneous and heterogeneous data

without using a large batch size?

The main reason for the degeneration in the heterogeneous
data setting is the data difference. Even at global optimum
(v⇤,↵⇤), the gradient of local functions in different clients
could be different and non-zero. In the homogeneous data
setting, different clients still produce different solutions due
to stochastic error (cf. the ⌘

2
�
2
I term of A1 in Lemma 1).

These together contribute to the client drift.

To correct the client drift, we propose to leverage the idea of
stochastic controlled averaging due to (Karimireddy et al.,
2020). The key idea is to maintain and update a control
variate to accommodate the client drift, which is taken into
account when updating the local solutions. In the proposed
algorithm CODASCA, we apply control variates to both
primal and dual variables. CODASCA shares the same
stagewise framework as CODA+, where a strongly convex
strongly concave subproblem is constructed and optimized
in a distributed fashion approximatly in each stage. The
steps of CODASCA are presented in Algorithm 3 and Algo-
rithm 4. Below, we describe the algorithm in each stage.

Each stage has R communication rounds. Between two
rounds, there are I local updates, and each machine k does
the local updates as

vk
r,t+1 = vk

r,t � ⌘l(rvF
s
k (v

k
r,t,↵

k
r,t; z

t
r,t)� c

k
v + cv)

↵
k
r,t+1 = ↵

k
r,t + ⌘l(r↵F

s
k (v

k
r,t,↵

k
r,t; z

k
r,t)� c

k
↵ + c↵),

where c
k
v, cv are local and global control variates for the

primal variable, and c
k
↵, c↵ are local and global control vari-

ates for the dual variable. Note that rvF
s
k (v

k
r,t,↵

k
r,t; z

t
r,t)

and r↵F
s
k (v

k
r,t,↵

k
r,t; z

k
r,t) are unbiased stochastic gradient

on local data. However, they are biased estimate of global
gradient when data on different clients are heterogeneous.
Intuitively, the term �c

k
v+cv and �c

k
↵+c↵ work to correct

the local gradients to get closer to the global gradient. They
also play a role of reducing variance of stochastic gradi-
ents, which is helpful as well to reduce the communication
complexity in the homogeneous data setting.

At each communication round, the primal and dual variables
on all clients get aggregated, averaged and broadcast to all
clients. The control variates c at r-th round get updated as

c
k
v = c

k
v � cv +

1

I⌘l
(vr�1 � vk

r,I)

c
k
↵ = c

k
↵ � c↵ +

1

I⌘l
(↵k

r,I � ↵r�1),
(6)

which is equivalent to

c
k
v =

1

I

IX

t=1

rvf
s
k(v

k
r,t,↵

k
r,t; z

k
r,t)

c
k
↵ =

1

I

IX

t=1

r↵f
s
k(v

k
r,t,↵

k
r,t; z

k
r,t).

(7)

Notice that they are simply the average of stochastic gradi-
ents used in this round. An alternative way to compute the
control variates is by computing the stochastic gradient with
a large batch of extra samples at each client, but this would
bring extra cost and is unnecessary. cv and c↵ are averages
of ckv and c

k
↵ over all clients. After the local primal and dual
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Algorithm 3 CODASCA
1: Initialization: (v0,↵0, �).
2: for s = 1, ..., S do
3: vs,↵s = DSGSCA+(vs�1,↵s�1, ⌘l, ⌘g, Is, Rs, �);
4: end for
5: Return vS ,↵S .

variables are averaged, an extrapolation step with ⌘g > 1 is
performed, which will boost the convergence.

In order to establish the convergence of CODASCA, we first
present a key lemma below.
Lemma 2. (One call of Algorithm 4) Under the same

setting as in Theorem 2, with ⌘̃ = ⌘l⌘gI  µ2

40`2 , for

v0 = argmin
v

f
s(v,↵r̃),↵0 = argmax

↵
f
s(vr̃,↵) we have

E[fs(vr̃,↵
0)� f

s(v0
,↵r̃)] 

2

⌘l⌘gT
kv0 � v0k2

+
2

⌘l⌘gT
(↵0 � ↵

0)2 +
10⌘l�2

⌘g| {z }
A2

+
10⌘l⌘g�2

K

where T = I ·R is the number of iterations for each stage.

Remark. Compared the above bound with that in Lemma 1,
in particular the term A2 vs the term A1, we can see that
CODASCA will not be affected by the data heterogeneity
D > 0, and the stochastic variance is also much reduced.
As will seen in the next theorem, the value of ⌘̃ and R will
keep the same in all stages. Therefore, by decreasing local
step size ⌘l geometrically, the communication window size
Is will increase geometrically to ensure ⌘̃  O(1).

The convergence result of CODASCA is presented below.
Theorem 2. Define L̂=L+2`, c=4 +̀248

53 L̂. Set ⌘g =
p
K,

Is = I0 exp
⇣

2µ1

c+2µ1
(s� 1)

⌘
, R = 1000

⌘̃µ2
, ⌘

s
l = ⌘̃

⌘gIs
=

⌘̃p
KI0

exp
⇣
� 2µ

c+2µ (s� 1)
⌘

, ⌘̃  min{ 1
3`+3`2/µ2

,
µ2

40`2 }.

After S = O(max

⇢
c+2µ
2µ log 4✏0

✏ ,
c+2µ
2µ log 160L̂S

(c+2µ)✏
⌘̃�2

KI0

�
)

stages, the output vS satisfies E[�(vS)� �(v⇤
�)]  ✏. The

communication complexity is eO
⇣

1
µ

⌘
. The iteration com-

plexity is eO
⇣
max{ 1

µ✏ ,
1

µ2K✏}
⌘

.

Remark. (i) The number of communications is eO
⇣

1
µ

⌘
, in-

dependent of number of clients K and the accuracy level ✏.
This is a significant improvement over CODA+, which has
a communication complexity of eO

�
K/µ+ 1/(µ3/2

✏
1/2)

�

in heterogeneous setting. Moreover, eO (1/(µ)) is a nearly
optimal rate up to a logarithmic factor, since O(1/µ) is
the lower bound communication complexity of distributed
strongly convex optimization (Karimireddy et al., 2020; Ar-
jevani & Shamir, 2015) and strongly convexity is a stronger
condition than the PL condition.

Algorithm 4 DSGSCA+(v0,↵0, ⌘l, ⌘g, I, R, �)
Each machine does initialization: vk

0,0 = v0,↵
k
0,0 = ↵0,

c
k
v = 0, ck↵ = 0

for r = 1, ..., R do
for t = 0, 1, ..., I � 1 do

Each machine k updates its local solution in parallel:
vk
r,t+1=vk

r,t�⌘l(rvF
s
k (v

k
r,t,↵

k
r,t; z

k
r,t)�c

k
v+cv),

↵
k
r,t+1=↵

k
r,t+⌘l(r↵F

s
k (v

k
r,t,↵

k
r,t; z

k
r,t)�ck↵+c↵),

end for
c
k
v = c

k
v � cv + 1

I⌘l
(vr�1 � vk

r,I)

c
k
↵ = c

k
↵ � c↵ + 1

I⌘l
(↵k

r,I � ↵r�1)

cv = 1
K

KP
k=1

c
k
v, c↵ = 1

K

KP
k=1

c
k
↵ ⇧ communicate

vr = 1
K

KP
k=1

vk
r,I ,↵r = 1

K

KP
k=1

↵
k
r,t ⇧ communicate

vr = vr�1 + ⌘g(vr � vr�1),
↵r = ↵r�1 + ⌘g(↵r � ↵r�1)
Broadcast vr,↵r, cv, c↵ ⇧ communicate

end for
Return vr̃,↵r̃ where r̃ is randomly sampled from 1, ..., R

(ii) Each stage has the same number of communication
rounds. However, Is increases geometrically. Therefore, the
number of iterations and samples in a stage increase geomet-
rically. Theoretically, we can also set ⌘sl to the same value as
the one in the last stage, correspondingly Is can be set as a
fixed large value. But this increases the number of required
samples without further speeding up the convergence. Our
setting of Is is a balance between skipping communications
and reducing sample complexity. For simplicity, we use the
fixed setting of Is to compare CODASCA and the baseline
CODA+ in our experiment to corroborate the theory.

(iii) The local step size ⌘l of CODASCA decreases similarly
as the step size ⌘ in CODA+. But Is = O(1/(

p
K⌘

s
l )) in

CODASCA increases faster than that Is = O(1/(
p
K⌘s))

in CODA+ on heterogeneous data. It is noticeable that dif-
ferent from CODA+, we do not need Assumption 2 which
bounds the client drift, meaning that CODASCA can be ap-
plied to optimize the global objective even if local objectives
arbitrarily deviate from the global function.

6. Experiments
In this section, we first verify the effectiveness of CO-
DASCA compared to CODA+ on various datasets, including
two benchmark datasets, i.e., ImageNet, CIFAR100 (Deng
et al., 2009; Krizhevsky et al., 2009) and a constructed large-
scale chest X-ray dataset. Then, we demonstrate the effec-
tiveness of FDAM on improving the performance on a single
domain (CheXpert) by using data from multiple sources. For
notations, K denotes the number of “clients” (# of machines,
# of data sources) and I denotes the communication win-
dow size. The code used for the experiments are available
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Figure 1. Top row: the testing AUC score of CODASCA vs # of iterations for different values of I on ImageNet-IH and CIFAR100-IH
with imratio = 10% and K=16, 8 on Densenet121. Bottom row: the achieved testing AUC vs different values of I for CODASCA and
CODA+. The AUC score in the legend in top row figures represent the AUC score at the last iteration.

Table 2. Statistics of Medical Chest X-ray Datasets.
Dataset Source Samples

CheXpert Stanford Hospital (US) 224,316
ChestXray8 NIH Clinical Center (US) 112,120

PadChest Hospital San Juan (Spain) 110,641
MIMIC-CXR BIDMC (US) 377,110
ChestXrayAD H108 and HMUH (Vietnam) 15,000

at https://github.com/yzhuoning/LibAUC.

Chest X-ray datasets. Five medical chest X-ray datasets,
i.e., CheXpert, ChestXray14, MIMIC-CXR, PadChest,
ChestXray-AD (Irvin et al., 2019; Wang et al., 2017; John-
son et al., 2019; Bustos et al., 2020; Nguyen et al., 2020)
are collected from different organizations. The statistics
of these medical datasets are summarized in Table 2. We
construct five binary classification tasks for predicting five
popular diseases, Cardiomegaly (C0), Edema (C1), Con-
solidation (C2), Atelectasis (C3), P. Effusion (C4), as in
CheXpert competition (Irvin et al., 2019). These datasets
are naturally imbalanced and heterogeneous due to different
patients’ populations, different data collection protocols and
etc. We refer to the whole medical dataset as ChestXray-IH.
Imbalanced and Heterogeneous (IH) Benchmark
Datasets. For benchmark datasets, we manually construct
the imbalanced heterogeneous dataset. For ImageNet, we
first randomly select 500 classes as positive class and 500
classes as negative class. To increase data heterogeneity,
we further split all positive/negative classes into K groups
so that each split only owns samples from unique classes
without overlapping with that of other groups. To increase
data imbalance level, we randomly remove some samples
from positive classes for each machine. Please note that due
to this operation, the whole sample set for different K is
different. We refer to the proportion of positive samples in
all samples as imbalance ratio (imratio). For CIFAR100,

we follow similar steps to construct imbalanced heteroge-
neous data. We keep the testing/validation set untouched
and keep them balanced. For imbalance ratio (imratio),
we explore two ratios: 10% and 30%. We refer to the
constructed datasets as ImageNet-IH (10%), ImageNet-IH
(30%), CIFAR100-IH (10%), CIFAR100-IH (30%). Due
to the limited space, we only report imratio=10% with
DenseNet121 and defer the other results to supplement.

Parameters and Settings. We train Desenet121 on all
datasets. For the parameters in CODASCA/CODA+, we
tune 1/� in [500, 700, 1000] and ⌘ in [0.1, 0.01, 0.001]. For
learning rate schedule, we decay the step size by 3 times
every T0 iterations, where T0 is tuned in [2000, 3000, 4000].
We experiment with a fixed value of I selected from [1,
32, 64, 128, 512, 1024] and we include experiments with
increasing Is in the supplement. We tune ⌘g in [1.1, 1, 0.99,
0.999]. The local batch size is set to 32 for each machine.
We run a total of 20000 iterations for all experiments.

6.1. Comparison with CODA+

We plot the testing AUC on ImageNet (10%) vs # of iter-
ations for CODASCA and CODA+ in Figure 1 (top row)
by varying the value of I for different values of K. Results
on CIFAR100 are shown in the Supplement. In the bottom
row of Figure 1, we plot the achieved testing AUC score vs
different values of I for CODASCA and CODA+. We have
the following observations:
• CODASCA enjoys a larger communication window
size. Comparing CODASCA and CODA+ in the bottom
panel of Figure 1, we can see that CODASCA enjoys a
larger communication window size without hurting the per-
formance than CODA+, which is consistent with our theory.

• CODASCA is consistently better for different values
of K. We compare the largest value of I such that the perfor-
mance does not degenerate too much compared with I = 1,

https://github.com/yzhuoning/LibAUC
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Table 3. Performance on ChestXray-IH testing set when K=16.
Method I C0 C1 C2 C3 C4

1 0.8472 0.8499 0.7406 0.7475 0.8688
CODA+ 512 0.8361 0.8464 0.7356 0.7449 0.8680

CODASCA 512 0.8427 0.8457 0.7401 0.7468 0.8680
CODA+ 1024 0.8280 0.8451 0.7322 0.7431 0.8660

CODASCA 1024 0.8363 0.8444 0.7346 0.7481 0.8674

Table 4. Performance of FDAM on Chexpert validation set for
DenseNet121.

#of sources C0 C1 C2 C3 C4 AVG
K=1 0.9007 0.9536 0.9542 0.9090 0.9571 0.9353
K=2 0.9027 0.9586 0.9542 0.9065 0.9583 0.9361
K=3 0.9021 0.9558 0.9550 0.9068 0.9583 0.9356
K=4 0.9055 0.9603 0.9542 0.9072 0.9588 0.9372
K=5 0.9066 0.9583 0.9544 0.9101 0.9584 0.9376

which is denoted by Imax. From the bottom figures of Fig-
ure 1, we can see that the Imax value of CODASCA on Ima-
geNet is 128 (K=16) and 512 (K=8), respectively, and that
of CODA+ on ImageNet is 32 (K=16) and 128 (K=8). This
demonstrates that CODASCA enjoys consistent advantage
over CODA+, i.e., when K = 16, ICODASCA

max /I
CODA+
max = 4,

and when K = 8, ICODASCA
max /I

CODA+
max = 4. The same phe-

nomena occur on CIFAR100 data.

Next, we compare CODASCA with CODA+ on the
ChestXray-IH medical dataset, which is also highly het-
erogeneous. We split the ChestXray-IH data into K = 16
groups according to the patient ID and each machine only
owns samples from one organization without overlapping
patients. The testing set is the collection of 5% data sam-
pled from each organization. In addition, we use train/val
split = 7:3 for the parameter tuning. We run CODASCA
and CODA+ with the same number of iterations. The per-
formance on testing set are reported in Table 3. From the
results, we can observe that CODASCA performs consis-
tently better than CODA+ on C0, C2, C3, C4.

6.2. FDAM for improving performance on CheXpert

Finally, we show that FDAM can be used to leverage data
from multiple hospitals to improve the performance at a
single target hospital. For this experiment, we choose CheX-
pert data from Stanford Hospital as the target data. Its
validation data will be used for evaluating the performance
of our FDAM method. Note that improving the AUC score
on CheXpert is a very challenging task. The top 7 teams
on CheXpert leaderboard differ by only 0.1% 1. Hence,
we consider any improvement over 0.1% significant. Our
procedure is following: we gradually increase the number
of data resources, e.g., K = 1 only includes the CheXpert
training data, K = 2 includes the CheXpert training data
and ChestXray8, K = 3 includes the CheXpert training
data and ChestXray8 and PadChest, and so on.

1https://stanfordmlgroup.github.io/
competitions/chexpert/

Table 5. Performance of FDAM on Chexpert validation set for
DenSenet161.

of sources C0 C1 C2 C3 C4 AVG
K=1 0.8946 0.9527 0.9544 0.9008 0.9556 0.9316
K=2 0.8938 0.9615 0.9568 0.9109 0.9517 0.9333
K=3 0.9008 0.9603 0.9568 0.9127 0.9505 0.9356
K=4 0.8986 0.9615 0.9561 0.9128 0.9564 0.9367
K=5 0.8986 0.9612 0.9568 0.9130 0.9552 0.9370

Parameters and Settings. Due to the limited computing
resources, we resize all images to 320x320. We follow
the two stage method proposed in (Yuan et al., 2020b) and
compare with the baseline on a single machine with a single
data source (CheXpert training data) (K=1) for learning
DenseNet121, DenseNet161. More specifically, we first
train a base model by minimizing the Cross-Entropy loss on
CheXpert training dataset using Adam with a initial learning
rate of 1e-5 and batch size of 32 for 2 epochs. Then, we
discard the trained classifier, use the same pretrained model
for initializing the local models at all machines and continue
training using CODASCA. For the parameter tuning, we try
I=[16, 32, 64, 128], learning rate=[0.1, 0.01] and we fix
�=1e-3, T0=1000 and batch size=32.

Results. We report all results in term of AUC score on the
CheXpert validation data in Table 4 and Table 5. We can see
that using more data sources from different organizations
can efficiently improve the performance on CheXpert. For
DenseNet121, the average improvement across all 5 classifi-
cation tasks from K = 1 to K = 5 is over 0.2% which is
significant in light of the top CheXpert leaderboard results.
Specifically, we can see that CODASCA with K=5 achieves
the highest validation AUC score on C0 and C3, and with
K=4 achieves the highest on C1 and C4. For DenseNet161,
the improvement of average AUC is over 0.5%, which dou-
bles the 0.2% improvement for DenseNet121.

7. Conclusion
In this work, we have conducted comprehensive studies of
federated learning for deep AUC maximization. We ana-
lyzed a stronger baseline for deep AUC maximization by
establishing its convergence for both homogeneous data
and heterogeneous data. We also developed an improved
variant by adding control variates to the local stochastic
gradients for both primal and dual variables, which dramat-
ically reduces the communication complexity. Besides a
strong theory guarantee, we exhibit the power of FDAM
on real world medical imaging problems. We have shown
that our FDAM method can improve the performance on
medical imaging classification tasks by leveraging data from
different organizations that are kept locally.

https://stanfordmlgroup.github.io/competitions/chexpert/
https://stanfordmlgroup.github.io/competitions/chexpert/
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