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A. Theoretical Background
In spite of the great success achieved by deep learning models, the theory of these complicated systems is usually elusive
due to their typically high-dimensional non-convex loss surfaces. A recent breakthrough shows that the distribution of a
class of wide neural networks (of any depth) can be nicely approximated by a Gaussian Process (GP) either before training
(Lee et al., 2018; Matthews et al., 2018) or during training (Jacot et al., 2018; Lee et al., 2019; Chizat et al., 2019) under
gradient descent.

A.1. Gaussian Processes (GPs)

A GP is a stochastic process that models the distribution of a class F of functions using Gaussian and can be defined
by a mean function µ(·) and covariance/kernel function k(·, ·). Let each function f : Rd → R in F map d dimensional
input variables to the output. Given a training set D = (Xn ∈ Rn×d,yn ∈ Rn) of n examples and a validation set
V = (Xm ∈ Rm×d,ym ∈ Rm) of m examples, the GP of F can be written as

[
yn

ym

]
∼ N

( [µn
µm

]
,

[
Kn,n Kn,m

Km,n Km,m

] )
, (1)

where µn ∈ Rn, µni = u(Xn
i,:), and µm ∈ Rm, µmi,: = u(Xm

i,:), represent the output of the mean function on D and
V, respectively. Kn,n ∈ Rn×n, Kn,n

i,j = k(Xn
i,:,X

n
j,:), denotes the kernel matrix on D × D, and Km,n ∈ Rm×n,

Km,n
i,j = k(Xm

i,:,X
n
j,:), is the kernel matrix on V× D. Without loss of generality, we can assume µ(·) = 0 for any input

because zero-mean is always possible by subtracting the sample mean. Therefore, the GP can be completely described by its
kernel matrix. In particular, the Bayesian inference made by the GP given validation dataXm can be derived from

P (ym|Xm,Xn,yn) = N (Km,n(Kn,n)−1yn,Km,m −Km,n(Kn,n)−1Kn,m), (2)

where Kn,m ∈ Rn×m, Kn,m
i,j = k(Xn

i,:,X
m
j,:), is the kernel matrix on D× V. We call Eq. (1) and Eq. (2) the prior and

posterior of the GP, respectively.

A.2. Neural Tangent Kernels (NTKs)

Following the Bayesian perspective, studies (Lee et al., 2018; Matthews et al., 2018) show that a class F of random initialized,
fully-connected neural networks of the same architecture converge to a Gaussian Processes as the width of the networks
grows, and the kernel (function) of the corresponding GP is called the Neural Network Gaussian Process (NNGP) kernel.
The GP prior models the ensemble F of the networks at initialization, while the GP posterior indicates the distribution
of predictions made by the networks in F in a full Bayesian fashion. Nonetheless, NNGP kernels provide no link to the
behavior of the GP during training by gradient descent.

Recently, the studies (Jacot et al., 2018; Lee et al., 2019; Chizat et al., 2019) build a relationship between the GP prior and
the distribution of the networks under gradient descent. Basically, as its width grows, a trained network can be approximated
by its first-order Taylor expansion w.r.t. its initial parameters, and each step of gradient descent minimizing the Mean
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Figure 1. Training and test dynamics of a fully-connected network (FNN) and the mean (GP-FNN) of the corresponding GP with NTK on
(a) clean and (b) poisoned data. As we can see, GP-FNN approximates the behavior of FNN closely.

Squared Error (MSE) loss can be regarded as an affine transformation of the linear approximation. This allows the learning
dynamics of F to be described by a GP with a kernel known as the Neural Tangent Kernel (NTK). Let f(· ;θ(t)) ∈ F
be a network parametrized by θ(t) at time step t during the gradient descent training. The finite-width NTK is defined
by k(xi,xj) = ∇θf(xi;θ(0))>∇θf(xj ;θ(0)) where xi and xj represent two data points. The study (Jacot et al., 2018)
proves that as the width of the network grows into infinity, the NTK converges to a deterministic function and stays the same
during training. The k(xi,xj) only depends on the network architecture, non-linearity, loss function, and is independent of
a particular initialization. Therefore, it represents a similarity score between xi and xj from the network class’s (F’s) point
of view.

Denote the mean of the GP by f̄ , the expected output of the ensemble F over the training set D and validation set V
respectively evolve with t by following

f̄(Xn;Kn,n,yn, t) = (I − e−ηK
n,nt)yn, (3)

f̄(Xm;Km,n,Kn,n,yn, t) = Km,n(Kn,n)−1(I − e−ηK
n,nt)yn. (4)

Since k(· , ·) is independent of yn, the above equations can be readily extended to approximate the expected output of F
consisting of vector-valued networks f : Rd → Rc of c label dimensions:

f̄(Xn;Kn,n,Y n, t) = (I − e−ηK
n,nt)Y n, (5)

f̄(Xm;Km,n,Kn,n,Y n, t) = Km,n(Kn,n)−1(I − e−ηK
n,nt)Y n, (6)

where Y n ∈ Rn×c is the label matrix in the ground truth. By evaluating Eq. (6), we can “foresee” the predictions made by a
network without actually training it. As Figure 1 shows, the mean (named GP-FNN) of a GP with NTK closely approximates
the behavior of a trained fully-connected network (named FNN). The gap between GP-FNN and FNN is due to the finite
width, and it becomes smaller as the width increases (Lee et al., 2020).

The theory of NTKs has been extended to support a wide range of network architectures, including convolutional networks
(Novak et al., 2018; Garriga-Alonso et al., 2018; Yang, 2019a), recurrent networks (Yang, 2019b; Alemohammad et al.,
2020), networks with the attention mechanism (Hron et al., 2020), and other architectures (Yang, 2019b; Arora et al., 2019).

B. Experiment Settings
Here, we provide more details about our experiment settings.
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B.1. Surrogates

Each poisoning algorithm under evaluation is equipped with two surrogates and can use one of them to generate the poisoned
data. In NTGA, we use the mean predictions, named GP-FNN and GP-CNN, of two Gaussian Processes (GPs), which
correspond to the infinite-width fully-connected network and the infinite-channel convolutional neural network, to craft the
poisoned data. Both the GPs assume the networks are trained using gradient descent minimizing the Mean Squared Error
(MSE) loss. We set weight variance σw = 1.76 and bias variance σb = 0.18 for all surrogate models.

GP-FNN. All element networks have the following architecture:

Dense1(∞)→ Erf→
Dense2(∞)→ Erf→
Dense3(∞)→ Erf→
Dense4(∞)→ Erf→
Dense5(∞)→ Erf,

where Dense(i) denotes a fully-connected layer with i neurons.

GP-CNN. All element networks are of the following architecture:

Conv1(∞)→ ReLU→
Conv2(∞)→ ReLU→
Flatten→
Dense1(∞)→ ReLU→
Dense2(∞)→ ReLU→
Dense3(∞)→ ReLU,

where Conv(d) denotes a convolutional layer of d channels with the (2, 2) stride and “SAME” padding. All convolutional
layers use the (5, 5) filter size. No pooling layer is applied to avoid the high computation cost induced by the corresponding
NTK kernel.

The surrogates of RFA (Chan-Hon-Tong, 2019) and DeepConfuse (Feng et al., 2019) are two neural networks, named
S-FNN and S-CNN, which have the same architectures as an element network of GP-FNN and GP-CNN, respectively,
except with finite width and channels. We train S-FNNs and S-CNNs by following the original papers. More precisely, for
RFA, we first train the surrogate using the training set and then retrain the last layer on the validation data using gradient
ascent to decrease the validation accuracy. Meanwhile, for DeepConfuse, we use the code released by the authors1.

S-FNN. The network has the following architecture:

Dense1(512)→ Erf→
Dense2(512)→ Erf→
Dense3(512)→ Erf→
Dense4(512)→ Erf→
Dense5(10)→ Erf.

S-CNN. The network has the following architecture:

Conv1(64)→ ReLU→
Conv2(64)→ ReLU→
Flatten→
Dense1(384)→ ReLU→
Dense2(192)→ ReLU→
Dense3(10)→ ReLU.

B.2. Target Networks

We consider five networks as our target models, including FNN, CNN, FNN-ReLU, ResNet18 (He et al., 2016), and
DenseNet121 (Huang et al., 2017). FNN and CNN have identical architectures to the surrogates S-FNN and S-CNN used by

1See https://github.com/kingfengji/DeepConfuse.

https://github.com/kingfengji/DeepConfuse


Neural Tangent Generalization Attacks

RFA, while FNN-ReLU has the same architecture as FNN except using the ReLU nonlinearity. Different from FNN/CNN
where the MSE loss is used, the FNN-ReLU, ResNet18, and DenseNet121 are trained with the cross-entropy loss. We use a
Stochastic Gradient Descent (SGD) optimizer to minimize their losses on the clean and poisoned training data for all target
networks except for CNN and FNN-ReLU, where we use the Adam (Kingma & Ba, 2015) optimizer to stabilize the training
process. We also enable learning rate scheduling and data augmentation when training ResNet18 and DenseNet121. The
detailed settings slightly vary on the MNIST and CIFAR-10 datasets.

MNIST. We train all networks for 50 epochs. The learning rate is set to 1e-3. We set the batch size to 64.

CIFAR-10. We train the models FNN, CNN, and FNN-ReLU for 100 epochs. We use the Adam optimizer (Kingma &
Ba, 2015) for FNN-ReLU. For ResNet18, we use a batch size of 128 and train the network for 200 epochs with a cosine
annealing learning rate schedule (Loshchilov & Hutter, 2016) where the learning rate is set to 0.1 initially and then decay
to 0 in the last iteration. The momentum is set to 0.9. We also apply data augmentation including normalization, random
flipping, and random cropping with padding size 4. For DenseNet121, we use a batch size of 128 and train the network for
100 epochs with the abovementioned learning rate schedule and data augmentation techniques.

ImageNet. We use the same setting as CIFAR-10, except the initial learning rate and a number of epochs. We train all
networks for 50 epochs and the learning rate is set to 1e-3.

B.3. Poisoning Methods and Attacks

For the MNIST and CIFAR-10 datasets, we randomly split 10K examples from the training set as V and use the rest as D.
For the 2-class ImageNet, we use the same setting in (Feng et al., 2019) and split 190 examples from training set as V. We
use the full test sets to report performance. We implement the B-NTGA described in Section 3.3 with b equals 5K, 4K,
2.22K on MNIST, CIFAR-10, and ImageNet, respectively. NTGA uses slightly different settings to generate an attack on
different datasets.

MNIST. We set the maximum allowable perturbations ε to 0.3 measured by l∞ distance. By default, we run Algorithm 1 for
r = 10 iterations with step size η = 0.04. In this file, we also consider the attacks generated by NTGA with just a single
iteration r = 1 but large step η = 0.3 = ε.

CIFAR-10. We set ε = 8/255. By default, we use the attacks generated by NTGA with r = 10 iterations and step size
η = 3e-3. For r = 1, we set the step size to η = 8/255 = ε.

ImageNet. We set ε = 0.1. By default, we use the attacks generated by NTGA with r = 10 iterations and step size
η = 0.011. For r = 1, we set the step size to η = 0.1 = ε.

We implement RFA and DeepConfuse and its attacks using the same settings whenever applicable.

C. More Experiments
In this section, we conduct more experiments to understand NTGA.

C.1. Transferability across Initial Weights, Depths, and Training Steps

We further evaluate the transferability of NTGA attacks across the target networks with different initial weights, depths,
and training steps t. We use GP-FNN as the surrogate in Eq. (4) in the main paper. To quickly access the test accuracy of
various target networks, we use another GP, called GP-FNN’, as the target network. The GP-FNN’ is identical to GP-FNN
except that its hyperparameter σw (the variance of the initial weights of the networks in F), depth of the networks in F, and t
(the training steps) are different. Both σw and the depth affect the kernel construction of GP-FNN’.

Figures 2 and 3 show the effectiveness of GP-FNN-based attacks against GP-FNN’ on the MNIST and CIFAR-10 datasets,
respectively.2 Each plot shows the contour of the test accuracy of GP-FNN’ over 1,200 combinations of σw (40 levels) and
depth (30 levels). The area between the two dashed white lines indicates the safe region for σw to stay on the critical line
(Poole et al., 2016; Schoenholz et al., 2016; Lee et al., 2018) that allows the GP-FNN’ to have the best test performance.
Different columns represent different t in Eq. (6) used by GP-FNN’ to make predictions.

2To save computations, we sample only 512 training data from each of the datasets to craft the attacks and report the test accuracy of
GP-FNN’.



Neural Tangent Generalization Attacks

Table 1. The test accuracy of different attacks (r = 1) under gray-box settings.

Dataset
\Attack

Clean RFA Deep
Confuse

NTGA
(1)

NTGA
(8)

NTGA
(64)

NTGA
(512)

NTGA
(4096)

NTGA
(∞)

Surrogate: *-FNN → Target: FNN

MNIST 96.26±0.09 67.38±1.84 - 13.80±1.79 11.69±1.28 15.81±3.13 44.02±1.86 74.78±0.76 91.85±0.24

CIFAR-10 49.57±0.12 37.83±0.52 - 35.90±0.27 34.64±0.22 32.62±0.21 28.78±0.32 26.44±0.22 39.69±0.29

ImageNet 91.60±0.49 87.80±1.47 - 78.60±1.96 74.20±7.05 86.20±2.23 89.40±1.62 89.80±1.72 90.60±0.49

Surrogate: *-CNN → Target: CNN

MNIST 99.49±0.02 88.21±4.26 46.21±5.14 18.40±3.80 20.16±6.11 30.50±5.41 81.13±1.55 94.44±0.65 96.05±0.57

CIFAR-10 78.12±0.11 74.07±0.37 44.84±1.19 40.60±0.78 39.97±0.37 43.95±0.35 51.42±0.21 51.89±0.27 59.29±0.32

ImageNet 96.00±0.63 95.20±0.40 93.00±0.63 77.40±2.50 83.20±1.60 84.60±1.85 88.80±1.17 90.60±1.02 89.80±1.17

As we can see, the GP-FNN-based attacks works well against GP-FNN’. Note that all the attacks are generated by GP-FNN
over only one particular combination of σ2

w = 1.76 and depth = 5. This verifies that the GP-FNN surrogate, which models
an infinite ensemble of infinite-width networks, is indeed representative of networks of different types (and even other GPs)
and can lead to better attack transferability. We can also see the effect of time step t, where the attacks based on a smaller
(resp. larger) t work better against the GP-FNN’ with a smaller (resp. larger) t.

C.2. Fast Gray- and Black-box Attacks

The number of iterations, r, in Algorithm 1 in the main paper affects the generating speed and strength of an attack. Here,
we evaluate the strength of the “fastest” attacks generated by different poisoning methods using the smallest r = 1 (but
largest step size η = ε). The running time analysis can be found in Table 3. Tables 1 and 2 show the results under gray- and
black-box settings, respectively. Similar to that in the main paper (r = 10), NTGA significantly outperforms the baselines.
Moreover, the strength of the NTGA attacks does not seem to significantly change when r is reduced from 10 to 1 (with
enlarged step size η = ε). This shows that the loss surface of L w.r.t. P in Eq. (4) in the main paper is smooth and thus the
gradients at an initial P (see Algorithm 1 in the main paper) are good enough to lead to an effective attack.

C.3. Early-Stop Points

In Section 4.1 of the main paper, we showed that the early-stop points of the GP-FNN surrogate are consistent with those of
the target model FNN on the CIFAR-10 dataset. Figure 4 gives similar results on the MNIST dataset (cf. the first row of
Table 1 in the main paper).

C.4. More Visualization

In Figures 5 and 7, we visualize some poisoned images Xi,: + P i,: from the MNIST and CIFAR-10 datasets as well as
their normalized perturbations P i,:/‖P i,:‖ based on the *-FNN surrogates. Some poisoned images crafted with the *-CNN
surrogates can be found in Figures 6 and 8. As we can see, the perturbations generated by RFA and DeepConfuse are of high
and relatively low frequencies respectively, whereas the perturbations generated by NTGA can have different frequencies
controlled by t. In particular, a smaller t leads to simpler perturbations. This is consistent with the previous findings (Arpit
et al., 2017; Rahaman et al., 2019) that the neural network tends to learn low-frequency patterns at the early stage of training.

Interestingly, the perturbations generated with the *-FNN surrogates look similar to those with the *-CNN surrogates. We
hypothesize it is because of the fact that infinite-channel convolutional neural networks without global average pooling
behave similarly to infinite-width fully-connected networks (Xiao et al., 2020).
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C.5. Results with Standard Deviation

In the main paper, we omit the variance of some results due to space limitation. Here we show the full results with standard
deviation in Table 3, and 4.
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Figure 2. Training and test dynamics of GP-FNN’ on the MNIST dataset with different combinations of initial-weight variance σ2
w and

depth.
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(a) Clean
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(b) NTGA(64)
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(c) NTGA(4096)
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(d) NTGA(∞)

Figure 3. Training and test dynamics of GP-FNN’ on the CIFAR-10 dataset with different combinations of initial-weight variance σ2
w and

depth.
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Table 2. The test accuracy of different attacks (r = 1) under black-box settings.

Target
\Attack

Clean RFA Deep
Confuse

NTGA
(1)

NTGA
(8)

NTGA
(64)

NTGA
(512)

NTGA
(4096)

NTGA
(∞)

Surrogate: *-FNN

CNN 99.49±0.02 93.32±1.79 - 20.15±2.98 21.58±6.45 25.37±3.56 81.55±2.98 94.41±0.39 96.76±0.72

FNN-ReLU 97.87±0.10 83.23±0.73 - 7.31±1.72 6.35±0.96 6.70±0.62 28.25±1.36 66.94±0.81 90.41±0.20

Surrogate: *-CNN

FNN 96.26±0.09 65.53±2.58 15.48±0.94 10.62±1.72 12.86±1.95 18.22±1.73 48.13±1.61 78.33±0.86 89.49±0.33

FNN-ReLU 97.87±0.10 78.81±1.21 17.50±1.49 2.30±0.46 3.37±1.20 5.64±0.75 40.08±0.32 73.86±1.40 86.44±0.14

(a) MNIST

Surrogate: *-FNN

CNN 78.12±0.11 75.15±0.58 - 47.49±0.76 45.55±0.91 44.10±1.22 48.19±1.04 46.03±0.33 62.80±0.19

FNN-ReLU 54.55±0.29 41.17±0.39 - 39.96±0.27 38.74±0.41 36.73±0.32 31.91±0.48 26.83±0.84 44.06±0.17

ResNet18 91.92±0.39 90.52±0.19 - 39.49±1.94 37.85±0.97 37.44±1.81 41.46±1.66 47.37±1.30 84.98±1.22

DenseNet121 92.71±0.15 89.09±0.21 - 43.33±2.15 44.10±1.83 43.01±2.41 49.68±3.78 57.32±0.64 86.24±0.55

Surrogate: *-CNN

FNN 49.57±0.12 41.00±0.39 32.59±0.77 28.87±0.28 28.45±0.37 29.81±0.49 28.82±0.20 29.36±0.20 37.11±0.12

FNN-ReLU 54.55±0.29 47.67±0.66 35.06±0.39 33.56±0.38 31.47±0.27 33.51±0.30 33.10±0.20 30.29±0.40 37.24±0.36

ResNet18 91.92±0.39 91.44±0.14 41.10±1.15 33.58±2.12 32.46±1.40 36.15±1.28 45.78±3.46 55.11±1.68 73.97±0.78

DenseNet121 92.71±0.15 90/.35±0.29 54.99±7.33 40.82±0.37 40.20±2.69 40.42±1.03 56.37±1.67 63.72±0.87 76.95±1.54

(b) CIFAR-10

Surrogate: *-FNN

CNN 96.00±0.63 93.80±2.56 - 74.20±1.94 68.20±4.96 81.00±4.000 85.40±1.36 89.80±1.17 91.20±0.40

FNN-ReLU 92.20±0.40 87.00±0.63 - 78.80±2.56 74.00±5.62 84.40±0.35 86.60±1.02 88.80±0.75 91.00±0.15

ResNet18 99.80±0.40 91.20±1.17 - 74.60±2.15 85.00±0.89 94.80±0.75 92.40±1.02 89.40±1.62 90.00±2.61

DenseNet121 98.40±0.49 89.60±0.49 - 72.60±4.88 74.40±4.50 88.20±2.32 89.60±1.74 88.60±1.36 88.80±1.47

Surrogate: *-CNN

FNN 91.60±0.49 89.40±1.50 90.80±0.40 77.00±1.10 80.20±2.40 87.80±0.75 89.20±1.17 90.20±0.40 89.60±1.02

FNN-ReLU 92.20±0.40 88.60±0.49 91.00±0.08 80.00±0.89 82.40±2.15 87.40±1.36 89.20±0.75 89.60±0.49 90.00±0.05

ResNet18 99.80±0.40 92.20±1.60 92.80±1.72 77.60±2.06 88.20±1.33 92.80±1.47 89.60±3.88 91.80±1.94 89.60±3.07

DenseNet121 98.40±0.49 90.00±1.67 92.80±2.32 77.00±2.19 77.40±2.50 89.60±1.36 89.40±1.20 87.80±2.04 88.80±0.75

(c) ImageNet
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Figure 4. (a) Training and (b) test dynamics of GP-FNN on MNIST with different t. Vertical lines represent the early-stop points.

Table 3. Trade-off between speed and collaboration by varying block size b. (a) r = 10 (b) r = 1.

b FNN FNN-ReLU CNN ResNet18 DenseNet121 time

Surrogate: GP-FNN

1 49.20±0.27 53.95±0.20 77.75±0.16 89.78±0.64 91.14±0.16 5.8 s

100 37.02±0.20 42.28±0.20 69.02±0.47 80.34±1.21 83.81±1.16 16.8 s

1K 22.84±0.64 27.85±0.56 47.33±0.52 49.61±1.56 58.40±1.98 3.5 m

4K 20.63±0.57 25.95±1.50 36.05±1.11 39.68±1.22 47.36±0.51 34 m

(a)

b FNN FNN-ReLU CNN ResNet18 DenseNet121 time

Surrogate: GP-FNN

1 49.41±0.35 53.71±0.23 77.78±0.42 77.78±0.42 88.88±0.73 0.6 s

100 37.08±0.16 42.75±0.33 68.46±0.26 77.75±0.16 89.78±0.64 1.7 s

1K 28.50±0.20 29.84±0.39 51.67±0.56 55.11±1.89 64.09±1.08 21.9 s

4K 26.44±0.22 26.83±0.84 46.03±0.33 47.37±1.30 57.32±0.64 3.5 m

(b)

Table 4. Sensitivity to σb and σw that are used on construct Kn,n and Km,n.

σb σw FNN FNN’ CNN R18 D121

Surrogate: GP-FNN

0.00 1.10 20.35±0.54 24.75±1.61 37.80±0.23 35.98±1.33 42.75±0.49

0.10 1.55 19.40±0.82 24.52±2.40 37.87±0.33 40.18±1.81 46.20±2.04

0.18 1.76 20.63±0.57 25.95±1.50 36.05±1.11 39.68±1.22 47.36±0.51

0.25 1.88 21.05±0.65 26.03±1.58 36.94±0.47 38.71±1.04 48.64±1.41
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Figure 5. Visualization of some poisoned MNIST images (left) and their normalized perturbations (right) based on *-FNN surrogates.
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Figure 6. Visualization of some poisoned MNIST images (left) and their normalized perturbations (right) based on *-CNN surrogates.
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Figure 7. Visualization of some poisoned CIFAR-10 images (left) and their normalized perturbations (right) based on *-FNN surrogates.
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Figure 8. Visualization of some poisoned CIFAR-10 images (left) and their normalized perturbations (right) based on *-CNN surrogates.
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Figure 9. Visualization of some poisoned ImageNet images based on *-FNN surrogates.
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Figure 10. Visualization of normalized perturbations of some poisoned ImageNet based on *-FNN surrogates.
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Figure 11. Visualization of some poisoned ImageNet images based on *-CNN surrogates.
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Figure 12. Visualization of normalized perturbations of some poisoned ImageNet based on *-CNN surrogates.


