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Abstract

Federated Learning (FL) is a distributed learning
paradigm that scales on-device learning collab-
oratively and privately. Standard FL algorithms
such as FEDAVG are primarily geared towards
smooth unconstrained settings. In this paper,
we study the Federated Composite Optimization
(FCO) problem, in which the loss function con-
tains a non-smooth regularizer. Such problems
arise naturally in FL applications that involve spar-
sity, low-rank, monotonicity, or more general con-
straints. We first show that straightforward exten-
sions of primal algorithms such as FEDAVG are
not well-suited for FCO since they suffer from
the “curse of primal averaging,” resulting in poor
convergence. As a solution, we propose a new
primal-dual algorithm, Federated Dual Averaging
(FEDDUALAVG), which by employing a novel
server dual averaging procedure circumvents the
curse of primal averaging. Our theoretical anal-
ysis and empirical experiments demonstrate that
FEDDUALAVG outperforms the other baselines.

1. Introduction

Federated Learning (FL, Kone¢ny et al. 2015; McMahan
etal. 2017) is a novel distributed learning paradigm in which
a large number of clients collaboratively train a shared
model without disclosing their private local data. The two
most distinct features of FL, when compared to classic
distributed learning settings, are (1) heterogeneity in data
amongst the clients and (2) very high cost to communicate
with a client. Due to these aspects, classic distributed opti-
mization algorithms have been rendered ineffective in FL
settings (Kairouz et al., 2019). Several algorithms specif-
ically catered towards FL settings have been proposed to
address these issues. The most prominent amongst them is
Federated Averaging (FEDAVG) algorithm, which by em-
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Figure 1. Results on sparse (/;-regularized) logistic regres-
sion for a federated fMRI dataset based on (Haxby, 2001).
centralized corresponds to training on the centralized dataset
gathered from all the training clients. local corresponds to
training on the local data from only one training client without
communication. FEDAVG (0) corresponds to running FEDAVG al-
gorithms with subgradient in lieu of SGD to handle the non-smooth
£ -regularizer. FEDMID is another straightforward extension of
FEDAVG running local proximal gradient method (see Section 3.1
for details). We show that using our proposed algorithm FED-
DUALAVG, one can 1) achieve performance comparable to the
centralized baseline without the need to gather client data,
and 2) significantly outperforms the 1ocal baseline on the iso-
lated data and the FEDAVG baseline. See Section 5.3 for details.

ploying local SGD updates, significantly reduces the com-
munication overhead under moderate client heterogeneity.
Several follow-up works have focused on improving the
FEDAVG in various ways (e.g., Li et al. 2020a; Karimireddy
et al. 2020; Reddi et al. 2020; Yuan & Ma 2020).

Existing FL research primarily focuses on the unconstrained
smooth objectives; however, many FL applications involve
non-smooth objectives. Such problems arise naturally in
the context of regularization (e.g., sparsity, low-rank, mono-
tonicity, or additional constraints on the model). For in-
stance, consider the problem of cross-silo biomedical FL,
where medical organizations collaboratively aim to learn
a global model on their patients’ data without sharing. In
such applications, sparsity constraints are of paramount im-
portance due to the nature of the problem as it involves
only a few data samples (e.g., patients) but with very high
dimensions (e.g., fMRI scans). For the purpose of illus-
tration, in Fig. 1, we present results on a federated sparse
(¢1-regularized) logistic regression task for an fMRI dataset
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(Haxby, 2001). As shown, using a federated approach that
can handle non-smooth objectives enables us to find a highly
accurate sparse solution without sharing client data.

In this paper, we propose to study the Federated Composite
Optimization (FCO) problem. As in standard FL, the losses
are distributed to M clients. In addition, we assume all
the clients share the same, possibly non-smooth, non-finite
regularizer . Formally, (FCO) is of the following form

min ®(w) := F(w) + ¢(w) = % Z Fr(w) + ¢(w),

weRd

(FCO)
where F,, (w) := Egmop,, f(w;£™) is the loss at the m-
th client, assuming D,,, is its local data distribution. We
assume that each client m can access V f(w; ™) by draw-
ing independent samples £™ from its local distribution D,, .
Common examples of ¢)(w) include ¢; -regularizer or more
broadly /,-regularizer, nuclear-norm regularizer (for ma-
trix variable), total variation (semi-)norm, etc. The (FCO)
reduces to the standard federated optimization problem if
1 = 0. The (FCO) also covers the constrained federated
optimization if one takes i to be the following constraint
characteristics x¢(w) := 0 if w € C or +o00 otherwise.

Standard FL algorithms such as FEDAVG (see Algorithm 1)
and its variants (e.g., Li et al. 2020a; Karimireddy et al.
2020) are primarily tailored to smooth unconstrained set-
tings, and are therefore, not well-suited for FCO. The most
straightforward extension of FEDAVG towards (FCO) is to
apply local subgradient method (Shor, 1985) in lieu of SGD.
This approach is largely ineffective due to the intrinsic slow
convergence of subgradient approach (Boyd et al., 2003),
which is also demonstrated in Fig. 1 (marked FEDAVG (0)).

A more natural extension of FEDAVG is to replace the lo-
cal SGD with proximal SGD (Parikh & Boyd 2014, a.k.a.
projected SGD for constrained problems), or more gen-
erally, mirror descent (Duchi et al., 2010). We refer to
this algorithm as Federated Mirror Descent (FEDMID, see
Algorithm 2). The most noticeable drawback of a primal-
averaging method like FEDMID is the “curse of primal
averaging,” where the desired regularization of FCO may
be rendered completely ineffective due to the server aver-
aging step typically used in FL. For instance, consider a
{1-regularized logistic regression setting. Although each
client is able to obtain a sparse solution, simply averaging
the client states will inevitably yield a dense solution. See
Fig. 2 for an illustrative example.

To overcome this challenge, we propose a novel
primal-dual algorithm named Federated Dual Averaging
(FEDDUALAVG, see Algorithm 3). Unlike FEDMID (or
its precursor FEDAVG), the server averaging step of FED-
DUALAVG operates in the dual space instead of the primal.
Locally, each client runs dual averaging algorithm (Nes-
terov, 2009) by tracking of a pair of primal and dual states.

server

averaging

—_ —~—
sparse clients dense server

Figure 2. Illustration of “curse of primal averaging”. While
each client of FEDMID can locate a sparse solution, simply aver-
aging them will yield a much denser solution on the server side.

During communication, the dual states are averaged across
the clients.

Thus, FEDDUALAVG employs a novel double averaging
procedure — averaging of dual states across clients (as in
FEDAVG), and the averaging of gradients in dual space
(as in the sequential dual averaging). Since both levels
of averaging operate in the dual space, we can show that
FEDDUALAVG provably overcomes the curse of primal
averaging. Specifically, we prove that FEDDUALAVG can
attain significantly lower communication complexity when
deployed with a large client learning rate.

Contributions. In light of the above discussion, let us
summarize our key contributions below:

* We propose a generalized federated learning problem,
namely Federated Composite Optimization (FCO), with
non-smooth regularizers and constraints.

* We first propose a natural extension of FEDAVG, namely
Federated Mirror Descent (FEDMID). We show that FED-
MID can attain the mini-batch rate in the small client
learning rate regime (Section 4.1). We argue that FED-
MID may suffer from the effect of “curse of primal aver-
aging,” which results in poor convergence, especially in
the large client learning rate regime (Section 3.2).

* We propose a novel primal-dual algorithm named Fed-
erated Dual Averaging (FEDDUALAVG), which prov-
ably overcomes the curse of primal averaging (Sec-
tion 3.3). Under certain realistic conditions, we show that
by virtue of “double averaging” property, FEDDUALAVG
can have significantly lower communication complexity
(Section 4.2).

* We demonstrate the empirical performance of FED-
MID and FEDDUALAVG on various tasks, including ¢; -
regularization, nuclear-norm regularization, and various
constraints in FL (Section 5).

Notations. We use [n] to denote the set {1,...,n}. We
use (-,-) to denote the inner product, || - || to denote an
arbitrary norm, and || - ||, to denote its dual norm, unless
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otherwise specified. We use || - ||2 to denote the ¢5 norm
of a vector or the operator norm of a matrix, and || - || 4 to
denote the vector norm induced by positive definite matrix
A, namely ||w|| 4 := /(w, Aw). For any convex function
g(w), we use g*(z2) to denote its convex conjugate g*(z) :=
SUp,,ered (2, w)—g(w)}. We use w* to denote the optimum
of the problem (FCO). We use O, © to hide multiplicative
absolute constants only and = < y to denote z = O(y).

1.1. Related Work

In this subsection, we briefly discuss the main related work.
We provide a more detailed literature review in Appendix A,
including the relation to classic composite optimization and
distributed consensus optimization literature.

The first analysis of general FEDAVG was established by
Stich (2019) for the homogeneous client dataset. This result
was improved by Haddadpour et al. (2019b); Khaled et al.
(2020); Woodworth et al. (2020b); Yuan & Ma (2020) via
tighter analysis and accelerated algorithms. For heteroge-
neous clients, numerous recent papers (Haddadpour et al.,
2019b; Khaled et al., 2020; Li et al., 2020b; Koloskova
et al., 2020; Woodworth et al., 2020a) studied the conver-
gence of FEDAVG under various notions of heterogeneity
measure. FEDAVG has also been studied for non-convex
objectives (Zhou & Cong, 2018; Haddadpour et al., 2019a;
Wang & Joshi, 2018; Yu & Jin, 2019; Yu et al., 2019a;b).
Other variants of FEDAVG have been proposed to overcome
heterogeneity challenges (e.g., Mohri et al. 2019; Liang
et al. 2019; Li et al. 2020a; Wang et al. 2020; Karimireddy
et al. 2020; Pathak & Wainwright 2020; Fallah et al. 2020;
Hanzely et al. 2020; T. Dinh et al. 2020; Lin et al. 2020; He
et al. 2020; Bistritz et al. 2020; Zhang et al. 2020). We refer
readers to (Kairouz et al., 2019) for a comprehensive survey
of recent advances in FL.

We note that none of the aforementioned works can handle
non-smooth problems such as (FCO). Furthermore, the con-
tributions of this work can potentially be integrated with
other emerging techniques in FL (e.g., acceleration, adaptiv-
ity, variance reduction) to overcome challenges in FL such
as communication efficiency and client heterogeneity.

2. Preliminaries

In this section, we review the necessary background for com-
posite optimization and federated learning. A detailed tech-
nical exposition of these topics is relegated to Appendix C.

2.1. Composite Optimization

Composite optimization covers a variety of statistical infer-
ence, machine learning, signal processing problems. Stan-
dard (non-distributed) composite optimization is defined as

min  Eeop f(w; &) + 9 (w),

weRd

(CO)
where 1 is a non-smooth, possibly non-finite regularizer.

Proximal Gradient Method. A natural extension of SGD
for (CO) is the following proximal gradient method (PGM):

Wet1 <= Prox,,, (we =NV f(we; &)

— angmin (009 s ) + gl = wilf + o))
2.1

The sub-problem Eq. (2.1) can be motivated by optimizing
a quadratic upper bound of f together with the original .
This problem can often be efficiently solved by virtue of the
special structure of . For instance, one can verify that PGM
reduces to projected gradient descent if 1) is a constraint
characteristic ¢, soft thresholding if ¢)(w) = AJjw]|1, or
weight decay if (w) := A||w]|3.

Mirror Descent / Bregman-PGM. PGM can be gener-
alized to the Bregman-PGM if one replaces the Euclidean
proximity term by the general Bregman divergence, namely

wiy1 + argmin (n (Vf(we; &), w) + np(w) + Da(w,wy)),

(2.2)
where h is a strongly convex distance-generating function,

Dy, is the Bregman divergence which reduces to Euclidean

distance if one takes h(w) = %||wl[|3. We will still refer

to this step as a proximal step for ease of reference. This
general formulation (2.2) enables an equivalent primal-dual
interpretation:

wey1 < V(h +mp)" (Vh(we) = V f(we; &)). (2.3)

A common interpretation of (2.3) is to decompose it into
the following three sub-steps (Nemirovski & Yudin, 1983):

(a) Apply Vh to carry w; to a dual state (denoted as z;).
(b) Update z; to y;+1 with the gradient queried at w;.
(c) Map y;41 back to primal via V(h + n))*.

This formulation is known as the composite objective mir-

ror descent (COMID, Duchi et al. 2010), or simply mirror
descent in the literature (Flammarion & Bach, 2017).

Dual Averaging. An alternative approach for (CO) is the
following dual averaging algorithm (Nesterov, 2009):

241 < 2e = NV [ (V(h +nt)" (20); &) - (2.4)

Similarly, we can decompose (2.4) into two sub-steps:

(a) Apply V(h + nt1))* to map dual state z; to primal ws.
Note that this sub-step can be reformulated into

wy = arg min ((—2, w) + nitb(w) + h(w))

w

which allows for efficient computation for many ).
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(b) Update z; to z;+; with the gradient queried at w;.

Dual averaging is also known as the “lazy” mirror descent
algorithm (Bubeck, 2015) since it skips the forward mapping
(Vh) step. Theoretically, mirror descent and dual averaging
often share the similar convergence rates for sequential (CO)
(e.g., for smooth convex f, c.f. Flammarion & Bach 2017).

Remark. There are other algorithms that are popular for
certain types of (CO) problems. For example, Frank-Wolfe
method (Frank & Wolfe, 1956; Jaggi, 2013) solves con-
strained optimization with a linear optimization oracle.
Smoothing method (Nesterov, 2005) can also handle non-
smoothness in objectives, but is in general less efficient
than specialized CO algorithms such as dual averaging
(c.f., Nesterov 2018). In this work, we mostly focus on
Mirror Descent and Dual Averaging algorithms since they
only employ simple proximal oracles such as projection and
soft-thresholding. We refer readers to Appendix A.2 for
additional related work in composite optimization.

2.2. Federated Averaging

Federated Averaging (FEDAVG, McMabhan et al. 2017) is
the de facto standard algorithm for Federated Learning with
unconstrained smooth objectives (namely ¢ = 0 for (FCO)).
In this work, we follow the exposition of (Reddi et al., 2020)
which splits the client learning rate and server learning rate,
offering more flexibility (see Algorithm 1).

FEDAVG involves a series of rounds in which each round
consists of a client update phase and server update phase.
We denote the total number of rounds as RR. At the beginning
of each round r, a subset of clients S,. are sampled from the
client pools of size M. The server state is then broadcast
to the sampled client as the client initialization. During the
client update phase (highlighted in shade), each sam-
pled client runs local SGD for K steps with client learning
rate 7). with their own data. We use w; to denote the m-th
client state at the k-th local step of the r-th round. During
the server update phase, the server averages the updates of
the sampled clients and treats it as a pseudo-anti-gradient
A, (Line 9). The server then takes a server update step to
update its server state with server learning rate 75 and the
pseudo-anti-gradient A,. (Line 10).

3. Proposed Algorithms for FCO

In this section, we explore the possible solutions to approach
(FCO). As mentioned earlier, existing FL algorithms such as
FEDAVG and its variants do not solve (FCO). Although it is
possible to apply FEDAVG to non-smooth settings by using
subgradient in place of the gradient, such an approach is
usually ineffective owing to the intrinsic slow convergence
of subgradient methods (Boyd et al., 2003).

Algorithm 1 Federated Averaging (FEDAVG)

1: procedure FEDAVG (wg, 7c, Ns)

2: forr=0,...,R—1do

3:  sample a subset of clients S, C [M]

4:  on client for m € S, in parallel do

5: Wy Wy > broadcast client initialization
6: fork=0,..., K —1do
7
8
9

97 < V(&%) > query gradient
m m m .
Wy g1 < Wk = Te * Gr i > client update
_ 1 m m
Ay = [Sx| ZMGST (wr,K - wr,O)

10: Wpy1 < wp + 15 - Ay > server update

Algorithm 2 Federated Mirror Descent (FEDMID)
1: procedure FEDMID (wq, 7c, 7s)
2: forr=0,...,R—1do
3:  sample a subset of clients S, C [M]
4: on client for m € S, in parallel do
5: Wy < Wy > broadcast primal initialization
6: fork=0,..., K —1do
7
8
9

9 V(s &) > query gradient
wly vy < V(b +nc0) (VR(wy) — ne - 977%)
Ar = 57 Lmes, (W]l —wi)
10: wpaq — V(h 4+ s K) (Vh(w,) + ns - A)

3.1. Federated Mirror Descent (FEDMID)

A more natural extension of FEDAVG towards (FCO) is to
replace the local SGD steps in FEDAVG with local prox-
imal gradient (mirror descent) steps (2.3). The resulting
algorithm, which we refer to as Federated Mirror Descent
(FEDMID)', is outlined in Algorithm 2.

Specifically, we make two changes compared to FEDAVG:

* The client local SGD steps in FEDAVG are replaced with
proximal gradient steps (Line 8).

* The server update step is replaced with another proximal
step (Line 10).

As a sanity check, for constrained (FCO) with ¢ = x¢, if

one takes server learning rate n; = 1 and Euclidean dis-

tance h(w) = i||wl|3, FEDMID will simply reduce to the

following parallel projected SGD with periodic averaging:

(a) Each sampled client runs K steps of projected SGD
following w]"y | Projc(wf?k — T)Cgf?k).

"Despite sharing the same term “prox”, FEDMID is fundamen-
tally different from FEDPROX (Li et al., 2020a). The proximal step
in FEDPROX was to regularize the client drift caused by hetero-
geneity, whereas the proximal step in this work is to overcome the
non-smoothness of ¢. The problems approached by the two meth-
ods are also different — FEDPROX still solves an unconstrained
smooth problem, whereas ours concerns with approaches (FCO).
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(b) After K local steps, the server simply average the client
states following w1 < ﬁ Y mes, Wik

3.2. Limitation of FEDMID: Curse of Primal
Averaging

Despite its simplicity, FEDMID exhibits a major limitation,
which we refer to as “curse of primal averaging”: the server
averaging step in FEDMID may severely impede the opti-
mization progress. To understand this phenomenon, let us
consider the following two illustrative examples:

* Constrained problem: Suppose the optimum of the
aforementioned constrained problem resides on a non-
flat boundary C. Even when each client is able to obtain a
local solution on the boundary, the average of them will
almost surely be off the boundary (and hence away from
the optimum) due to the curvature.

* Federated /;-regularized logistic regression problem:
Suppose each client obtains a local sparse solution, simply
averaging them across clients will invariably yield a non-
sparse solution.

As we will see theoretically (Section 4) and empirically
(Section 5), the “curse of primal averaging” indeed hampers
the performance of FEDMID.

3.3. Federated Dual Averaging (FEDDUALAVG)

Before we look into the solution of the curse of primal
averaging, let us briefly investigate the cause of this effect.
Recall that in standard smooth FL settings, server averaging
step is helpful because it implicitly pools the stochastic
gradients and thereby reduces the variance (Stich, 2019).
In FEDMID, however, the server averaging operates on the
post-proximal primal states, but the gradient is updated
in the dual space (recall the primal-dual interpretation of
mirror descent in Section 2.1). This primal/dual mismatch
creates an obstacle for primal averaging to benefit from the
pooling of stochastic gradients in dual space. This thought
experiment suggests the importance of aligning the gradient
update and server averaging.

Building upon this intuition, we propose a novel
primal-dual algorithm, named Federated Dual Averaging
(FEDDUALAVG, Algorithm 3), which provably addresses
the curse of primal averaging. The major novelty of FED-
DUALAVG, in comparison with FEDMID or its precursor
FEDAVG, is to operate the server averaging in the dual space
instead of the primal. This facilitates the server to aggre-
gate the gradient information since the gradients are also
accumulated in the dual space.

Formally, each client maintains a pair of primal and dual
states (w],, 27 ). At the beginning of each client update

Algorithm 3 Federated Dual Averaging (FEDDUALAVG)
1: procedure FEDDUALAVG (wq, 1c, Ns)

2: zg + Vh(wo) > server dual initialization
3: forr=0,...,R—1do

4:  sample a subset of clients S, C [M]

5: on client for m € S, in parallel do

6: Zpo < Zr > broadcast dual initialization
7: fork=0,...,K —1do

8: Nk < NNl K + nck

9: wy < V(h + k) *(277,) > retrieve primal
10: 9,7 < V(W &) D> query gradient
11: 2y 20 = neg)y, D> client dual update

122 Ay = ﬁ Yomes, 7k = 70)

13: zZpg1 ¢ 2r + A, > server dual update
14:  wppq < V(h+95mc(r + D KY)* (zp41)

15: > (optional) retrieve server primal state

round, the client dual state is initialized with the server
dual state. During the client update stage, each client runs
dual averaging steps following (2.4) to update its primal
and dual state (highlighted in shade). The coefficient
of 1, namely 7j, 1, is to balance the contribution from F’
and . At the end of each client update phase, the dual up-
dates (instead of primal updates) are returned to the server.
The server then averages the dual updates of the sampled
clients and updates the server dual state. We observe that
the averaging in FEDDUALAVG is two-fold: (1) averaging
of gradients in dual space within a client and (2) averaging
of dual states across clients at the server. As we shall see
shortly in our theoretical analysis, this novel “double” av-
eraging of FEDDUALAVG in the non-smooth case enables
lower communication complexity and faster convergence of
FEDDUALAVG under realistic assumptions.

4. Theoretical Results

In this section, we demonstrate the theoretical results of
FEDMID and FEDDUALAVG. We assume the following
assumptions throughout the paper. The convex analysis
definitions in Assumption | are reviewed in Appendix C.

Assumption 1. Let || - | be a norm and || - || be its dual.

(a) ¢ : R — R U {+o0} is a closed convex function with
closed dom1)p. Assume that ®(w) = F(w) + ¥ (w)
attains a finite optimum at w* € dom 1.

(b) h:R? — R U {+o0} is a Legendre function that is 1-
strongly-convex w.rt. || - ||. Assume dom h D dom .

(c) f(-,€) : R* — Ris a closed convex function that is
differentiable on dom 1) for any fixed £. In addition,
f(-,&) is L-smooth w.rt. || - || on dom ), namely for
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any u,w € dom1,

F(03€) < ;€)Y ;) 0~ w5 Llju—w]”

(d) ¥V f has o*-bounded variance over Dy, under || - ||.
within dom v, namely for any w € dom 1),

E¢wp,, [|Vf(w,8) = VEn(w)| < 0%, forany m € [M]
(e) Assume that all the M clients participate in the client
updates for every round, namely S, = [M].

Assumption 1(a) & (b) are fairly standard for composite
optimization analysis (c.f. Flammarion & Bach 2017). As-
sumption 1(c) & (d) are standard assumptions in stochas-
tic federated optimization literature (Khaled et al., 2020;
Woodworth et al., 2020b). (e) is assumed to simplify the
exposition of the theoretical results. All results presented
can be easily generalized to the partial participation case.

Remark. This work focuses on convex settings because
the non-convex composite optimization (either F' or 1) non-
convex) is noticeably challenging and under-developed even
Jor non-distributed settings. This is in sharp contrast to
non-convex smooth optimization for which simple algo-
rithms such as SGD can readily work. Existing literature on
non-convex CO (e.g., Attouch et al. 2013; Chouzenoux et al.
2014; Li & Pong 2015, Bredies et al. 2015) typically relies
on non-trivial additional assumptions (such as K-L. condi-
tions) and sophisticated algorithms. Hence, it is beyond the
scope of this work to study non-convex FCO. >

4.1. FEDMID and FEDDUALAVG: Small Client
Learning Rate Regime

We first show that both FEDMID and FEDDUALAVG are
(asymptotically) at least as good as stochastic mini-batch al-
gorithms with R iterations and batch-size M K when client
learning rate 7 is sufficiently small.
Theorem 4.1 (Simplified from Theorem F.1). Assuming As-
sumption 1, then for sufficiently small client learning rate 1.,
1 BIM?Z Y
neKL? ncK%R%a ’
both FEDDUALAVG and FEDMID can output w such that

and server learning rate s = ©(min{

1
B(w*) < LB i oBz

E[®(w)] - ~ 'Y Aen 4.1)

where B := Dj(w*, wp).

The intuition is that when 7). is small, the client update will
not drift too far away from its initialization of the round. Due
to space constraints, the proof is relegated to Appendix F.

*However, we conjecture that for simple non-convex settings
(e.g., optimize non-convex f on a convex set, as tested in Ap-
pendix B.5), it is possible to show the convergence and obtain
similar advantageous results for FEDDUALAVG.

4.2. FEDDUALAVG with a Larger Client Learning
Rate: Usefulness of Local Step

In this subsection, we show that FEDDUALAVG may attain
stronger results with a larger client learning rate. In addi-
tion to possible faster convergence, Theorems 4.2 and 4.3
also indicate that FEDDUALAVG allows for much broader
searching scope of efficient learning rates configurations,
which is of key importance for practical purpose.

Bounded Gradient. We first consider the setting with
bounded gradient. Unlike unconstrained, the gradient bound
may be particularly useful when the constraint is finite.

Theorem 4.2 (Simplified from Theorem D.1). Assuming
Assumption 1 and SUp e gom |V f(w,§)[l« < G, then for

FEDDUALAVG withns = 1 and n. < ﬁ, considering

(h+ 7 pp)" < erk>],(4.z>

the following inequality holds

] R X
xR 22|V

r=0 k=1

B
d(w*) S LK*G?,

B[ (0)] - ®(") $ o + 17

where B := Dy (w*,wg). Moreover, there exists 1. such
that

N
W=

oB L3B
- +

MKR R

G

o

E[®(w)] - ®(w") S

(4.3)

| Wi

318

We refer the reader to Appendix D for complete proof details
of Theorem 4.2.

Remark. The result in Theorem 4.2 not only matches the
rate by Stich (2019) for smooth, unconstrained FEDAVG
but also allows for a general non-smooth composite 1, gen-
eral Bregman divergence induced by h, and arbitrary norm
|| - I Compared with the small learning rate result The-
orem 4.1, the first term in Eq. (4.3) is improved from Llf
to K %, whereas the third term incurs an additional loss
regarding infrequent communication. One can verify that
the bound Eq. (4.3) is better than Eq. (4.1) if R < LGZB.
Therefore, the larger client learning rate may be preferred
when the communication is not too infrequent.

Bounded Heterogeneity. Next, we consider the settings
with bounded heterogeneity. For simplicity, we focus on
the case when the loss F' is quadratic, as shown in Assump-
tion 2. We will discuss other options to relax the quadratic
assumption in Section 4.3.

Assumption 2 (Bounded heterogeneity, quadratic).

(a) The heterogeneity of V F,, is bounded, namely

sup |V Fn(w) -

wedom

VE(w)|l« < ¢*, foranym € [M]
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(b) F(w) = 2w Qu + c"w for some Q > 0.

(c) Assume Assumption I is satisfied in which the norm || - ||
. Q _ wT Quw
is taken 10 be the qr—-norm, namely |lw| = \ o,

Remark. Assumption 2(a) is a standard assumption to
bound the heterogeneity among clients (e.g., Woodworth
et al. 2020a). Note that Assumption 2 only assumes the
objective F' to be quadratic. We do not impose any stronger
assumptions on either the composite function 1) or the
distance-generating function h. Therefore, this result still
applies to a broad class of problems such as 1LASSO.

The following results hold under Assumption 2. We sketch
the proof in Section 4.3 and defer the details to Appendix E.
Theorem 4.3 (Simplified from Theorem E.1). Assuming
Assumption 2, then for FEDDUALAVG with ny = 1 and
Ne < ﬁ, the following inequality holds

B n 77C02

nRKR T ar Lot +ncLERC,

E[®(w)] — ®(w") 5

where W is the same as defined in Eq. (4.2), and B =
Dy (w*, wg). Moreover, there exists 1. such that

1 1 2 2 1 2 2

. . LB ocB2 L3B303 L3B3(3

E[®(d)]-®(w*) S 2=t + + .
[R@I-2) S Zrt AT mirE T &2

“4.4)

Remark. The result in Theorem 4.3 matches the best-
known convergence rate for smooth, unconstrained FE-
DAVG (Khaled et al., 2020; Woodworth et al., 2020a),
while our results allow for general composite i and non-
Euclidean distance. Compared with Theorem 4.2, the over-
head in Eq. (4.4) involves variance o and heterogeneity (
but no longer depends on G. The bound Eq. (4.4) could sig-
nificantly outperform the previous ones when the variance
o and heterogeneity C are relatively mild.

4.3. Proof Sketch and Discussions

In this subsection, we demonstrate our proof framework by
sketching the proof for Theorem 4.3.

Step 1: Convergence of Dual Shadow Sequence. We
start by characterizing the convergence of the dual shadow
sequence z,j 1= ﬁ fo:l z,y.- The key observation for
FEDDUALAVG when 7, = 1 is the following relation

M
1
Zrk+1 = Zrk — T * M E Vf(w;% f:«?k) 4.5)
m=1

This suggests that the shadow sequence 7, ;, almost executes
a dual averaj%ing update (2.4), but with some perturbed gra-
dient 2 >0V f (w7 & )- To this end, we extend the
perturbed iterate analysis framework (Mania et al., 2017)
to the dual space. Theoretically we show the following
Lemma 4.4, with proof relegated to Appendix D.2.

Lemma 4.4 (Convergence of dual shadow sequence of FED-
DUALAVG, simplified version of Lemma D.2). Assuming

Assumption 1, then for FEDDUALAVG with ny = 1 and

ne < 47, the following inequality holds

R—-1 K

1 - ¥ *
E [@ (KR STV (et ) (zr,w)] — (w)

r=0 k=1
M
> Elzr - zi?kll':’] .

0 m=1

=
=

B n ’I’]CU2 L
nKR M MKR

I
o
el
Il

T

Rate if synchronized

; . Discrepancy overhead
every iteration

(4.6)

The first two terms correspond to the rate when FEDDU-
ALAVG is synchronized every step. The last term corre-
sponds to the overhead for not synchronizing every step,
which we call “discrepancy overhead”. Lemma 4.4 can
serve as a general interface towards the convergence of FED-
DUALAVG as it only assumes the blanket Assumption 1.

Remark. Note that the relation (4.5) is not satisfied by
FEDMID due to the incommutability of the proximal oper-
ator and the the averaging operator, which thereby breaks
Lemma 4.4. Intuitively, this means FEDMID fails to pool the
gradients properly (up to a high-order error) in the absence
of communication. FEDDUALAVG overcomes the incom-
mutability issue because all the gradients are accumuluated
and averaged in the dual space, whereas the proximal step
only operates at the interface from dual to primal. This key
difference explains the “curse of primal averaging” from
the theoretical perspective.

Step 2: Bounding Discrepancy Overhead via Stability
Analysis. The next step is to bound the discrepancy term
introduced in Eq. (4.6). Intuitively, this term characterizes
the stability of FEDDUALAVG, in the sense that how far
away a single client can deviate from the average (in dual
space) if there is no synchronization for k steps.

However, unlike the smooth convex unconstrained settings
in which the stability of SGD is known to be well-behaved
(Hardt et al., 2016), the stability analysis for composite
optimization is challenging and absent from the literature.
We identify that the main challenge originates from the
asymmetry of the Bregman divergence. In this work, we
provide a set of simple conditions, namely Assumption 2,
such that the stability of FEDDUALAVG is well-behaved.

Lemma 4.5 (Dual stability of FEDDUALAVG under As-
sumption 2, simplified version of Lemma E.2). Under the
same settings of Theorem 4.3, the following inequality holds

2

1 M — m 2 2 21722

A 2om=1 B |7k — 20| S meKo® +ngKACE.
*

Step 3: Deciding 7.. The final step is to plug in the bound
in step 2 back to step 1, and find appropriate 7. to optimize
such upper bound. We defer the details to Appendix E.
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Figure 3. Sparsity recovery on a synthetic LASSO problem
with 50% sparse ground truth. Observe that FEDDUALAVG not
only identifies most of the sparsity pattern but also is fastest. It is
also worth noting that the less-principled FEDDUALAVG-OSP is
also very competitive. The poor performance of FEDMID can be
attributed to the “curse of primal averaging”, as the server averag-
ing step “smooths out” the sparsity pattern, which is corroborated
empirically by the least sparse solution obtained by FEDMID.

5. Numerical Experiments

In this section, we validate our theory and demonstrate the
efficiency of the algorithms via numerical experiments. We
mostly compare FEDDUALAVG with FEDMID since the lat-
ter serves a natural baseline. We do not present subgradient-
FEDAVG in this section due to its consistent ineffectiveness,
as demonstrated in Fig. 1 (marked FEDAVG (0)). To exam-
ine the necessity of client proximal step, we also test two
less-principled versions of FEDMID and FEDDUALAVG, in
which the proximal steps are only performed on the server-
side. We refer to these two versions as FEDMID-OSP and
FEDDUALAVG-OSP, where “OSP” stands for “only server
proximal,” with pseudo-code provided in Appendix B.1. We
provide the complete setup details in Appendix B, including
but not limited to hyper-parameter tuning, dataset process-
ing and evaluation metrics. The source code is available at
https://github.com/hongliny/FCO-ICML21.

5.1. Federated LASSO for Sparse Feature Recovery

In this subsection, we consider the LASSO (¢;-regularized
least-squares) problem on a synthetic dataset, motivated
by models from biomedical and signal processing litera-
ture (e.g., Ryali et al. 2010; Chen et al. 2012). The goal is to
recover the sparse signal w from noisy observations (z, y).

M
1
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Figure 4. Low-rank matrix estimation comparison on a syn-
thetic dataset with the ground truth of rank 16. We observe
that FEDDUALAVG finds the solution with exact rank in less than
100 communication rounds. FEDMID and FEDMID-OSP con-
verge slower in loss and rank. The unprincipled FEDDUALAVG-
OSP can generate low-rank solutions but is far less accurate.

To generate the synthetic dataset, we first fix a sparse ground
truth Wyea) € R? and some bias byeq € R, and then sample
the dataset (x,%) following y = o T Wyeal + breal + € for
some noise €. We let the distribution of (z,y) vary over
clients to simulate the heterogeneity. We select A so that
the centralized solver (on gathered data) can successfully
recover the sparse pattern. Since the ground truth wyea)
is known, we can assess the quality of the sparse features
recovered by comparing it with the ground truth.

We evaluate the performance by recording precision, recall,
sparsity density, and F1-score. We tune the client learning
rate 7). and server learning rate 7, only to attain the best F1-
score. The results are presented in Fig. 3. The best learning
rates configuration is . = 0.01,ns = 1 for FEDDUALAVG,
and n. = 0.001,ns = 0.3 for other algorithms (including
FEDMID). This matches our theory that FEDDUALAVG can
benefit from larger learning rates. We defer the rest of the
setup details and further experiments to Appendix B.2.

5.2. Federated Low-Rank Matrix Estimation via
Nuclear-Norm Regularization

In this subsection, we consider a low-rank matrix estimation
problem via the nuclear-norm regularization

M
1
min > Egxgyep,, (X, W) +5=9)” + AW e,
’ m=1

where ||W ||nue denotes the matrix nuclear norm. The goal
is to recover a low-rank matrix W from noisy observations
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Figure 5. Results on /;-regularized logistic regression for
fMRI data from (Haxby, 2001). We observe that FEDDUALAVG
yields sparse and accurate solutions that are comparable with the
centralized baseline. FEDMID and FEDMID-OSP provides denser
solutions that are relatively less accurate. The unprincipled FED-
DUALAVG-OSP can provide sparse solutions but far less accurate.

(X,y). This formulation captures a variety of problems
such as low-rank matrix completion and recommendation
systems (Candes & Recht, 2009). Note that the proximal op-
erator with respect to the nuclear-norm regularizer reduces
to singular-value thresholding operation (Cai et al., 2010).

We evaluate the algorithms on a synthetic federated dataset
with known low-rank ground truth Wye, € R% %% and
bias byea1 € R, similar to the above LASSO experiments.
We focus on four metrics for this task: the training (reg-
ularized) loss, the validation mean-squared-error, the re-
covered rank, and the recovery error in Frobenius norm
(Woutput — Wreal||r. We tune the client learning rate 7,
and server learning rate 7, only to attain the best recovery
error. We also record the results obtained by the determin-
istic solver on centralized data, marked as opt imum. The
results are presented in Fig. 4. We provide the rest of the
setup details and more experiments in Appendix B.3.

5.3. Sparse Logistic Regression for fMRI Scan

In this subsection, we consider the cross-silo setup of learn-
ing a binary classifier on fMRI scans. For this purpose,
we use the data collected by Haxby (2001), to understand
the pattern of response in the ventral temporal (vt) area of
the brain given a visual stimulus. There were six subjects
doing image recognition in a block-design experiment over
11 to 12 sessions, with a total of 71 sessions. Each session
consists of 18 fMRI scans under the stimuli of a picture

of either a house or a face. We use the nilearn pack-
age (Abraham et al., 2014) to normalize and transform the
four-dimensional raw fMRI scan data into an array with
39,912 volumetric pixels (voxels) using the standard mask.
We plan to learn a sparse (¢;-regularized) binary logistic
regression on the voxels to classify the stimuli given the
voxels input. Enforcing sparsity is crucial for this task as
it allows domain experts to understand which part of the
brain is differentiating between the stimuli. We select five
(out of six) subjects as the training set and the last subject
as the held-out validation set. We treat each session as a
client, with a total of 59 training clients and 12 validation
clients, where each client possesses the voxel data of 18
scans. As in the previous experiment, we tune the client
learning rate 7). and server learning rate 7 only. We set the
¢, -regularization strength to be 10~3. For each setup, we
run the federated algorithms for 300 communication rounds.

We compare the algorithms with two non-federated base-
lines: 1) centralized corresponds to training on the
centralized dataset gathered from all the training clients; 2)
local corresponds to training on the local data from only
one training client without communication. The results are
shown in Fig. 5. In Appendix B.4.2, we provide another
presentation of this experiment to visualize the progress of
federated algorithms and understand the robustness to learn-
ing rate configurations. The results suggest FEDDUALAVG
not only recovers sparse and accurate solutions, but also
behaves most robust to learning-rate configurations. We
defer the rest of the setup details to Appendix B.4.

In Appendix B.5, we provide another set of experiments on
federated constrained optimization for Federated EMNIST
dataset (Caldas et al., 2019).

6. Conclusion

In this paper, we have shown the shortcomings of primal
FL algorithms for FCO and proposed a primal-dual method
(FEDDUALAVG) to tackle them. Our theoretical and empir-
ical analysis provide strong evidence to support the supe-
rior performance of FEDDUALAVG over natural baselines.
Potential future directions include control variates and ac-
celeration based methods for FCO, and applying FCO to
personalized settings.
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