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Abstract

We consider the problem of minimizing the sum
of three functions, one of which is nonconvex
but differentiable, and the other two are convex
but possibly nondifferentiable. We investigate the
Three Operator Splitting method (TOS) of Davis
& Yin (2017) with an aim to extend its theoretical
guarantees for this nonconvex problem template.
In particular, we prove convergence of TOS with
nonasymptotic bounds on its nonstationarity and
infeasibility errors. In contrast with the existing
work on nonconvex TOS, our guarantees do not
require additional smoothness assumptions on the
terms comprising the objective; hence they cover
instances of particular interest where the nondif-
ferentiable terms are indicator functions. We also
extend our results to a stochastic setting where
we have access only to an unbiased estimator of
the gradient. Finally, we illustrate the effective-
ness of the proposed method through numerical
experiments on quadratic assignment problems.

1. Introduction

We study nonconvex optimization problems of the form:

min  ¢(z) = f(z) + g(x) + h(z), (1)

ERSIING

where f : R™ — R is continuously differentiable and poten-
tially nonconvex, whereas g and h : R™ — R U {+o0} are
proper lower-semicontinuous convex functions (potentially
nonsmooth). Further, we assume that the domain of g, that
is, dom(g) = {z € R" : g(z) < +00}, is bounded.

Template (1) enjoys a rich number of applications in op-
timization, machine learning, and statistics. Nonconvex
losses arise naturally in several maximum likelihood estima-
tion (McLachlan & Krishnan, 1996) and M-estimation prob-
lems (Ollila & Tyler, 2014; Maronna et al., 2019), in prob-
lems with a matrix factorization structure (Zass & Shashua,
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2007), in certain transport and assignment problems (Koop-
mans & Beckmann, 1957; Peyré et al., 2019), among count-
less others. The nonsmooth terms in (1) can be used as
regularizers, e.g., to promote joint behavior such as sparsity
and low-rank (Richard et al., 2012). Moreover, we can also
split a complex regularizer into simpler terms for computa-
tional advantages, e.g., in group lasso with overlaps (Jacob
et al., 2009), structured sparsity (El Halabi & Cevher, 2015),
or total variation (Barbero & Sra, 2018).

We obtain an important special case by choosing the nons-
mooth terms ¢ and A in (1) as indicator functions of closed
and convex sets G and H C R™. In this case, (1) turns into

min  f(z) zre€GNH. (2)

subject to
zER"

We are particularly interested in the setting where G and
‘H are simple in the sense that we can project onto these
sets efficiently, but not so easily onto their intersection.
Some examples include learning with correlation matri-
ces (Higham & Strabi¢, 2016), power assignment in wireless
networks (De Berg et al., 2010), graph transduction (Shiv-
anna et al., 2015), graph matching (Zaslavskiy et al., 2008),
and quadratic assignment (Koopmans & Beckmann, 1957,
Loiola et al., 2007).

An effective way to solve (1) for convex f with Lip-
schitz gradients is the Three Operator Splitting (TOS)
method (Davis & Yin, 2017), whose convergence has been
well-studied (see §1.1). But for nonconvex f, convergence
properties of TOS are less understood (again, see §1.1).
This gap motivates us to develop nonasymptotic conver-
gence guarantees for TOS. Beyond theoretical progress, we
highlight the potential empirical value of TOS by evaluat-
ing it on a challenging nonconvex problem, the quadratic
assignment problem (QAP).

Contributions. We summarize our contributions towards
the convergence analysis of nonconvex TOS below.

> We first discuss how to quantify convergence of TOS to
first-order stationary points for both templates (1) and (2).
Specifically, we propose to measure approximate station-
arity based on a variational inequality. Thereafter, we
prove that the associated non-stationarity error is smaller
than e (in expectation over a random iteration counter)
after T = O(1/€3) iterations (and gradient evaluations).
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> We extend our analysis to stochastic optimization where
we have access only to an unbiased estimate of the gra-
dient V f. In this case, we prove that the error is smaller
than e (in expectation) after 7' = O(1/€?) iterations. The
corresponding algorithm requires drawing O(1/¢€°) i.i.d.
stochastic gradients.

Finally, we evaluate TOS on the quadratic assignment
problem using the well-known QAPLIB benchmark li-
brary (Burkard et al., 1997). Remarkably, TOS performs
significantly better than the theory suggests: we find that
it converges locally linearly. Understanding this behavior
could be a potentially valuable question for future study.

1.1. Related Works

Davis & Yin (2017) introduce TOS for solving the monotone
inclusion of three operators, one of which is co-coercive.
TOS gives us a simple algorithm for (1) when f is smooth
and convex, since the gradient of a smooth convex function
is co-coercive. At each iteration, TOS evaluates the gradient
of f and the proximal operators of g and h once, separately.
TOS extends various previous operator splitting schemes
such as the forward-backward splitting, Douglas-Rachford
splitting, Forward-Douglas-Rachford splitting (Bricefio-
Arias, 2015), and the Generalized Forward-Backward split-
ting (Raguet et al., 2013).

The original algorithm of Davis & Yin (2017) requires
knowledge of the smoothness constant of f; Pedregosa &
Gidel (2018) introduce a variant of TOS with backtracking
line-search that bypasses this restriction. Zong et al. (2018)
analyze convergence of TOS with inexact oracles where
both the gradient and proximity oracles can be noisy.

Existing work on TOS applied to nonconvex problems limits
itself to the setting where at least two terms in (1) have Lip-
schitz continuous gradients. Under this assumption, Liu &
Yin (2019) identify an envelope function for TOS, which per-
mits one to interpret TOS as gradient descent for this enve-
lope under a variable metric. Their envelope generalizes the
well-known Moreau envelope as well as the envelopes for
Douglas-Rachford and Forward-Backward splitting intro-
duced in (Patrinos et al., 2014) and (Themelis et al., 2018).

Bian & Zhang (2020) present convergence theory for TOS
under the same smoothness assumptions. They show that
the sequence generated by TOS with a carefully chosen step-
size converges to a stationary point of (1). They also prove
asymptotic convergence rates under the assumption that the
Kurdyka-Lojasiewicz property holds (see Definition 2.3 in
(Bian & Zhang, 2020)).

Our focus is significantly different from these prior works
on nonconvex TOS. In contrast to the settings of (Liu & Yin,
2019) and (Bian & Zhang, 2020), we do not impose any
assumption on the smoothness of g and h. However, we do

assume that the nonsmooth terms g and h are convex and
the problem domain is bounded.

In particular, our setting includes nonconvex minimization
over the intersection of two simple convex sets, which cov-
ers important applications such as the quadratic assignment
problem and graph matching. Note that these problems are
challenging for TOS even in the convex setting, because
the intermediate estimates of TOS can be infeasible and the
known guarantees on the convergence rate of TOS fail, see
the discussion in Section 3.2 in (Pedregosa & Gidel, 2018).

Finally, Yurtsever et al. (2016), Cevher et al. (2018), Zhao
& Cevher (2018), and Pedregosa et al. (2019) propose and
analyze stochastic variants of TOS and related methods in
the convex setting. We are unaware of any prior work on
nonconvex stochastic TOS.

Notation. Before moving onto the theoretical development,
let us summarize here key notation used throughout the
paper. We use (-, -) to denote the standard Euclidean inner
product associated with the norm || - ||. The distance between
apointz € R™ andaset G C R™ is defined as dist(z, G) :=
infyeg ||z — y||; the projection of = onto G is given by
projg(z) := argminyeg ||z — yl|. We denote the indicator
function of G by g : R™ — {0, 400}, that takes 0 for any
2 € G and +oo otherwise. The proximal operator (or prox-
operator) of a function g : R — R U {400} is defined by
prox,(z) := arg minyegn {g(y) + 1|z — y||*}. Recall that
the prox-operator for the indicator function is the projection,
i.e., prox, () = projg().

2. Basic Setup: Approximate Stationarity

We begin our analysis by setting up the notion of approxi-
mate stationarity that we will use to judge convergence. For
unconstrained minimization of smooth functions, gradient
norm is a widely used standard measure. But the gradient
norm is unsuitable in our case because of the presence of
constraints and nonsmooth terms in the cost.

Related work on operator splitting for nonconvex optimiza-
tion typically considers the norm of a proximal gradient, or
uses some other auxiliary differentiable function that con-
verges to zero as we get closer to a first-order stationary
point. See, for instance, the envelope functions introduced
by Patrinos et al. (2014), Themelis et al. (2018) and Liu
& Yin (2019), or the energy function defined by Bian &
Zhang (2020). However, these functions can characterize
stationary points of (1) only under additional smoothness
assumptions on g and h. They fail to capture important
applications where both g and h are nonsmooth.

In contrast, we consider a simple measure based on the vari-
ational inequality characterization of first-order stationarity.
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Definition 1 (Stationary point). zZ € dom(9) is a first-order
stationary point of (1) if, for all x € dom(¢),

(Vf(2),2 =) +9(2) — g(x) + h(2) — h(z) < 0. (3)

See Lemma 4 in the supplementary material for the technical
details on condition (3).

We consider a perturbation of the bound in (3) to define an
approximately stationary point.

Definition 2 (e-stationary point). We say zZ € dom(¢) is an
e-stationary point of (1) if, for all x € dom(¢),

(Vf(2),2 =) +9(2) — g(x) + h(2) — h(z) < e (4)

This is a natural extension of the notion of suboptimal solu-
tions in terms of function values used in convex optimization.
Similar measures for stationarity appear in the literature for
various problems; see e.g., (He & Yuan, 2015; Nouiehed
et al., 2019; Malitsky, 2019; Song et al., 2020).

TOS is particularly advantageous for (1) when the proximal
operators of g and h are easy to evaluate separately but the
proximal operator of their sum is difficult. For (2), this corre-
sponds to optimization over G N‘H by using only projections
onto the individual sets and not onto their intersection. In
this setting, we can achieve a feasible solution only in an
asymptotic sense. Finding a feasible e-stationary solution is
an unrealistic goal. Thus, for (2), we consider a relaxation of
Definition 2 that permits approximately feasible solutions.

Definition 3 (w-feasible e-stationary point). We say z € G
is an w-feasible e-stationary point of (2) if

dist(z,H) < w, and (5)
(Vf(z),z—z)<e, VregnH. (6)

Remark 1. For simplicity, we measure infeasibility of z
via dist(z, H). This is suitable because the estimates of
TOS remain in G by definition. We can also consider a
slightly stronger notion of approximate feasibility given by
dist(z, G N'H). However, this requires additional regularity
conditions on G and H to avoid pathological examples. See,
for instance, Lemma I in (Hoffmann, 1992) or Definition 2
in (Kundu et al., 2018).

The directional derivative condition (6) is often used in the
analysis of conditional gradient methods, and it is known
as the Frank-Wolfe gap in this literature. See (Jaggi, 2013;
Lacoste-Julien, 2016; Reddi et al., 2016b; Yurtsever et al.,
2019) for some examples.

Approximately feasible solutions are widely considered in
the analysis of primal-dual methods (but usually in the con-
vex setting), see (Yurtsever et al., 2018; Kundu et al., 2018)
and the references therein. Remark that TOS can also be
viewed as a primal-dual method (Pedregosa & Gidel, 2018).

Problem (2) is challenging for TOS because of the infeasi-
bility of the intermediate estimates, even when f is convex.
Davis & Yin (2017) avoid this issue by evaluating the terms
h and (f + g) at two different points, x € H and z € G.

However, (f(z) + g(z)) + h(z) can be equal to the optimal
objective value even when neither z nor z is close to a solu-
tion. We can address this issue by introducing a condition
on the distance between x and z. The following definition
of an a-close and [3-stationary pair of points is crucial for
our analysis.

Definition 4 («-close [-stationary pair). We say that
(z,z) € dom(h) x dom(g) are a-close and [3-stationary
points of (1) if, forall z € dom(¢),

and @)
(Vf(z),2 —x) + g(2) — g(x) + h(Z) — h(z) < B. (8)

Iz -2l < e,

a-close (-stationary points (Z, Z) yield approximate solu-
tions to (1) and (2) under appropriate assumptions.

Observation 1. (i). Let h be Lipschitz continuous on R"
with constant Ly,. Assume that ||V f (z)|| is bounded by G
Sor all x € dom(g). Suppose that the points (T, %) are -
close and B-stationary. Then, Z is an e-stationary point with
e = a(Gy + Ly) + B as per Definition 2.

(ii). Let g and h be indicators of closed convex sets G and ‘H
respectively. Assume that ||V f(2)|| is bounded by G ¢ for all
x € G. Suppose that the points (T,Z) € H X G are a-close
and (-stationary. Then, Z is an a-feasible e-stationary point
with e = oGy + (3 as per Definition 3.
Proof. (i). Since h is Lipschitz, we have
hz) — h(z) = h(z) — h(z) = Lallz —z]. )
And since ||V f(2)|| is bounded, we have
(Vf(2), 2 —x) >(Vf(2),2 —x) = Gfllz— 2. (10)

We get (4) with e = (G + Ly,) + 5 by using (9) and (10)
in (8) and bounding ||z — Z|| by (7).
(ii). We get (5) with w = « since
dist(z = inf ||z —z|| < ||z — Z]|. 11
ist(5, ) = inf [l —all < 22l A

h(z)=g(z)=h(z)=g(z)=0since z € H, z € G, and
x € GNH. Then, (6) follows from (8) by using (10). O

We are now ready to present and analyze the algorithm.

3. TOS with a Nonconvex Loss Function

This section establishes convergence guarantees of TOS for
solving Problems (1) and (2). The method is detailed in
Algorithm 1.
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Algorithm 1 Three Operator Splitting (TOS)

Input: Initial point 3y; € R™, step-size sequence {7y }Z_;
fort=1,2,...,Tdo
2t = PTOXA,,,g(yt)
xy = proxX,,, (22t — yr — 1V f(2t))
Yi+1 = Yt — 2t + Xy
end for
Return: Draw 7 uniformly at random from {1,2,...,T}
and output z,.

Theorem 1. Consider Problem (1) under the following as-
sumptions:
(i) The domain of g has finite diameter D,

[ =yl < Dy, Va,y € dom(g).
(ii) g is L4-Lipschitz continuous on its domain,
9(x) = 9(y) < Lgllz —yll, Vz,y € dom(g).

(iil) The gradient of f is bounded by Gy on the domain of g,

IVi(@)] <Gy, Vo € dom(g).
(iv) h is Ly-Lipschitz continuous on R",
h(z) = h(y) < Lullz -yl

Choose y, € dom(g). Then, z, returned by TOS (Algo-
rithm 1) after T' iterations with the fixed step-size v, = v =
D

Ve, y € R™.

) .
NG I, LT satisfies

E [(Vf(zr),2r — 2) + 9(2r) — g(z) + h(z:) — h()]
< 4Dg(Gf + Lg + Lh)
> T1/3 )

Vo € dom(g). (12)

Proof sketch. We start by writing the optimality conditions
for the proximal steps on z; and z;. Through algebraic
modifications, we show that, for all 2 € dom(¢),

(Vf(zt), 20 —x) + 9(2) — g(z) + h(2:) — h(z)

1 13
< o (o = ol = o = ol = oo = 2?).
We take the average of this inequality overt = 1,2,...7.
The inverted terms with y, and y,; cancel out since the
step-size is fixed. As a result, we know that (x,, z, ) satisfy
(8) with 3 = D2 /(2~T) in expectation.

We also need to show that (z,, z,) satisfy the proximity
condition (7). To this end, we extend (13) as

— (G + Ln)llwe = 2| = (Gy + Lg + Ln) Dy

1
< g (I =P = llgesn = 2l = e = =),

(14)

by using the boundedness of the domain (i), boundedness of
the gradient norm (iii), and Lipschitz continuity of g and h
(ii, iv). Again, we take the average over ¢ and eliminate the
inverted terms. This leads to a second order inequality of
E.[||zr — 2-||]- By solving this inequality, we get an upper
bound on E [||z; — x||] in terms of the problem constants
Gy, Lg, Ly, Dy, total number of iterations 7', and step-size
~. By choosing v carefully, we ensure that (z,,z,) are
close and approximately stationary as per Definition 4. We
complete the proof by using Observation 1 (i). O

Our proof is a nontrivial extension of the convergence guar-
antees of TOS to the nonconvex problems. The prior analy-
sis for the convex setting is based on a fixed point charac-
terization of TOS and on Fejér monotonicity of ||y: — yx||,
where y, denotes the fixed point of TOS, see Proposition 2.1
in (Davis & Yin, 2017). Unfortunately. this desirable fea-
ture is lost when we drop the convexity of f. Our approach
of proving proximity between x . and 2, via second-order
inequality (14) is nonstandard.

Remark 2. We highlight several points about Theorem 1:
1. When Dy, Gy, Ly, or Ly, is not known, one can use vy, =
% for any ~vg > 0. The convergence rate in (12) still
holds but with different constants. We chose the specific
step-size in Theorem 1 in order to simplify the bounds.

2. Assumption (iii) holds automatically if f is smooth since
dom(g) is bounded.

3. We can relax assumption (iv) as follows: h is Ly-Lipschitz
continuous on dom(h), and dom(h) 2 dom(g).

4. We can slightly tighten the constants in (12). We defer the
details to the supplementary material.

5. Our guarantees hold in expectation for the estimation at
a randomly drawn iteration. This is a common technique
in the nonconvex analysis. For example, see (Reddi et al.,
2016b;a; Yurtsever et al., 2019) and the references therein.

Corollary 1. Consider Problem (1) under the following
assumptions:

(1) g is the indicator function of a convex closed bounded set
G C R" with a finite diameter Dg = sup, g ||z — y|-
(i) Vf is bounded on G, i.e., |V f(z)|| < Gy, Vz € G.

(iii) h is Ly-Lipschitz continuous on R".

Choose y1 € G. Then, z, returned by TOS after T iterations

with the fixed step-size vy = Mﬁ satisfies

E-[(Vf(zr), zr—x) + h(zr) — h(z)]

4Dg(Gf + Lh) (15)
< — s Vz € g.

Proof. Corollary 1 follows from Theorem 1 with dom(g) =
dom(¢) = G. Assumptions (i) and (ii) in Theorem 1 hold
with Dy = Dg and Ly, = 0. We have g(2,) = g(z) =0
because z, and x belong to G. O
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Remark 3. The e-approximate solution (in expectation)
that we consider in (12) and (15) reminds the Frank-Wolfe
gap (in expectation) used in (Reddi et al., 2016b; Yurt-
sever et al., 2019). When h is missing and g is the indi-
cator function, the Frank-Wolfe gap quantifies the error by
E, [maxxeg (Vf(zr),2r — x)] (15) holds for all x € G
so we can take the maximum over x and get the bound on
maxgeg E-[(Vf(27), 2r — ) + h(2,) — h(z)]. Note that
maxzeg Er[-] < Er[max,eg(-)]. We leave the question
whether similar guarantees hold for E.[max,cg( - )] open.

Theorem 1 does not apply to Problem (2) because indicator
functions fail Lipschitz continuity assumption (iv) in Theo-
rem 1. The next theorem establishes convergence guarantees
of TOS for Problem (2).

Theorem 2. Consider Problem (2) under the following as-
sumptions:

(1) G € R" is a bounded closed convex set with a finite
diameter Dg := sup,, ,c¢ ||z — .

(i) Vf is bounded on G, i.e., |V f(z)|| < Gy, Vz € G.

(iii) H C R"™ is a closed convex set.

Then, z, returned by TOS (Algorithm 1) after T iterations
with the fixed step-size vy = mfﬁ satisfies

E,[dist(z,,H)] < ;?/i (16)
B (Vf(zr) e —2)) < 109 wpegn.

T1/3 7

Proof sketch. The analysis is similar to the proof of Theo-
rem 1. We use Observation 1 (ii) once we show that (x, 2, )
are close and approximately stationary. O

3.1. Extensions for More Than Three Functions

Consider the extension of Problem (1) with an arbitrary
number of nonsmooth terms (equivalently, an extension of
Problem (2) with an arbitrary number of constraints):
i (). 17
min f(w)+;g(x) (17)
One can solve this problem with TOS via a product-space
formulation (see Section 6.1 in (Bricefio-Arias, 2015)). We
introduce slack variables z(®), 2 .. z(™) ¢ R™ and
reformulate Problem (17) as
i (0) (o (9)
min x + i
s, SO+ a6 ) "

m)

subj. to 2 =20 = | =gl

Problem (18) is an instance of Problem (1) in RtV We
can use TOS for solving this problem. Algorithm 2 in the
supplementary material describes the algorithm steps.

4. Stochastic Nonconvex TOS

In this section, the differentiable term is the expecta}ion of
a function of a random variable, ie., f(z) = E¢f(z,),
where ¢ is a random variable with distribution P:

min - §(z) = Eef(,€) +9(x) + hz).  (19)
This template covers a large number of applications in ma-
chine learning and statistics, including the finite-sum formu-
lations that arise in M-estimation and empirical risk mini-

mization problems.

In this setting, we replace V f(2;) in Algorithm 1 with the
following estimator:

1 -
Ut = m 562Qt Vf(zt,ﬁ),

(20)

where Q; is a set of |Q4| i.i.d. samples from distribution P.

Theorem 3. Consider Problem (19). Instate the assump-
tions of Theorem 1. Further, assume that the following
conditions hold:

v) Vf(a:, &) is an unbiased estimator of V f (x),
Ee[V f(z,€)] = Vf(z), VeR"
(vi) V f(z, &) has bounded variance: For some 0 < 400,
Ee[|Vf(z,6) = Vf(@)|*] < 0® VaoeR™

Consider TOS (Algorithm 1) with the stochastic gradient
estimator (20) instead of V f(2;). Choose the algorithm
parameters

D, d
= an
e Q(Gf + L, +Lh)T2/3

T2/3
@l = [Q(Gf +L,+ Lh)J'

Then, z. returned by the algorithm after T iterations satis-

fies, Va € dom(¢),
E-E[(Vf(2t), 2 — x) + 9(2¢) — g(x) + h(zt) — h(z)]

Vi+202 442+ 52
T1/2 T1/3 :

< Dy(Gy + Ly —I—Lh)(

Similar to Corollary 1, we can specify guarantees for the
case where g is an indicator function and h is Lj,-Lipschitz
continuous. We skip the details.

Next, analogous to Problem (2), we consider the nonconvex
expectation minimization problem over the intersection of
convex sets:

f(@) :=Eef(x,€) subj.to ze€GNH. (1)

min
rER™

The next theorem presents convergence guarantees of TOS
for this problem.
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Theorem 4. Consider Problem (21). Instate the assump-
tions of Theorems 2 and 3. Consider TOS (Algorithm 1) with
the stochastic gradient estimator (20) instead of V f(z).
Choose the algorithm parameters

T2/3
Tt —‘

and |Qi| = | =7
Ee

__Dg
- 2GT?/3

Then, z. returned by the algorithm after T iterations satis-
fies, Vx € GN'H,

. VA+202 2442
E.E[dist(z,, )] < Dg (W*’ T1/3 )’
\/W 4+ﬂ+02
E,E[(Vf(2r), 2. —x)] < Gng( Ti/2 T1/3 >

Corollary 2. Under the assumptions listed in Theorem 3
(resp. Theorem 4), TOS returns an e-stationary point in
expectation as per Definition 2 (resp. e-feasible e-stationary
point as per Definition 3) after T < O(1/¢3) iterations. In
total, this algorithm requires drawing O(1/€%) i.i.d. sam-
ples from distribution P.

Proof. € < O(1/T"/3) implies T <O(1/€?) iteration com-
plexity. At each iteration, we use |Q;| = Q(T2/3) stochas-
tic 7gradients, so the total stochastic gradients complexity is

1=0 Qe = (T +1)|Q:| = QT°®) <O(1/°). O

Reducing the stochastic gradient complexity of TOS (Algo-
rithm 1) via variance reduction techniques (see, for example,
(Roux et al., 2012; Johnson & Zhang, 2013; Defazio et al.,
2014; Nguyen et al., 2017; Fang et al., 2018)) can be a
valuable extension. We leave this for a future study.

5. Numerical Experiments

This section demonstrates the empirical performance of
TOS on the quadratic assignment problem (QAP).

QAP is a challenging formulation in the NP-hard problem
class (Sahni & Gonzalez, 1976). We focus on the relax-and-
round strategy proposed in (Vogelstein et al., 2015). This
strategy requires solving a nonconvex optimization problem
over the Birkhoff polytope (i.e., the set of doubly stochastic
matrices). First, we will summarize the main steps of this
relax-and-round strategy and explain how we can use TOS
in this procedure. Then, we will compare the performance
of TOS against the Frank-Wolfe method (FW) (Frank &
Wolfe, 1956; Jaggi, 2013; Lacoste-Julien, 2016) used in
(Vogelstein et al., 2015).

5.1. Problem Description

Given the cost matrices A and B € R™*", the goal in QAP
is to align these matrices by finding a permutation matrix

that minimizes a quadratic objective:

min trace(AXBTXT)
X eRnxn (22)
subj.to X € {0,1}™*", X1, =X"1, =1,,

where 1,, denotes the n-dimensional vector of ones.

The challenge comes from the combinatorial nature of the
feasible region. (22) is NP-Hard, so Vogelstein et al. (2015)
focus on its continuous relaxation:

min  trace(AXB'X")
XGR"X" (23)
subj.to X €[0,1]", X1, =X "1, = 1,.

(23) is a quadratic optimization problem over the Birkhoff
polytope. Remark that the quadratic objective is nonconvex
in general.

The relax-and-round strategy of (Vogelstein et al., 2015)
involves two main steps:

1. Finding a local optimal solution of (23).

2. Rounding the solution to the closest permutation matrix.

Solving (23). Projecting an arbitrary matrix onto the
Birkhoff polytope is computationally challenging and the
standard algorithms in the constrained nonconvex optimiza-
tion literature are inefficient for (23).

Vogelstein et al. (2015) employ the FW algorithm to over-
come this challenge. FW does not require projections. In-
stead, at each iteration, it requires solving a linear assign-
ment problem (LAP). The arithmetic cost of LAP by using
the Hungarian method or the Jonker-Volgenant algorithm
(Kuhn, 1955; Munkres, 1957; Jonker & Volgenant, 1987) is
O(n?).

In this paper, we suggest TOS for solving (23) instead of
FW. To apply TOS, we can split the Birkhoff polytope in
two different ways.

One, we can consider the intersection of row-stochastic
matrices and column-stochastic matrices:

G={Xe0,1]: X1, =1,}

H={Xec[0,1]”": X1, =1,}. (Split 1)
In this case, the projector onto G (resp., H) requires pro-
jecting each row (resp., column) onto the unit simplex sep-
arately. The arithmetic cost of projecting each row (resp.,
column) is O(n) (Condat, 2016), and we can project multi-
ple rows (resp., columns) in parallel.

Two, we can consider the following scheme studied in (Zass
& Shashua, 2006; Lu et al., 2016; Pedregosa & Gidel, 2018):
g — [0’ 1]n><n

Split 2
H={XecR™:X1,=X"1,=1,}. (Split2)
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In this case, the projection onto G truncates the entries and
the projection onto H has a closed-form solution:

1. 1TX1,
projH<X>:X+(5.r+ g

1 1
. I—fX) L1, —=1,1] X,
n n n

where I denotes the identity matrix. We present a derivation
of this projection operator in the supplementary material.

Rounding. The solution of (23) does not immediately yield
a feasible point for QAP (22). We need a rounding step.

Suppose X, is a solution to (23). A natural strategy is
choosing the closest permutation matrix to X . We can find
this permutation matrix by solving

max (X;, X)
XeRnxn (24)
subj.to X €[0,1]™*", X1, =X"1, =1,.

We present the derivation of this folklore formulation in
the supplementary material. (24) is an instance of LAP.
Hence, it can be solved in O(n?) arithmetic operations via
the Hungarian method or the Jonker-Volgenant algorithm.

5.2. Numerical Results

Implementation details. For FW, we use the exact line-
search (greedy) step-size as in (Vogelstein et al., 2015). For
solving LAP, we employ an efficient implementation of the
Hungarian method (Ciao, 2011).

For TOS (Algorithm 1), we output the last iterate instead
of the random variable z,. We use v, = 1/L |t step-size
(L denotes the smoothness constant of f) instead of the
more conservative step-size that our theory suggests (which
depends on T'). 1/Ly is the standard rule in convex opti-
mization, and in our experience, it works well for nonconvex
problems too.

We start both methods from the same initial point y;. We
construct y; by projecting a random matrix with i.i.d. stan-
dard Gaussian entries onto the Birkhoff polytope via 1000
iterations of the alternating projections method.

Quality of solution. Given a prospective solution X; € G,
we compute the following errors:

dist(X¢, H)
n
| maxx egnu(Vf(Xe), Xe — X)|
max{ f(X;),1}

infeasibility err. = (25)

nonstationarity err. =

Infeasibility error is always 0 for FW. We evaluate these
errors only at iterations ¢ = 1,2,4,8,... to avoid extra
computation.

We evaluate the quality of the rounded solution X, by using

the following formula:

f(Xt) - Lf()zbest)
max{ f(Xpest)s 1}7

where Xbest is the best solution known for (22). Xbest is un-
known in normal practice, but it is available for the QAPLIB
benchmark problems.

(26)

assignment err. =

Observations. Figure 1 compares the empirical perfor-
mance of TOS and FW for solving (23) with chr12a and
esc128 datasets from QAPLIB. In particular, TOS exhibits
locally linear convergence, whereas FW converges with
sublinear rates. We observed qualitatively similar behavior
also with the other datasets in QAPLIB.

Computing the gradient dominates the runtime of TOS. In-
stead, for FW, the bottleneck is solving the LAP subprob-
lems. As a result, TOS is especially advantageous against
FW when A and B are sparse.

Next, we examine the quality of the rounded solutions we
obtain after solving (23) with TOS and FW. We initialize
both methods from the same point and we stop them at the
same level of accuracy, when infeasibility and nonstation-
arity errors drop below 1075 (recall that the infeasibility
error is always O for FW). We round the final estimates to
the closest permutation matrix and evaluate the assignment
error (26). Figure 2 presents the results of this experiment
for the 134 datasets in QAPLIB.

Remarkably, TOS gets a better solution on 83 problems;
TOS and FW perform the same on 16; and FW outperforms
TOS on 35 instances. The largest margin appears on the
chr15b dataset where TOS scores 0.744 lower assignment
error than FW. On the other extreme, the assignment error
of the FW solution is 0.253 lower than TOS on the chr15c
dataset. On average (over datasets), TOS outperforms FW
in assignment error by a margin of 0.046.

Computational environment. Experiments are performed
in MATLAB R2018a on a MacBook Pro Late 2013 with 2.6
GHz Quad-Core Intel Core i7 CPU and 16 GB 1600 MHz
DDR3 memory. The source code is available online'.

Other solvers for QAP. The literature covers numerous
approaches for tackling QAP, including (i) exact solution
methods with branch-and-bound, dynamic programming,
and cutting plane methods, (ii) heuristics and metaheuris-
tics based on local and tabu search, simulated annealing,
genetic algorithms, and neural networks, and (iii) lower
bound approximation methods via spectral bounds, mixed-
integer linear programming, and semidefinite programming
relaxations. An extensive comparison with these methods is
beyond the scope of our paper. We refer to the comprehen-
sive survey of Loiola et al. (2007) for more details.

"https://github.com/alpyurtsever/NonconvexTOS
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Figure 1. Empirical convergence of TOS for two different formulations ((Split 1) and (Split 2)) compared against FW for solving the
relaxed QAP formulation (23). The [top] row corresponds to the results for the chr12a dataset and the [bottom] row for the esc128
dataset (from QAPLIB). In both cases, TOS exhibits locally linear convergence whereas FW converges sublinearly.
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better on 35; and the two methods get the same results on 16 instances.
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6. Conclusions

We establish the convergence guarantees of TOS for min-
imizing the sum of three functions, one differentiable but
potentially nonconvex and two convex but potentially non-
smooth. In contrast with the existing results, our analysis
permits both nonsmooth terms to be indicator functions.
Moreover, we extend our analysis for stochastic problems
where we have access only to an unbiased estimator of the
gradient of the differentiable term.

We present numerical experiments on QAPs. The empirical
performance of the proposed method is promising. In our
experience, the method converges to a stationary point with
locally linear rates.

We conclude our paper with a short list of open questions
and follow-up directions:

(i) We assume that dom(g) is bounded. This assumption is
needed in our analysis since Definition 2 requires (4) to hold
for all  in dom(g). We can potentially drop this assump-
tion by adopting a relaxed notion of stationarity where the
inequality holds only on a feasible neighborhood of z. Such
measures are used in recent works for different problem
models, e.g., see Definition 2.3 in (Nouiehed et al., 2019)
and Definition 1 in (Song et al., 2020).

(ii) We did not explicitly use the smoothness of the differen-
tiable term in our analysis. One can potentially derive tighter
guarantees by using the smoothness or under additional as-
sumptions such as the Kurdyka-t.ojasiewicz property.

(iii) For the stochastic setting, we can improve the stochastic
gradient complexity by using variance reduction techniques.

(iv) Developing an efficient implementation (that benefits
from parallel computation) with an aim to investigate the
full potential of TOS for solving QAP and other nonconvex
problems such as the constrained and regularized neural
networks is an important piece of future work.
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