
A Details of Models
Most of the models we targeted in attacks come from Hugging Face Model
Hub (https://huggingface.co/models). Since no BERT-small model was
available, we imported the corresponding publically-available TensorFlow model.
When a fine-tuned model for an architecture/task combination was not available,
we trained one ourselves using standard parameters using a version of the
run_glue.py script from HuggingFace Transformers library extended to train
models on AG News. Concretely, we fine-tuned the pre-trained model for 3
epochs using an initial learning rate of 2× 10−5 using AdamW with a linear
learning rate scheduler. We used a batch size of 8 for RoBERTa-base and
BART-large and 32 for the rest.

Architecture (params) Pre-trained model Fine-tuned model Accuracy

BERT-small (15M) From TensorFlow Own trained 0.875
BERT-base (110M) bert-base-uncased textattack/bert-base-uncased-SST-2 0.924
RoBERTa-base (125M) roberta-base textattack/roberta-base-SST-2 0.940
ALBERT-base-v2 (11M) albert-base-v2 textattack/albert-base-v2-SST-2 0.925
XLNet-base (110M) xlnet-base-cased textattack/xlnet-base-cased-SST-2 0.944
DistilBERT (66M) distilbert-base-uncased Own trained 0.909
BART-large (406M) facebook/bart-large textattack/facebook-bart-large-SST-2 0.953

Table 1: Details of target models for SST-2 task. Named models were obtained
from Hugging Face Model Hub.

Architecture (params) Pre-trained model Fine-tuned model Accuracy

BERT-small (15M) From TensorFlow Own trained 0.777
BERT-base (110M) bert-base-uncased textattack/bert-base-uncased-SST-2 0.846
RoBERTa-base (125M) roberta-base textattack/roberta-base-MNLI 0.881
ALBERT-base-v2 (11M) albert-base-v2 Own trained 0.849
XLNet-base (110M) xlnet-base-cased textattack/xlnet-base-cased-MNLI 0.871
DistilBERT (66M) distilbert-base-uncased Own trained 0.812
BART-large (406M) facebook/bart-large textattack/facebook-bart-large-MNLI 0.889

Table 2: Details of target models for MNLI task. Named models were obtained
from Hugging Face Model Hub.

Architecture (params) Pre-trained model Fine-tuned model Accuracy

BERT-small (15M) From TensorFlow Own trained 0.939
BERT-base (110M) bert-base-uncased textattack/bert-base-uncased-ag-news 0.955
RoBERTa-base (125M) roberta-base textattack/roberta-base-ag-news 0.948
ALBERT-base-v2 (11M) albert-base-v2 textattack/albert-base-v2-ag-news 0.948
XLNet-base (110M) xlnet-base-cased Own trained 0.951
DistilBERT (66M) distilbert-base-uncased textattack/distilbert-base-uncased-ag-news 0.951
BART-large (406M) facebook/bart-large Own trained 0.952

Table 3: Details of target models for AG News task. Named models were
obtained from Hugging Face Model Hub.
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B Results with BERT-Small
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Figure 1: Effect of number of inputs on extracted model task accuracy and
agreement of extracted model. Baseline accuracy with a random guess is 50%
for SST-2 and 33% for MNLI.
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Figure 2: Effect of learning rate on original model task accuracy, extracted model
task accuracy, and fidelity of extracted model.

C Full Experimental Results Varying Learning
Rate

Effect of learning rate on task accuracy of extracted models, and agreement with
target model on in-distribution (Fig. 3) and random (Fig. 4) queries.
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Figure 3: Extraction with in-distribution queries

Figure 4: Extraction with random queries
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D Full Experimental Results Varying Number of
Queries

D.1 BERT-Base and SST-2
Effect of number of queries on task accuracy of extracted model and agreement
with target model, for in-distribution (Fig. 5) and random (Fig. 6) queries.
Baseline accuracy of random guess: 50%.

Figure 5: Extraction with in-distribution queries
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Figure 6: Extraction with random queries

D.2 BERT-Base and MNLI
Effect of number of queries on task accuracy of extracted model and agreement
with target model, for in-distribution (Fig. 7) and random (Fig. 8) queries.
Baseline accuracy of random guess: 33%.
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Figure 7: Extraction with in-distribution queries

Figure 8: Extraction with random queries
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D.3 BERT-Small and SST-2
Effect of number of queries on task accuracy of extracted model and agreement
with target model, for in-distribution (Fig. 9) and random (Fig. 10) queries.
Baseline accuracy of random guess: 50%.

Figure 9: Extraction with in-distribution queries
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Figure 10: Extraction with random queries

D.4 BERT-Small and MNLI
Effect of number of queries on task accuracy of extracted model and agreement
with target model, for in-distribution (Fig. 11) and random (Fig. 12) queries.
Baseline accuracy of random guess: 33%.
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Figure 11: Extraction with in-distribution queries

Figure 12: Extraction with random queries
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