Exponential Lower Bounds for Batch Reinforcement Learning:
Batch RL can be Exponentially Harder than Online RL

Andrea Zanette !

Abstract

Several practical applications of reinforcement
learning involve an agent learning from past data
without the possibility of further exploration. Of-
ten these applications require us to 1) identify a
near optimal policy or to 2) estimate the value
of a target policy. For both tasks we derive ex-
ponential information-theoretic lower bounds in
discounted infinite horizon MDPs with a linear
function representation for the action value func-
tion even if 1) realizability holds, 2) the batch
algorithm observes the exact reward and transi-
tion functions, and 3) the batch algorithm is given
the best a priori data distribution for the problem
class. Our work introduces a new ‘oracle + batch
algorithm’ framework to prove lower bounds that
hold for every distribution. The work shows an
exponential separation between batch and online
reinforcement learning.

1. Introduction

While the grand goal of reinforcement learning (RL) is to
design fully autonomous agents capable of improving their
performance over time by learning from past mistakes, of-
tentimes a batch approach — which predicts some quantity
of interest using past observations only — is preferable.
For example, past data may be available in large quanti-
ties and should not be disregarded by adopting a purely
online method. In other applications, safety concerns re-
quire that the dataset be collected by a carefully monitored
procedure, involving a human or a safe controller. In addi-
tion, batch algorithms are key tools to build complex online
procedures.

These considerations motivate us to investigate whether
there exists any fundamental limitation to using a batch ap-
proach for RL compared to online learning. Concretely,

"nstitute for Computational and Mathematical Engineering,
Stanford University, Stanford, USA. Correspondence to: Andrea
Zanette <zanette @stanford.edu>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

we consider two classical batch RL problems: 1) the off-
policy evaluation (OPE) problem, where the batch algo-
rithm needs to predict the performance of a rarget policy
and 2) the best policy identification (BPI) problem, where
the batch algorithm needs to identify a near optimal policy.

Linear function approximation As many applications
of RL require very large state and action spaces, the hope
is that by leveraging strong prior knowledge, for example
on the form of the optimal solution, we can learn the critical
features of a Markov decision process (MDP) to solve the
task at hand without probing the full state-action space. For
the OPE problem, we assume that the action-value function
Q™ of the target policy 7 can be written at any state action
pair (s, a) as an inner product ¢(s,a) " 6 between a known
feature extractor ¢ and an unknown parameter 6 that the
learner seeks to identify. For the BPI problem, this repre-
sentation condition applies to the action-value function Q*
of an optimal policy.

Quality of the dataset and assumptions Batch algo-
rithms are limited by the quality and quantity of the avail-
able data: for example, in a tabular MDP, without adequate
coverage of the area of the MDP that the optimal policy
tends to visit, there is little hope that we can identify such
policy or even predict its performance. However, given
enough samples in each state-action pairs, it becomes easy
to identify the optimal policy (Azar et al., 2012) or to eval-
uate the value of another (Yin et al., 2020). In addition,
without any prior knowledge about the problem or infor-
mation about the target policy, a uniform distribution over
the state-action space is a priori optimal.

Very recently, some authors have derived exponential lower
bounds for the off-policy evaluation problem with linear
function approximations (Wang et al., 2020a; Amortila
et al., 2020). They discover that even if a sampling dis-
tribution induces the best-conditioned covariance matrix,
at least exponentially many samples are needed to estimate
the value of a target policy reasonably well. As their hard
instances are tabular MDPs (i.e., with small state-action
spaces), certainly there exists a better batch distribution
for their setting: the OPE problem in tabular MDPs is eas-
ily solvable by using a uniform distribution over the state-

Exponential Lower Bounds for Batch Reinforcement Learning

actions coupled with the policy evaluation algorithm on the
empirical model. Therefore, their works show that the as-
sumption on the condition number of the covariance matrix
is insufficient in batch RL. However, their works leave open
the question of whether the OPE problem with linear value
functions can always be solved by using a better sampling
distribution that generates a dataset of polynomial size (in
the horizon and feature dimension), leading to the follow-
ing, more fundamental question in the context of batch RL
with function approximation:

What can a batch algorithm learn using the best a
priori distribution for the problem class at hand?

In particular, we wonder whether there is any penalty in
using an entirely batch approach in place of an online (and
adaptive) method if a good dataset is provided to the batch
algorithm. To answer this question for both the OPE and
BPI problems in the strongest possible way, we consider
an auxiliary process or oracle that provides the batch algo-
rithm with the best data distribution for the task; together
they form a learning algorithm. However, in contrast to
fully online / adaptive algorithms, the oracle is not allowed
to change its data acquisition strategy while information is
being acquired. As we explain in Appendix A, this frame-
work allows us to derive strong batch RL lower bounds, be-
cause they will hold for every batch distribution. Thanks to
this framework, we can recover the concurrent lower bound
by (Wang et al., 2020a) — which holds for one specific
choice of the sampling distribution — in infinite horizon
RL as a corollary.

Learning process and assumptions We consider oracles
that can decide on a set of strategic policies to gather data.
Alternatively, the oracles can directly specify the state-
actions where they want to observe the rewards and tran-
sitions (for example, with a simulator). In either case, the
oracle selects a sampling strategy and the batch algorithm
later receives a dataset of states, actions, rewards and tran-
sitions. Using the dataset, the batch algorithm makes a pre-
diction, i.e., it estimates the value of a target policy (OPE
problem) or returns a near optimal policy (BPI problem).
We make two other assumptions that favor the learner:

e Realizability, i.e., there is no misspecification.

e FExact feedback: the exact reward and transition func-
tion is observed for each point in the dataset. This is
equivalent to observing infinite data.

1.1. Contributions

With such strong assumptions and the freedom of selecting
any state-action, identifying a near optimal policy or pre-
dicting the value of another should be easy tasks for the

learner. For example, in tabular MDPs the oracle could
prescribe one query in each state-action pair. This way,
the reward and transition functions would become known
everywhere, giving the batch algorithm complete knowl-
edge of the MDP. For linear bandits with feature vectors
spanning R?, we know that d queries along a basis suffice
to identify the full bandit instance. For H horizon MDPs
with linear representations, backward induction with dH
queries and exact feedback precisely identifies the MDP at
hand. In all these cases the oracle can find a good sampling
distribution for the batch learner, and there is little or no
advantage to using an oracle that adapts the query selec-
tion strategy as feedback is received. However, in infinite
horizon problems the situation is quite different; we show
that

1. there exists OPE and BPI problems where any batch
algorithm must receive an exponential ~ (2)*
dataset to return a good answer,

2. if the dataset does not originate from policy rollouts
then the lower bounds hold even if the action-value
function of every policy admits a linear representation,

3. there exist exponentially hard batch BPI problems
(even under the best data distribution) which are easy
to solve with online / adaptive algorithms, showing an
exponential separation between batch and online RL,

4. there exist exponentially hard problems for infinite
horizon batch RL which cannot arise in finite horizon
problems, showing exponential separation between fi-
nite and infinite horizon batch RL.

As a corollary, our work recovers (Wang et al., 2020a)’s
lower bound in infinite horizon RL and also shows that
the classical globally optimal experimental design yields
provably bad distributions for infinite horizon RL, making
learning impossible even in the limit of infinite data; we
discuss this in Appendix A.

We make the following fechnical contributions:

1. we introduce a new ‘oracle + batch algorithm’ frame-
work to derive lower bounds for every a priori dis-
tribution; this automatically yields fixed distribution
lower bounds (e.g., (Wang et al., 2020a)) as a special
case,

2. we help formalize the hardness induced by the deadly
triad (Sutton & Barto, 2018), i.e., the combination
of off-policy learning, bootstrapping and function ap-
proximation; in particular, we explain that the boot-
strapping problem is fundamentally different and po-
tentially more severe than the extrapolation problem,

Exponential Lower Bounds for Batch Reinforcement Learning

3. we present new classes of hard MDPs where critical
MDP information is ‘deferred — through bootstrap-
ping — and hidden in an unknown and exponentially
small region in feature space, too small to be covered
by a batch dataset but easy to locate using an online
algorithm.

1.2. Literature

Polynomial lower bounds are often derived to certify that
a certain algorithm is sample efficient (Jiang & Li, 2016;
Duan & Wang, 2020; Hao et al., 2020); in this work
we are interested in exponential lower bounds. Diver-
gence of dynamic programing algorithms with function
approximation is well known (Baird, 1995; Tsitsiklis &
Van Roy, 1996) and has prompted researchers to look for
information-theoretic lower bounds for generic predictors
(Chen & Jiang, 2019) and in presence of misspecifica-
tion (Du et al., 2019). Concurrently, Weisz et al. (2020);
Wang et al. (2020a) also show information-theoretic lower
bounds highlighting the danger of extrapolation; for addi-
tional literature, please see app. B.

2. Preliminaries

Discounted infinite horizon MDPs (Puterman, 1994) are
defined by a tuple M = (S, A,p,r,7), where S is the
state space, A is the action space in state s € S and
A = Uges{As} is the set of all state-dependent action
spaces. We assume that for each state s € S and ac-
tion a € A, there exists a measure p(- | s,a) represent-
ing the transition dynamics and a scalar reward function
r(s,a) € [—1,1]. The discount factor ~y is assumed to
be in (0,1). We consider the discounted return of any
policy to be € [—1,+1] (without loss of generality upon
rescaling the reward function). A deterministic policy 7
maps every state s € S to an action a € As;. The
value function of policy 7 in state s € S is defined as
VT(s) = YooV By, onzoms (e, m(2¢)); the limit al-
ways exists and it is finite under our assumptions as long
as the expectation is well defined. The action-value func-
tion Q™ of policy 7 in (s,a) also exists and is defined
as Q7 (s,a) = r(s,a) + Yo V' Egy ol (s,0) T (@0, T(¢)).
An optimal policy 7*, when it exists, is defined in every
state as 7*(s) = argmax, V™ (s) and the corresponding
value function and action-value function are denoted with
V* = V7™ and Q* = Q™ . We sometime add the subscript
M to indicate that a certain quantity depends on the MDP
M under consideration (e.g., we write V). The Euclidean
ball in R? is defined as B = {x € R? | |lz||2 < 1}. The
Bellman optimality operator T and the Bellman evaluation

operator T™ are mappings between action value functions:

(TQ)(Sa CL) = T(Sa a) + VES’Np(s,a) ,Seu-ﬁ) Q(Slv a,)

s/

(TWQ) (S’ a) = T(Sa CL) + ’Y]Es’wp(s,a) Q(3/7 ﬂ-(sl))'

3. Batch Reinforcement Learning

We first formally define the two learning problems, namely
the task of returning a near optimal policy, also known as
best policy identification (BPI) problem, and the task of
predicting the value of a rarget policy, also known as off-
policy evaluation (OPE) problem. Then, in the next four
sub-sections we describe the learning process in more de-
tail. The lower bounds that we later derive will hold for all
algorithms of the form described in this section.

A BPI problem (s*,{M € My}) is defined by a starting
state s* and a class M of MDPs sharing the same state
space, action space and discount factor. An OPE problem
(s*,{(M,mp) | M € M}) additionally requires us to
identify one or more target policies 7y, for each M € M.

Depending on the problem, the oracle selects a sampling
strategy such that for every problem instance (s*, M, wyr)
(of an OPE problem) or (s*, M) (of a BPI problem) the
batch algorithm experiences a dataset D from M and uses it
to return an accurate estimate (p of the action-value func-
tion of 7 at s* (for the OPE problem) or a near optimal
policy 77, on M from s* (for the BPI problem).

Protocol 1 BaTcH RL WITH A STRATEGIC ORACLE

1: (Input) Oracle receives a batch problem and budget n
2: (Query Selection) Oracle chooses p (def. 1) or T" (def. 2).
3: (Data Collection) Batch algorithm receives the dataset D

4: (Output) Batch algorithm returns @D or T

3.1. Step I: Input

The oracle receives either an OPE or a BPI problem to-
gether with a query budget n € N. The oracle has access to
each instance of the problem it is given, and in particular it
knows the state and action spaces S, A, the discount factor
v, and the full set of transition functions and reward func-
tions for each MDP M € M, but it does not know which
of these MDPs in M it will interact with or what the target
policy will be. In addition, the oracle has full knowledge of
the batch algorithm.

3.2. Step II: Query Selection

The purpose of the oracle is to help the batch algorithm by
providing it with the best dataset for the specific problem at
hand. To capture different mechanisms of data acquisition,
we consider two methods to specify the query set, i.e., the
set of state-action pairs where the oracle wants the batch

Exponential Lower Bounds for Batch Reinforcement Learning

algorithm to observe the rewards and the transitions. In the
first mechanism the oracle directly selects the state-actions;
we place no restriction on the mechanism to obtain these
queries as long as the sampling distribution is fixed for all
MDPs in the class.

Definition 1 (Policy-Free Queries). A set u of state-action
pairs is said to be policy-free for an OPE or BPI problem if
w does not depend on the specific MDP instance M € M.

Since the batch algorithm observes the exact reward and
transition function at the selected query points, the num-
ber of policy-free queries is the size of the support of the
distribution (.

The second mechanism to collect data is by selecting de-
terministic! policies. The policies will generate random
trajectories that the batch algorithm later observes. Since
we are interested in what the agent can learn in the limit
of infinite data (i.e., under exact feedback) we let the batch
algorithm observe all possible realizations of such trajec-
tories. With this aim, we define the state-action space
reachable in c or less timesteps from sy using policy 7 as
Reach(sg,m,c) =

{(s,a) | Tt <c, s.t. P((s¢,at) = (s,a) | m,50) > 0}

where (s, a;) is the random state-action encountered at
timestep ¢ upon following 7 from so. We let the oracle se-
lect the best combination of trajectory lengths and number
of distinct policies.

Definition 2 (Policy-Induced Queries). Consider an OPE
or BPI problem and fix a set T = {(so;,7i,¢i) iy of
triplets, each containing a starting state So;, a deterministic
policy m; and a trajectory length c; such that Z';:l ¢ < n.
Then the query set | induced by T is defined as

def

o= U Reach(sg, T, ¢).

(so,m,c)ET

The condition) ;. ¢; < n attempts to make the amount
of information acquired using policy-free queries compara-
ble to the policy-induced query method, although the latter
generates || > n if the dynamics are stochastic. In other
words, the batch learner always observes at least n state-
actions if these are induced by policies.

Remark 1. A policy-induced query set is also policy-free
whenever the dynamics of each MDP M € M are the
same.

Remark 2. When prescribing a set T the oracle has knowl-
edge of the induced dataset i for each choice of T (e.g., by
having access to a connectivity graph of the MDP).

I"This is not a restriction: for any given stochastic policy the
agent can sample an action from the distribution of actions in ev-
ery state before deploying the policy.

While a policy-free query set may seem less constrained
than a policy-induced query set, the latter may implicitly
reveal additional information about the dynamics of the
MDP whenever the induced trajectories are all different
across different MDPs.

3.3. Step III: Data Collection

After the oracle has submitted the sampling strategy, the
batch learner receives a dataset D which contains the exact
reward and transition function, r(s, a) and p(s, a), from the
MDP M € M for each (s, a) in the query set .

3.4. Step IV: Output

The batch algorithm is finally required to make a predic-
tion using the acquired dataset D. For the OPE problem,
the batch algorithm also receives the target policy 7y, and
it is required to output an estimator () for the action-value
function of the target policy @7} (s*, -); for the BPI prob-
lem, it must output a near-optimal policy 7}, at s*.

3.5. Evaluation Criterion

The oracle and the batch algorithm together form a learn-
ing algorithm. This framework allows us to derive batch
lower bounds in a strong form as they will hold for any
data distribution. We say that the learning algorithm is
(e,8)-sound for an OPE problem if for every instance
(s*, M,) of the problem the returned estimator @D is
accurate w.h.p.:

P (s @5 - Qo)(s*)l <) > 15

a€A «

Similarly, we say that that the learning algorithm is (e, §)-
sound for a BPI problem if for every instance (s*, M) it
holds that the returned policy 77, is near optimal w.h.p.:

3 ((m VIR (s*) < e) >1-4.

As the query set is always non-random and the batch algo-
rithm experiences the exact reward and transition function,
the only randomness lies in the possible randomization in-
ternal to the batch algorithm when it returns an answer.

3.6. Adaptive and Online Algorithms

Consider a policy-free mechanism. We say that a learn-
ing algorithm is adaptive if every time the oracle submits a
state-action it receives the feedback from the environment
and can use it to select the next state-action to query the
MDP.

Likewise, consider a policy-induced mechanism. We say
that a learning algorithm is acting online if every time the

Exponential Lower Bounds for Batch Reinforcement Learning

oracle selects a policy and trajectory length, it can use the
acquired feedback to select the next combination of policy
and trajectory length (its position is reset in every episode).

4. Intuition

The mechanism that induces hardness for infinite horizon
problems must be different than that in finite horizon: the
constructions from Weisz et al. (2020); Wang et al. (2020b)
rely on the extrapolation issue that compounds the errors
multiplicatively. In our case, the reward and transition
functions are observed exactly, so there is no error to ex-
trapolate in the first place. Instead, bootstrapping, i.e., the
fact that the value function in one state depends on the same
value function at successor states (Sutton & Barto, 2018), is
the root cause of hardness; here we provide some intuition.

While each of our theorems need a different construction,
they all build on the intuition presented in this section;
at a high level, bootstrapping can “erase” the information
gained along certain directions in feature space.

Suppose that the oracle is trying to find a good policy-free
query set for the off-policy problem on a class of MDPs
with feature vectors ¢(-, -) anywhere in the unit Euclidean

ball B. Denote with (s1,a1), ..., (Sn,an) the state-actions
chosen by the oracle and with (s, a]),..., (s}, al) the

corresponding successor states and actions®. Intuitively,

choosing a set ¢(s1,a1),...,d(Sn,an) of orthogonal fea-
ture vectors of maximal length seems to be the best the ora-
cle can do because it gives rise to a covariance matrix ® ' ®
(where @ is described below) that is a multiple of the iden-
tity. In Fig. 1 (left) we represent the feature space of an
RL problem where the learner can choose any feature vec-
tor in the Euclidean ball in R2; the agent’s choice of the
feature vectors ¢; = ¢(s;, a;) arise from globally optimal
experimental design (Pukelsheim, 2006). Define

¢(817 611)—r 7"(817 al) ¢(5T, GT)T
P = ,r = , Ot =
O(Sn,an) " r(Sn, an) o(s al)T

After observing the reward and successor states, we can
write down the local (i.e., at the state-actions chosen by
the oracle) Bellman equations. If we leverage the known
functional form of the action-value function, we can write
the following linear system, whose solution (in terms of
6 € R? or action-value function ®6) the batch algorithm
seeks to discover:

) =7+t — (P—7y0N)o=7r. (1)
Unlike machine learning or bandit problems where the
2 Assume deterministic successor states; the actions in the suc-

cessor states are determined by the target policy (OPE problem)
or by an arg max function (BPI problem).

agent directly observes a response from ¢(s;,a;), boot-
strapping the future returns makes the agent observe a re-
sponse (i.e., the reward) corresponding not to ¢(s;, a;) but
to ¢(si,ai) — yo(s;, a;), which we call “effective fea-
ture vector”, see Eq. (1). Unfortunately, ¢(s;, a;") can act
adversarially. As an example, consider Fig. 1 (left) in R?
where the orthogonal feature vectors chosen by the agent
are projected along the vertical direction by bootstrapping:
the net effect is that the agent only learns along one axis.
Mathematically, when this happens the final system of lin-
ear equations in Eq. (1) admits infinitely-many solutions
since ® — y®7 is rank deficient®>. From a reinforcement
learning perspective, the local Bellman equations in Eq. (1)
admit multiple linear value functions as possible solutions.
This happens because the rewards and transitions that the
batch algorithm has received could have originated from
any MDP whose action-value function is a solution to the
local Bellman equations.

Unfortunately, choosing more feature vectors does not eas-
ily solve the problem (Fig. 1 (middle)). To acquire informa-
tion in all directions (i.e., to ensure that ® — v®* in Eq. (1)
is full rank) the oracle must probe the small spherical cap
in Fig. 1 (right). Which spherical cap to probe is unknown
ahead of sampling (as the target policy or the optimal pol-
icy are unknown), and thus the oracle needs to probe all of
them if it wants the batch algorithm to confidently solve the
problem. Using the fact that there are exponentially many
spherical caps in an Euclidean ball in R?, we conclude.

Exponential separation with online learning An online
algorithm can detect that the next-state feature matrix ®+
is acting adversarially. In addition, ® reveals the location
of the spherical cap in Fig. 1 (right). The online algorithm
can then probe the spherical cap to ensure that the linear
system in Eq. (1) is full rank.

5. Exponential Lower Bounds

We define the query complexity to (e,)-soundness of a
problem (OPE or BPI) to be the minimum value for n (as
in Definitions 1 and 2) such that there exists a (¢, §)-sound
learning algorithm for that problem. In particular, the query
complexity depends on the MDP class M and can be dif-
ferent for the OPE and BPI tasks and for the policy-free
and policy-induced query mechanism. Our lower bounds
on the query complexity are significantly stronger than typ-
ical sample complexity lower bounds: they are really lower
bounds on the size of the support of the distribution p
and automatically imply infinite sample complexity lower
bounds since the batch algorithm already observes the ex-

3This follows from the fundamental theorem of linear algebra.
In particular, since the row space of ® — v®* does not span R%,
the nullspace of ® — y®* must have dimension at least 1.

Exponential Lower Bounds for Batch Reinforcement Learning

voi

s
P1 Y P4

Y

J

Figure 1. Left: the orthogonal blue vectors ¢1, ¢2 represent the choice of the algorithm, while gz&i", @3 are the corresponding successor
features. The learner thus acquires information only along the vertical direction. Middle: in the figure R = Range(® " —~(®*)T) and
N = Null(® — y®™). Right: in this case the next-state discounted feature ¢, cannot project ¢; onto the vertical plane because of the

discount factor v < 1.

act reward and transition functions where p is supported.

The lower bounds are expressed in terms of the regularized
incomplete beta function I, (a,b) = B(z,a,b)/B(1,a,b)
where B(z, a,b) is the incomplete beta function for some
positive real numbers a,b and x € [0,1]; for the precise
definitions, please see Appendix D.1. For brevity, define
N(v,d) = Il__l,y2 (451, 1). Corollary 2 ensures N (v,d)
is exponential in the dimension d for d > 5 (here the ~
symbol highlights an approximate dependence without a
formal definition):
1 =N
v))

225(1 —
)d

Unless additional assumptions are made regarding the
MDP class M that defines the OPE and BPI problems, the
query complexity of a reasonably sound learner is exactly
the size of the state and action space (we assume exact feed-
back). One hopes that by restricting the MDP class M,
the query complexity of the OPE and BPI problems can
be brought down to a more manageable level, in particular,
independent of the state-action spaces.

N(y.d) > 2N (7,d) > 7vd (

(

5.1. Realizability Assumptions

1

L=~

~
~

We make one of the following three assumptions (only one
assumption will hold at any given time, depending on the
theorem); two are known as realizability, and the third is
strictly stronger than the first two. The first concerns the
OPE problem; 55 is the unit Euclidean ball.

Assumption 1 (Q7 is Realizable). Given an OPE problem
(s*,{(M,mp), M € M}), there exists a d-dimensional
map ¢(-,+) such that ||$(-,-)||2 < 1 and for any M € M
the action-value function of the target policy wy; satisfies

V(s,a), Q1 (s,a) = ¢(s,a) T O for some Oy € B.

For the BPI problem the representation condition applies to
the action-value function of an optimal policy.

Assumption 2 (Q* is Realizable). Given a BPI problem
(s*,{M € M}), there exists a d-dimensional feature map
@(+,) such that ||¢(-,-)|l2 < 1 and for any M € M there
exists 03, € B such that the optimal action-value function
is linear: ¥(s,a),Q%,(s,a) = ¢(s,a) " 0%;.

A stronger assumption we make is that the action-value
function of every policy has a linear representation.

Assumption 3 (Q™ is Realizable for every Policy). Given
a BPI problem (s*,{M € M?}) or an OPE problem
(s*,{(M,mp), M € M}), there exists a d-dimensional
Sfeature map ¢(-,-) such that ||$(-,-)||l2 < 1 and for any
MDP M € M the value of every policy 7 satisfies
V(s,a), Q% (s,a) = ¢(s,a) 0%, for some 07, € B.

The learners that we consider are aware of these assump-
tions because they can examine each MDP in the class M
they receive (see Section 3.1).

5.2. Off-Policy Evaluation

The first result of this work is contained in the following
lower bound for the OPE problem; since all MDPs in M
share the same dynamics, the oracle has full knowledge of
the actions it needs to take to visit any state-action it de-
sires.

Theorem 1 (OPE Policy-Induced Lower Bound). There
exists an OPE problem (s*,{(M,my), M € M}) satis-
fying Assumption 1 such that its policy-induced query com-
plexity to (1,1/2)-soundness is at least N (v, d).

It is useful to compare the form of the above lower bound
with that of some concurrent results for the off-policy eval-
uation problem: for example, (Wang et al., 2020a; Amortila
et al., 2020) show that there exist a sampling distribution

Exponential Lower Bounds for Batch Reinforcement Learning

(that induces the best-conditioned covariance matrix), a tar-
get policy 7 and an MDP class M, each satisfying certain
properties, such that the best estimator on the most diffi-
cult MDP in M performs poorly if less than exponentially
many samples are used. However, in their case there exists
a better batch distribution of polynomial size that solves the
problem. Our instances are instead much harder, as they
command an exponential dataset even for the best distribu-
tion for the task: since the oracle can prescribe any data
distribution, we can claim that for all distributions of poly-
nomial size we can find an MDP subclass Mv C M and
a target policy such that all MDPs in M generate similar
datasets but the value of the target policy is very different
on these MDPs in /\7, giving lower bounds in a stronger
form.

5.3. Best Policy Identification

As in Theorem 1, in the next lower bound the oracle knows
the set p induced by any choice of T" (see Definition 2).

Theorem 2 (BPI Policy-Induced Lower Bound). There ex-
ists a BPI problem (s*,{M € M}) satisfying Assump-
tion 2 with features in dimension d + 1 such that its policy-
induced query complexity to (1/2,1/2)-soundness is at
least 27N (v, d).

Hard BPI problems for adaptive and online algorithms are
given by Weisz et al. (2020). Clearly, their construction can
be embedded in an infinite horizon MDP, giving a lower
bound under their assumptions. However, our framework
allows the learner to observe the exact reward and transi-
tion function, which is equivalent to having infinite data at
the selected state-actions. In such case, the construction of
Weisz et al. (2020) no longer gives rise to hard instances. In
particular, the BPI problem with our assumptions becomes
straightforward in finite horizon, showing an exponential
separation between finite and infinite horizon batch RL.

5.4. Lower Bounds with Stronger Representation

We wonder what is achievable if the oracle can specify the
queries anywhere in the state-action space without the re-
striction imposed by following policies (i.e., using a policy-
free query set). Under this assumption the situation gets
surprisingly worse, as the lower bounds now hold even if
the action-value function of every policy is linear.

Theorem 3 (Policy-Free Lower Bounds). There exist an
OPE problem (s*,{(M,my), M € M}) and a BPI prob-
lem (s*,{M € M}), which satisfy Assumption 3 and share
the same s* and M, such that their policy-free query com-
plexity to (1,1/2)-soundness is at least N'(~y,d). In addi-
tion, an MDP class M that yields the lower bounds (but
with %, 1/2)-soundness) can be constucted with at most

|A| = 2d actions.

Contrasting Theorem 3 with Theorems 1 and 2 shows that
there is a sharp distinction in what can be achieved depend-
ing on the assumptions on the mechanism that generates the
batch dataset, a distinction which is absent in tabular RL.

6. Exponential Separation with Online
Learning

Theorem 4 (Exponential Separation with Online Learn-
ing). Consider the same BPI problem as in Theorem 2.
There exists an online algorithm that can identify an op-
timal policy with probability one by observing trajectories
of length one with exact feedback from d + 1 distinct poli-
cies from s*.

This result shows exponential separation with online learn-
ing even when the best batch distribution is used. The key
information is hidden in an exponentially small area of the
feature space whose position is a priori unknown. This re-
gion is too small to be covered by a batch dataset. However,
an online algorithm can learn where this information is hid-
den and then probe such region as we show in Section 7.

A similar exponential separation with online learning is
available for the BPI problem in Theorem 3 (see the end
of the proof in the appendix). In addition, assuming ac-
cess to a generative model an even stronger result is readily
available in the literature using the Least-Square Policy It-
eration (LSPI) algorithm (Lagoudakis & Parr, 2003): with
a generative model (Lattimore et al., 2020) show that with
probability at least 1 — ¢, LSPI finds an € optimal policy for
any BPI problem (s*,{M & M}) that satisfies Assump-
tion 3 using at most poly(d, ﬁ, %, In %) samples. How-
ever, LSPI is non-batch as it relies on Monte-Carlo rollouts
at every iteration. Our result thus shows that it is not possi-
ble to start from a batch dataset obtained from a generative
model and run LSPI (or any algorithm) successfully with-
out acquiring further data even if a strong representation
holds.

7. Proof Sketch of Theorem 2 and Theorem 4

We first describe the state and action space which are fixed
across all MDPs in the class M. Then we describe the
instance-dependent reward and transition functions. Fi-
nally we prove the theorems.

At a high level, each MDP contains a two-armed bandit
instance in s* (the starting state). There, the learner has two
choices: 1) take the special action a* that gives a known
return or 2) take any other action in the positive orthant
Bt ={z € B|x; >0,i€ [d]}, see Fig. 2.

Crucially, on BY the reward function is almost everywhere
zero except inside the exponentially small spherical cap

Exponential Lower Bounds for Batch Reinforcement Learning

Cy(w) ={|lzlla <1]| & HwH > ~} (Fig. 2) for some w € B.
Unless the oracle prescribes an action inside C(w), the
batch algorithm only observes a zero reward function and
is unable to distinguish different MDPs using this informa-
tion.

7.1. Setup: State-Action Space and Feature Extractor

State space The state space S = {s*,5, s} consists of

a start state s*, an intermediate state 5 and a terminal state
T

sT.

Action space In the starting state s* the special action
a* is available in addition to any action a € BT. In the
intermediate state S any action in B is available but not a*.
Finally, in the terminal state s’ only 0 € BT is available.
Mathematically A, = Bt u{a*}; As = BT Ay =
{0}.

Feature map The feature map only depends on the ac-
tion:

—

[0,1]
[a,0]

ifa=a*
ifa € BT.

(only available in s

VseS: ¢(s,a)={

7.2. Setup: MDP-specific Rewards and Transitions

Every MDP M € M is identified by a vector w in the outer
portion of the positive orthant 9B+ = {z € BT | ||z|]2 =
1} and by a = sign, and is denoted with M., + or M, _.

Transition function The transition function p,, depends
on the vector w that identifies each MDP in the class, but
not on the sign + or —. Fix the MDP by fixing w € 0B™
(two MDPs correspond to a given choice of w). If the agent
plays the special action a*, which is only available in the
starting state s*, it transitions with probability one to the
terminal state s'. If the agent plays a # a*, the transi-
tion function only depends on the action a (and not on the
current state s) and the successor state is 5 with some prob-
ability, and is otherwise the absorbing state s.

Mathematically, if @ = a* then p,,(s' | (s*,a*)) = 1 and

Figure 2. Action space BT. On M, —
the reward function is zero for any action
a € B+; on M, 4+ it is nonzero only in-

side C (w).

if conversely a € B+:

{pw(E |s,a) =min{(1/y)a w, 1},

=1-—pu,(5]|s,a). @

Pu(st | s,a)
The definition implies that the successor state is always ei-
ther 5 or the terminal state s.

Reward function The reward function r,, 4+ depends on
both the vector w € BT and on the sign + or — that iden-
tifyies the MDP. It is always % if the special action a* is
taken and otherwise it is everywhere 0 on M, _ or is posi-
tive only in the spherical cap on M, ;. Mathematically:

def {% if (s,a) = (s*,a*)

Tw4(s,a) =
w,+(5,a) max{a'w — 7,0} otherwise,

(s*,a*)

on M, 4 :

1 if(s,a) =
0 otherwise.

on My, _: 1y _(s,a) = def { 3)

7.3. Proof Sketch of Theorem 2 (Batch Lower Bound)

The steps for the proof are the following: we show that
1) @Q* is linear 2) policy-induced queries are also policy-
.. Iree for this problem 3) using less than exponentially many
queries ensures that at least one spherical cap C, (w) is not
probed 4) the corresponding MDPs Mg and M — look
the same outside the spherical cap C.,(w) 5) the agent does
not have enough information to distinguish Mg 1 from
Mg .

Realizability By inspection we can verify realizability.

Lemma 1 (Q* is Realizable; Lemma 8 in appendix). For
anyw € OB™ let Q1 and Q7 _ be the optimal QQ* values
on M, + and M, _, respectively. It holds that

:(1),—&-(5’ a) = ¢(Sa a)T[wv %] on Mw,-‘rv
V(s a), { w_(8a) = #(s,a)T[0, 1] onM,, .

Policy-free vs policy-induced queries Notice that al-
though the dynamics are different for different w’s (that
identify the MDP), any set 7' (Definition 2) induces the
same set p of state-actions (possibly with the exception
of (s*,a*) and (s, 0)) regardless of the vector w and the
sign +. We can therefore consider the case that the ora-
cle has chosen a policy-free query set u = {(s;,a;)}", U

{(s%,a%), (s, 0)}.

Existence of exponentially many spherical caps

Lemma 2 (Follows from Lemma 5 in appendix). Assume
that less than 2~N (v, d) actions ai,...,a, on B are
selected. Then there exists a spherical cap C(w) that no
action has probed, i.e., 3w € OB s.t.Vi € [n],a; & C,(W).

In this case, the agent does not have any information origi-
nating from inside the dark gray spherical cap in Fig. 2.

Exponential Lower Bounds for Batch Reinforcement Learning

M., +, M., _ are identical outside of the spherical cap
If n < 279N (v, d), consider w given by the above lemma
and the two associated MDPs Mg and Mg _. Notice that
the transition function (Eq. (2)) is by construction identical
on Mg 4 and Mg _ while the reward function (Eq. (3)) is
zero at any action a ¢ C.,(w) selected by the oracle on both
My 4+, My, —. Then for any (s,a) € {(s;,a;)}; that the
batch algorithm receives it holds that

ro4(s,a) =rg_(s,a) and pg4(s,a) =pz_(s,a).
Batch algorithm does not have enough information
The above equation implies that the transitions and the
rewards in the dataset could have originated from either
Mg 4 or Mg . In s*, the batch algorithm has two choices
to determine the policy 77, to return: choose action ¢* and
get a total return of % or choose an action a # a*. The sec-
ond choice is %-suboptimal on Mg _, while the first is at
least %-suboptimal on Mg . At best, the batch algorithm
can randomize between the two, showing the result.

7.4. Proof Sketch of Theorem 4 (Online Upper Bound)

It remains to exhibit an online algorithm that can solve
every problem instance from this MDP class using d + 1
queries. The algorithm proceeds as follows: 1) it tries to
locate the position of the spherical cap by learning the vec-
tor w and 2) it probes the spherical cap to learn the + sign
of the MDP, precisely identifying the MDP.

Identifying the position w of the spherical cap Con-
sider the following adaptive algorithm that submits policy-
induced queries. The algorithm first plays the actions
vei,...,yeq in s* where e; is the vector of all zeros and 1
in position ¢ (these are d policies that generate trajectories
of length one where ~ye; is the only action).

Upon receiving the transition functions p,, (5 | s*,ve;) =
min{7 (ve;) Tw, 1} = ¢ w forall i € [d] (see Eq. (2)), the
agent can determine each component of the vector w. By
construction, w identifies the spherical cap C, (w).

Identifying the sign + of the MDP Next, the algorithm
plays the state-action (s*, w) to probe the spherical cap and
observe the reward (1 —~ on M, 4 and 0 on M, _) which
identifies the sign of the MDP. Since the MDP is now pre-
cisely identified, the agent can predict the value of any pol-
icy, and in particular, it can return the optimal policy.

8. Discussion

This work presents exponential lower bounds for batch
RL. In general, models are never correct, observations are
noisy, and a batch algorithm needs to return an answer us-
ing whatever dataset is available; clearly the lower bounds

continue to hold in these more general settings as much
as they do when using more general predictors (like neural
networks) which contain the linear setting as a special case.
As these hard instances can only arise in infinite horizon
settings, there is an exponential separation between finite
and infinite horizon batch RL.

The strength of our results arise from the ‘oracle + batch
algorithm’ protocol which allows us to derive lower bounds
for every a priori data distribution; as a special case, we
recover the concurrent lower bound of (Wang et al., 2020a)
for the infinite horizon setting. We highlight that our lower
bounds always imply an infinite sample complexity.

Beyond the exponential lower bounds, an important result
is that online exploration may be required to achieve poly-
nomial sample efficiency on certain RL problems. This
is surprising, because online RL has the additional explo-
ration burden compared to batch RL with a good dataset.

Finally, this work helps formalize some of the dangers of
the deadly triad, which has long been known to cause algo-
rithmic instabilities and divergence of dynamic program-
ming algorithms. In a sense, the bootstrapping problem is
for infinite horizon what the extrapolation problem is for
finite horizon MDPs (and finite-steps algorithms), but un-
like extrapolation, it cannot be mitigated by adding more
samples.

Acknowledgment

The author is grateful to Emma Brunskill, Mykel Kochen-
derfer and Martin Wainwright for providing useful feed-
back. The author also thanks the reviewers for their help-
ful and detailed comments. The work was done while the
author was visiting the Simons Institute for the Theory of
Computing.

References

Agarwal, A., Henaff, M., Kakade, S., and Sun, W. Pc-
pg: Policy cover directed exploration for provable pol-
icy gradient learning. arXiv preprint arXiv:2007.08459,
2020a.

Agarwal, A., Kakade, S., and Yang, L. F. Model-based
reinforcement learning with a generative model is min-
imax optimal. In Conference on Learning Theory, pp.
67-83, 2020b.

Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan,
G. Optimality and approximation with policy gradient
methods in markov decision processes. In Conference
on Learning Theory, pp. 64-66, 2020c.

Amortila, P, Jiang, N., and Xie, T. A variant of the wang-

Exponential Lower Bounds for Batch Reinforcement Learning

foster-kakade lower bound for the discounted setting,
2020.

Antos, A., Szepesvari, C., and Munos, R. Learning
near-optimal policies with bellman-residual minimiza-
tion based fitted policy iteration and a single sample
path. Machine Learning, 71(1):89-129, 2008.

Ayoub, A., Jia, Z., Szepesvari, C., Wang, M., and Yang,
L. F. Model-based reinforcement learning with value-
targeted regression. arXiv preprint arXiv:2006.01107,
2020.

Azar, M., Munos, R., and Kappen, H. J. On the sample
complexity of reinforcement learning with a generative
model. In International Conference on Machine Learn-
ing (ICML), 2012.

Baird, L. Residual algorithms: Reinforcement learning
with function approximation. In International Confer-
ence on Machine Learning (ICML). 1995.

Bradtke, S. J. and Barto, A. G. Linear least-squares algo-
rithms for temporal difference learning. Machine learn-
ing, 22(1-3):33-57, 1996.

Chen, J. and Jiang, N. Information-theoretic considerations
in batch reinforcement learning. In International Confer-
ence on Machine Learning, pp. 1042—-1051, 2019.

Cui, Q. and Yang, L. F. Is plug-in solver sample-efficient
for feature-based reinforcement learning? arXiv preprint
arXiv:2010.05673, 2020.

Du, S. S., Kakade, S. M., Wang, R., and Yang, L. F. Isa
good representation sufficient for sample efficient rein-
forcement learning? arXiv preprint arXiv:1910.03016,
2019.

Du, S. S., Lee, J. D., Mahajan, G., and Wang, R. Agnostic
g-learning with function approximation in deterministic
systems: Tight bounds on approximation error and sam-
ple complexity, 2020.

Duan, Y. and Wang, M. Minimax-optimal off-policy evalu-
ation with linear function approximation. arXiv preprint
arXiv:2002.09516, 2020.

Hao, B., Duan, Y., Lattimore, T., Szepesvari, C., and Wang,
M. Sparse feature selection makes batch reinforcement
learning more sample efficient, 2020.

Jiang, N. and Li, L. Doubly robust off-policy value evalua-
tion for reinforcement learning. In International Confer-
ence on Machine Learning, pp. 652-661. PMLR, 2016.

Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J.,
and Schapire, R. E. Contextual decision processes with
low Bellman rank are PAC-learnable. In Precup, D.

and Teh, Y. W. (eds.), International Conference on Ma-
chine Learning (ICML), volume 70 of Proceedings of
Machine Learning Research, pp. 1704—1713, Interna-
tional Convention Centre, Sydney, Australia, 06—11 Aug
2017. PMLR. URL http://proceedings.mlr.

press/v70/jiangl7c.html.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. Provably
efficient reinforcement learning with linear function ap-
proximation. In Conference on Learning Theory, 2020.

Lagoudakis, M. G. and Parr, R. Least-squares policy it-
eration. Journal of machine learning research, 4(Dec):

1107-1149, 2003.

Lattimore, T. and Szepesvari, C. Bandit Algorithms. Cam-
bridge University Press, 2020.

Lattimore, T., Szepesvari, C., and Weisz, G. Learning with
good feature representations in bandits and in RL with a
generative model. In III, H. D. and Singh, A. (eds.), Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 5662-5670. PMLR, 13-18 Jul
2020. URL http://proceedings.mlr.press/
v11l9/lattimore20a.html.

Lazaric, A., Ghavamzadeh, M., and Munos, R. Finite-
sample analysis of least-squares policy iteration. Jour-
nal of Machine Learning Research, 13(Oct):3041-3074,
2012.

Li, G., Wei, Y., Chi, Y., Gu, Y., and Chen, Y. Break-
ing the sample size barrier in model-based reinforce-
ment learning with a generative model. arXiv preprint
arXiv:2005.12900, 2020.

Li, L., Munos, R., and Szepesvari, C. Toward minimax
off-policy value estimation. 2015.

Li, S. Concise formulas for the area and volume of a hyper-
spherical cap. Asian Journal of Mathematics and Statis-
tics, 4(1):66-70, 2011.

Liu, Q., Li, L., Tang, Z., and Zhou, D. Breaking the curse
of horizon: Infinite-horizon off-policy estimation. In Ad-
vances in Neural Information Processing Systems, pp.
5356-5366, 2018.

Liu, Y., Swaminathan, A., Agarwal, A., and Brunskill,
E. Provably good batch reinforcement learning with-
out great exploration. arXiv preprint arXiv:2007.08202,
2020.

Marjani, A. A. and Proutiere, A. Best policy identification
in discounted mdps: Problem-specific sample complex-
ity. arXiv preprint arXiv:2009.13405, 2020.

Exponential Lower Bounds for Batch Reinforcement Learning

Munos, R. Error bounds for approximate policy iteration.
In ICML, volume 3, pp. 560-567, 2003.

Munos, R. Error bounds for approximate value iteration. In
AAAI Conference on Artificial Intelligence (AAAI), 2005.

Munos, R. and Szepesviri, C. Finite-time bounds for fitted
value iteration. Journal of Machine Learning Research,
9(May):815-857, 2008.

Precup, D. Eligibility traces for off-policy policy evalua-
tion. Computer Science Department Faculty Publication
Series, pp. 80, 2000.

Pukelsheim, F. Optimal design of experiments. SIAM,

2006.

Puterman, M. L. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
Inc., New York, NY, USA, 1994. ISBN 0471619779.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT Press, 2018.

Thomas, P. and Brunskill, E. Data-efficient off-policy pol-
icy evaluation for reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 2139-2148,
2016.

Tsitsiklis, J. N. and Van Roy, B. Feature-based methods for
large scale dynamic programming. Machine Learning,
22(1-3):59-94, 1996.

Wang, R., Foster, D. P., and Kakade, S. M. What are the
statistical limits of offline rl with linear function approx-
imation? arXiv preprint arXiv:2010.11895, 2020a.

Wang, R., Salakhutdinov, R., and Yang, L. F. Provably effi-
cient reinforcement learning with general value function
approximation, 2020b.

Weisz, G., Amortila, P., and Szepesvari, C. Exponen-
tial lower bounds for planning in mdps with linearly-
realizable optimal action-value functions. arXiv preprint
arXiv:2010.01374, 2020.

Wen, Z. and Van Roy, B. Efficient exploration and
value function generalization in deterministic systems.
In Advances in Neural Information Processing Systems
(NIPS), 2013.

Xie, T. and Jiang, N. Q¥* approximation schemes
for batch reinforcement learning: A theoretical com-
parison. volume 124 of Proceedings of Machine
Learning Research, pp. 550-559, Virtual, 03-06 Aug
2020a. PMLR. URL http://proceedings.mlr.
press/v124/xie20a.html.

Xie, T. and Jiang, N. Batch value-function ap-
proximation with only realizability. arXiv preprint
arXiv:2008.04990, 2020b.

Xie, T., Ma, Y., and Wang, Y.-X. Towards optimal
off-policy evaluation for reinforcement learning with
marginalized importance sampling. In Advances in Neu-
ral Information Processing Systems, pp. 9668-9678,
2019.

Yang, L. F. and Wang, M. Reinforcement leaning in fea-
ture space: Matrix bandit, kernels, and regret bound. In
International Conference on Machine Learning (ICML),
2020.

Yin, M., Bai, Y., and Wang, Y.-X. Near optimal provable
uniform convergence in off-policy evaluation for rein-
forcement learning. arXiv preprint arXiv:2007.03760,
2020.

Zanette, A., Brunskill, E., and J. Kochenderfer, M. Al-
most horizon-free structure-aware best policy identifica-
tion with a generative model. In Advances in Neural
Information Processing Systems, 2019a.

Zanette, A., Lazaric, A., J. Kochenderfer, M., and Brun-
skill, E. Limiting extrapolation in linear approximate
value iteration. In Advances in Neural Information Pro-
cessing Systems, 2019b.

Zanette, A., Brandfonbrener, D., Pirotta, M., and Lazaric,
A. Frequentist regret bounds for randomized least-
squares value iteration. In AISTATS, 2020a.

Zanette, A., Lazaric, A., Kochenderfer, M., and Brunskill,
E. Learning near optimal policies with low inherent
bellman error. In International Conference on Machine
Learning (ICML), 2020b.

Zanette, A., Lazaric, A., Kochenderfer, M. J., and Brun-
skill, E. Provably efficient reward-agnostic navigation
with linear value iteration. In Advances in Neural Infor-
mation Processing Systems, 2020c.

Zhou, D., He, J., and Gu, Q. Provably efficient reinforce-
ment learning for discounted mdps with feature map-
ping. arXiv preprint arXiv:2006.13165, 2020.

