
DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning

Daochen Zha 1 Jingru Xie 2 Wenye Ma 2 Sheng Zhang 3 Xiangru Lian 2 Xia Hu 1 Ji Liu 2

Abstract
Games are abstractions of the real world, where
artificial agents learn to compete and cooperate
with other agents. While significant achievements
have been made in various perfect- and imperfect-
information games, DouDizhu (a.k.a. Fighting
the Landlord), a three-player card game, is still
unsolved. DouDizhu is a very challenging do-
main with competition, collaboration, imperfect
information, large state space, and particularly
a massive set of possible actions where the le-
gal actions vary significantly from turn to turn.
Unfortunately, modern reinforcement learning al-
gorithms mainly focus on simple and small action
spaces, and not surprisingly, are shown not to
make satisfactory progress in DouDizhu. In this
work, we propose a conceptually simple yet ef-
fective DouDizhu AI system, namely DouZero,
which enhances traditional Monte-Carlo methods
with deep neural networks, action encoding, and
parallel actors. Starting from scratch in a single
server with four GPUs, DouZero outperformed
all the existing DouDizhu AI programs in days of
training and was ranked the first in the Botzone
leaderboard among 344 AI agents. Through build-
ing DouZero, we show that classic Monte-Carlo
methods can be made to deliver strong results in
a hard domain with a complex action space. The
code and an online demo are released1 with the
hope that this insight could motivate future work.

1. Introduction
Games often serve as benchmarks of AI since they are ab-
stractions of many real-world problems. Significant achieve-
ments have been made in perfect-information games. For

1Department of Computer Science and Engineering, Texas
A&M University 2AI Platform, Kwai Inc. 3Georgia In-
stitute of Technology. Correspondence to: Daochen Zha
<daochen.zha@tamu.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

1https://github.com/kwai/DouZero

example, AlphaGo (Silver et al., 2016), AlphaZero (Sil-
ver et al., 2018) and MuZero (Schrittwieser et al., 2020)
have established state-of-the-art performance on Go game.
Recent research has evolved to more challenging imperfect-
information games, where the agents compete or coop-
erate with others in a partially observable environment.
Encouraging progress has been made from two-player
games, such as simple Leduc Hold’em and limit/no-limit
Texas Hold’em (Zinkevich et al., 2008; Heinrich & Sil-
ver, 2016; Moravčı́k et al., 2017; Brown & Sandholm,
2018), to multi-player games, such as multi-player Texas
hold’em (Brown & Sandholm, 2019b), Starcraft (Vinyals
et al., 2019), DOTA (Berner et al., 2019), Hanabi (Lerer
et al., 2020), Mahjong (Li et al., 2020a), Honor of Kings (Ye
et al., 2020b;a), and No-Press Diplomacy (Gray et al., 2020).

This work aims at building AI programs for DouDizhu2

(a.k.a. Fighting the Landlord), the most popular card game
in China with hundreds of millions of daily active players.
DouDizhu has two interesting properties that pose great
challenges for AI systems. First, the players in DouDizhu
need to both compete and cooperate with others in a par-
tially observable environment with limited communication.
Specifically, two Peasants players will play as a team to
fight against the Landlord player. Popular algorithms for
poker games, such as Counterfactual Regret Minimization
(CFR) (Zinkevich et al., 2008)) and its variants, are often
not sound in this complex three-player setting. Second,
DouDizhu has a large number of information sets with a
very large average size and has a very complex and large
action space of up to 104 possible actions due to combina-
tions of cards (Zha et al., 2019a). Unlike Texas Hold’em,
the actions in DouDizhu can not be easily abstracted, which
makes search computationally expensive and commonly
used reinforcement learning algorithms less effective. Deep
Q-Learning (DQN) (Mnih et al., 2015) is problematic in very
large action space due to overestimating issue (Zahavy et al.,
2018); policy gradient methods, such as A3C (Mnih et al.,
2016), cannot leverage the action features in DouDizhu, and
thus cannot generalize over unseen actions as naturally as
DQN (Dulac-Arnold et al., 2015). Not surprisingly, previous
work shows that DQN and A3C can not make satisfactory
progress in DouDizhu. In (You et al., 2019), DQN and A3C
are shown to have less than 20% winning percentage against

2https://en.wikipedia.org/wiki/Dou_dizhu

https://github.com/kwai/DouZero
https://en.wikipedia.org/wiki/Dou_dizhu

DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning

simple rule-based agents even with twenty days of training;
the DQN in (Zha et al., 2019a) is only slightly better than
random agents that sample legal moves uniformly.

Some previous efforts have been made to build DouDizhu
AI by combining human heuristics with learning and search.
Combination Q-Network (CQN) (You et al., 2019) proposes
to reduce the action space by decoupling the actions into
decomposition selection and final move selection. However,
decomposition relies on human heuristics and is extremely
slow. In practice, CQN can not even beat simple heuristic
rules after twenty days of training. DeltaDou (Jiang et al.,
2019) is the first AI program that reaches human-level per-
formance compared with top human players. It enables an
AlphaZero-like algorithm by using Bayesian methods to
infer hidden information and sampling the other players’
actions based on their own policy networks. To abstract the
action space, DeltaDou pre-trains a kicker network based
on heuristic rules. However, the kicker plays an impor-
tant role in DouDizhu and can not be easily abstracted. A
bad selection of the kicker may directly result in losing a
game since it may break some other card categories, e.g., a
Chain of Solo. Moreover, the Bayesian inference and the
search are computationally expensive. It takes more than
two months to train DeltaDou even when initializing the net-
works with supervised regression to heuristics (Jiang et al.,
2019). Therefore, the existing DouDizhu AI programs are
computationally expensive and could be sub-optimal since
they highly rely on abstractions with human knowledge.

In this work, we present DouZero, a conceptually sim-
ple yet effective AI system for DouDizhu without the ab-
straction of the state/action space or any human knowledge.
DouZero enhances traditional Monte-Carlo methods (Sut-
ton & Barto, 2018) with deep neural networks, action en-
coding, and parallel actors. DouZero has two desirable
properties. First, unlike DQN, it is not susceptible to over-
estimation bias. Second, by encoding the actions into card
matrices, it can naturally generalize over the actions that are
not frequently seen throughout the training process. Both
of these two properties are crucial in dealing with the huge
and complex action space of DouDizhu. Unlike many tree
search algorithms, DouZero is based on sampling, which
allows us to use complex neural architectures and generate
much more data per second, given the same computational
resources. Unlike many prior poker AI studies that rely on
domain-specific abstractions, DouZero does not require
any domain knowledge or knowledge of the underlying dy-
namics. Trained from scratch in a single server with only
48 cores and four 1080Ti GPUs, DouZero outperforms
CQN and the heuristic rules in half a day, beats our internal
supervised agents in two days, and surpasses DeltaDou in
ten days. Extensive evaluations suggest that DouZero is
the strongest DouDizhu AI system up to date.

391 Legal Com binat i ons

...

Figure 1. A hand and its corresponding legal moves.

Through building DouZero system, we demonstrate that
classical Monte-Carlo methods can be made to deliver
strong results in large-scale and complex card games that
need to reason about both competing and cooperation over
huge state and action spaces. We note that some work also
discovers that Monte-Carlo methods can achieve competi-
tive performance (Mania et al., 2018; Zha et al., 2021a) and
help in sparse rewards settings (Guo et al., 2018; Zha et al.,
2021b). Unlike these studies that focus on simple and small
environments, we demonstrate the strong performance of
Monte-Carlo methods on a large-scale card game. With
the hope that this insight could facilitate future research
on tackling multi-agent learning, sparse reward, complex
action spaces, and imperfect information, we have released
our environment and the training code. Unlike many Poker
AI systems that require thousands of CPUs in training, e.g.,
DeepStack (Moravčı́k et al., 2017) and Libratus (Brown &
Sandholm, 2018), DouZero enables a reasonable exper-
imental pipeline, which only requires days of training on
a single GPU server that is affordable for most research
labs. We hope that it could motivate future research in this
domain and serve as a strong baseline.

2. Background of DouDizhu
DouDizhu is a popular three-player card game that is easy
to learn but difficult to master. It has attracted hundreds of
millions of players in China, with many tournaments held
every year. It is a shedding-type game where the player’s
objective is to empty one’s hand of all cards before other
players. Two of the Peasants players play as a team to fight
against the other Landlord player. The Peasants win if either
of the Peasants players is the first to have no cards left. Each
game has a bidding phase, where the players bid for the
Landlord based on the strengths of the hand cards, and a
card-playing phase, where the players play cards in turn.
We provide a detailed introduction in Appendix A.

DouDizhu is still an unsolved benchmark for multi-agent
reinforcement learning (Zha et al., 2019a; Terry et al., 2020).
Two interesting properties make DouDizhu particularly chal-
lenging to solve. First, the Peasants need to cooperate in
fighting against the Landlord. For example, Figure 10 shows
a typical situation where the bottom Peasant can choose to
play a small Solo to help the Peasant on the right-hand side
to win. Second, DouDizhu has a complex and large action

DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning

1

1

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

1

0

0

0

1

0

0

0

Figure 2. Cards for both states and actions are encoded into a 4×15
one-hot matrix, where columns correspond to the 13 ranks and
the jokers, and each row corresponds to the number of cards of a
specific rank or joker. More examples are provided in Appendix B.

space due to the combination of cards. There are 27, 472
possible combinations, where different subsets of these com-
binations will be legal for different hands. Figure 1 shows
an example of the hand, which has 391 legal combinations,
including Solo, Pair, Trio, Bomb, Plane, Quad, etc. The
action space can not be easily abstracted since improperly
playing a card may break other categories and directly result
in losing a game. Thus, building DouDizhu AI is challeng-
ing since the players in DouDizhu need to reason about both
competing and cooperation over a huge action space.

3. Deep Monte-Carlo
In this section, we revisit Monte-Carlo (MC) methods and
introduce Deep Monte-Carlo (DMC), which generalizes
MC with deep neural networks for function approximation.
Then we discuss and compare DMC with policy gradient
methods (e.g., A3C) and DQN, which are shown to fail in
DouDizhu (You et al., 2019; Zha et al., 2019a).

3.1. Monte-Carlo Methods with Deep Neural Networks

Monte-Carlo (MC) methods are traditional reinforcement
learning algorithms based on averaging sample returns (Sut-
ton & Barto, 2018). MC methods are designed for episodic
tasks, where experiences can be divided into episodes and
all the episodes eventually terminate. To optimize a policy
π, every-visit MC can be used to estimate Q-table Q(s, a)
by iteratively executing the following procedure:

1. Generate an episode using π.
2. For each s, a appeared in the episode, calculate and

update Q(s, a) with the return averaged over all the
samples concerning s, a.

3. For each s in the episode, π(s)← argmaxaQ(s, a).

The average return in Step 2 is usually obtained by the dis-
counted cumulative reward. Different from Q-learning that
relies on bootstrapping, MC methods directly approximate

Act ion

Encode

State

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

Encode

Histor i cal Moves

LSTM LSTM LSTM

Encode

h

LSTM

M
L

P

Q

Repeat
6x

Figure 3. The Q-network of DouZero consists of an LSTM to
encode historical moves and six layers of MLP with hidden dimen-
sion of 512. The network predicts a value for a given state-action
pair based on the concatenated representation of action and state.
More details are provided in Appendix C.1.

the target Q-value. In step 1, we can use epsilon-greedy
to balance exploration and exploitation. The above proce-
dure can be naturally combined with deep neural networks,
which leads to Deep Monte-Carlo (DMC). Specifically, we
can replace the Q-table with a neural network and use mean-
square-error (MSE) to update the Q-network in Step 2.

While MC methods are criticized not to be able to deal with
incomplete episodes and believed to be inefficient due to the
high variance (Sutton & Barto, 2018), DMC is very suitable
for DouDizhu. First, DouDizhu is an episodic task so that
we do not need to handle incomplete episodes. Second,
DMC can be easily parallelized to efficiently generate many
samples per second to alleviate the high variance issue.

3.2. Comparison with Policy Gradient Methods

Policy gradients methods, such as REINFORCE (Williams,
1992), A3C (Mnih et al., 2016), PPO (Schulman et al., 2017),
and IMPALA (Espeholt et al., 2018), are very popular for re-
inforcement learning. They target modeling and optimizing
the policy directly with gradient descent. In policy gradient
methods, we often use a classifier-like function approxi-
mator, where the output scales linearly with the number
of actions. While policy gradients methods work well in
large action space, they cannot use the action features to
reason about previously unseen actions (Dulac-Arnold et al.,
2015). In practice, the actions in DouDizhu can be naturally
encoded into card matrices, which are crucial for reason-
ing. For example, if the agent is rewarded by the action
3KKK because it chooses a nice kicker, it could also gener-
alize this knowledge to unseen actions in the future, such
as 3JJJ. This property is crucial in dealing with very large
action spaces and accelerating the learning since many of
the actions are not frequently seen in the simulated data.

DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning

DMC can naturally leverage the action features to generalize
over unseen actions by taking as input the action features.
While it might have high execution complexity if the action
size is large, in most states of DouDizhu, only a subset of
the actions is legal, so that we do not need to iterate over all
the actions. Thus, DMC is overall an efficient algorithm for
DouDizhu. While it is possible to introduce action features
into an actor-critic framework (e.g., by using a Q-network
as the critic), the classifier-like actor will still suffer from
the large action space. Our preliminary experiments confirm
that this strategy is not very effective (see Figure 7).

3.3. Comparison with Deep Q-Learning

The most popular value-based algorithm is Deep Q-
Learning (DQN) (Mnih et al., 2015), which is a bootstrap-
ping method that updates the Q-value based on the Q-values
in the next step. While both DMC and DQN approximate
the Q-values, DMC has several advantages in DouDizhu.

First, the overestimation bias caused by approximating the
maximum action value in DQN is difficult to control when
using function approximation (Thrun & Schwartz, 1993;
Hasselt, 2010) and becomes more pronounced with very
large action space (Zahavy et al., 2018). While some tech-
niques, such as double Q-learning (van Hasselt et al., 2016)
and experience replay (Lin, 1992), might alleviate this issue,
we find in practice that DQN is very unstable and often
diverges in DouDizhu. Whereas, Monte-Carlo estimation
is not susceptible to bias since it directly approximates the
true values without bootstrapping (Sutton & Barto, 2018).

Second, DouDizhu is a task with long horizons and sparse
reward, i.e., the agent will need to go though a long chain of
states without feedback, and the only time a nonzero reward
is incurred is at the end of a game. This may slow down the
convergence of Q-learning because estimating the Q-value
in the current state needs to wait until the value in the next
state gets close to its true value (Szepesvári, 2009; Beleznay
et al., 1999). Unlike DQN, the convergence of Monte-Carlo
estimation is not impacted by the episode length since it
directly approximates the true target values.

Third, it is inconvenient to efficiently implement DQN in
DouDizhu due to the large and variable action space. Specif-
ically, the max operation of DQN in every update step will
cause high computation cost since it requires iterating across
all the legal actions on a very costly deep Q-network. More-
over, the legal moves differ in different states, which makes
it inconvenient to do batch learning. As a result, we find
DQN is too slow in terms of wall-clock time. While Monte-
Carlo methods might suffer from high variance (Sutton &
Barto, 2018), which means it might require more samples to
converge, it can be easily parallelized to generate thousands
of samples per second to alleviate the high variance issue
and accelerate training. We find that the high variance of

DMC is greatly outweighed by the scalability it provides,
and DMC is very efficient in wall-clock time.

4. DouZero System
In this section, we introduce DouZero system by first de-
scribing the state/action representations and neural architec-
ture and then elaborating on how we parallelize DMC with
multiple processes to stabilize and accelerate training.

4.1. Card Representation and Neural Architecture

We encode each card combination with a one-hot 4 × 15
matrix (Figure 2). Since suits are irrelevant in DouDizhu,
we use each row to represent the number of cards of a
specific rank or joker. Figure 3 shows the architecture of the
Q-network. For the state, we extract several card matrices to
represent the hand cards, the union of the other players’ hand
cards and the most recent moves, and some one-hot vectors
to represent the number of cards of the other players and
the number of bombs played so far. Similarly, we use one
card matrix to encode the action. For the neural architecture,
LSTM is used to encode historical moves, and the output is
concatenated with the other state/action features. Finally, we
use six layers of MLP with a hidden size of 512 to produce
Q-values. We provide more details in Appendix C.1.

4.2. Parallel Actors

We denote Landlord as L, the player that moves before the
Landlord as U, and the player that moves after the Landlord
as D. We parallelize DMC with multiple actor processes
and one learner process, summarized in Algorithm 1 and Al-
gorithm 2, respectively. The learner maintains three global
Q-networks for the three positions and updates the networks
with MSE loss to approximate the target values based on
the data provided by the actor processes. Each actor main-
tains three local Q-networks, which are synchronized with
the global networks periodically. The actor will repeat-
edly sample trajectories from the game engine and calculate
cumulative reward for each state-action pair. The commu-
nication of learner and actors are implemented with three
shared buffers. Each buffer is divided into several entries,
where each entry consists of several data instances.

5. Experiments
The experiments are designed to answer the following re-
search questions. RQ1: How does DouZero compare with
existing DouDizhu programs, such as rule-based strategies,
supervised learning, RL-based methods, and MCTS-based
solutions (Section 5.2)? RQ2: How will DouZero perform
if we consider bidding phase (Section 5.3)? RQ3: How effi-
cient is the training of DouZero (Section 5.4)? RQ4: How
does DouZero compare with bootstrapping and actor critic

DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning

Algorithm 1 Actor Process of DouZero

1: Input: Shared buffers BL, BU and BD with B entries
and size S for each entry, exploration hyperparameter ε,
discount factor γ

2: Initialize local Q-networks QL, QU and QD, and local
buffers DL, DU and DD

3: for iteration = 1, 2, ... do
4: SynchronizeQL,QU andQD with the learner process
5: for t = 1, 2, ... T do . Generate an episode
6: Q← one of QL, QU, QD based on position

7: at ←
{
argmaxaQ(st, a) with prob (1− ε)

random action with prob ε
8: Perform at, observe st+1 and reward rt
9: Store {st, at, rt} to DL, DU , or DD accordingly

10: end for
11: for t = T-1, T-2, ... 1 do . Obtain cumulative reward
12: rt ← rt + γrt+1 and update rt in DL, DU , or DD

13: end for
14: for p ∈ {L,U,D} do . Optimized by multi-thread
15: if Dp.length ≥ L then
16: Request and wait for an empty entry in Bp
17: Move {st, at, rt} of size L from Dp to Bp
18: end if
19: end for
20: end for

methods (Section 5.5)? RQ5: Does the learned card playing
strategies of DouZero align with human knowledge (Sec-
tion 5.6)? RQ6: Is DouZero computationally efficient in
inference compared with existing programs (Section 5.7)?
RQ7: Can the two Peasants of DouZero learn to cooperate
with each other (Section 5.8)?

5.1. Experimental Setup

A commonly used measure of strategy strength in poker
games is exploitability (Johanson et al., 2011). However,
in DouDizhu, calculating exploitability itself is intractable
since DouDizhu has huge state/action spaces, and there are
three players. To evaluate the performance, following (Jiang
et al., 2019), we launch tournaments that include the two
opponent sides of Landlord and Peasants. We reduce the
variance by playing each deck twice. Specifically, for two
competing algorithms A and B, they will first play as Land-
lord and Peasants positions, respectively, for a given deck.
Then they switch sides, i.e., A takes Peasants position, and
B takes Landlord position, and play the same deck again.
To simulate the real environment, in Section 5.3, we further
train a bidding network with supervised learning, and the
agents will bid the Landlord in each game based on the
strengths of the hand cards (more details in Appendix C.2).
We consider the following competing algorithms.

Algorithm 2 Learner Process of DouZero

1: Input: Shared buffers BL, BU and BD with B entries
and size S for each entry, batch size M , learning rate ψ

2: Initialize global Q-networks Qg
L, Qg

U and Qg
D

3: for iteration = 1, 2, ... until convergence do
4: for p ∈ {L,U,D} do . Optimized by multi-thread
5: if the number of full entries in Bp ≥M then
6: Sample a batch of {st, at, rt} with M × S in-

stances from Bp and free the entries
7: Update Qg

p with MSE loss and learning rate ψ
8: end if
9: end for

10: end for

• DeltaDou: A strong AI program which uses Bayesian
methods to infer hidden information and searches the
moves with MCTS (Jiang et al., 2019). We use the code
and the pre-trained model provided by the authors. The
model is trained for two months and is shown to have
on par performance with top human players.

• CQN: Combinational Q-Learning (You et al., 2019)
is a program based on card decomposition and Deep
Q-Learning. We use the open-sourced code and the
pre-trained model provided by the authors3.

• SL: A supervised learning baseline. We internally col-
lect 226, 230 human expert matches from the players
of the highest level in league in our DouDizhu game
mobile app. Then we use the same state representation
and neural architecture as DouZero to train super-
vised agents with 49, 990, 075 samples generated from
these data. See Appendix C.2 for more details.

• Rule-Based Programs: We collect some open-
sourced heuristic-based programs, including RHCP4,
an improved version called RHCP-v25, and the rule
model in RLCard package6 (Zha et al., 2019a). In ad-
dition, we consider a Random program that samples
legal moves uniformly.

Metrics. Following (Jiang et al., 2019), given an algorithm
A and an opponent B, we use two metrics to compare the
performance of A and B:

• WP (Winning Percentage): The number of the games
won by A divided by the total number of games.

3https://github.com/qq456cvb/doudizhu-C
4https://blog.csdn.net/sm9sun/article/

details/70787814
5https://github.com/deecamp2019-group20/

RuleBasedModelV2
6https://github.com/datamllab/rlcard

https://github.com/qq456cvb/doudizhu-C
https://blog.csdn.net/sm9sun/article/details/70787814
https://blog.csdn.net/sm9sun/article/details/70787814
https://github.com/deecamp2019-group20/RuleBasedModelV2
https://github.com/deecamp2019-group20/RuleBasedModelV2
https://github.com/datamllab/rlcard

DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning

Table 1. Performance of DouZero against existing DouDizhu programs by playing 10,000 randomly sampled decks. Algorithm A
outperforms B if WP is larger than 0.5 or ADP is larger than 0 (highlighted in boldface). The algorithms are ranked according to the
number of the other algorithms that they beat. The full results of each position are provided in Appendix D.1.

.
Rank

A
B DouZero DeltaDou SL RHCP-v2 RHCP RLCard CQN Random

WP ADP WP ADP WP ADP WP ADP WP ADP WP ADP WP ADP WP ADP

1 DouZero - - 0.586 0.258 0.659 0.700 0.757 1.662 0.764 1.671 0.889 2.288 0.810 1.685 0.989 3.036
2 DeltaDou 0.414 -0.258 - - 0.617 0.653 0.745 1.500 0.747 1.514 0.876 2.459 0.784 1.534 0.992 3.099
3 SL 0.341 -0.700 0.396 -0.653 - - 0.611 0.853 0.632 0.886 0.813 1.821 0.694 1.037 0.976 2.721
4 RHCP-v2 0.243 -1.662 0.257 -1.500 0.389 -0.853 - - 0.515 0.052 0.692 1.121 0.621 0.714 0.967 2.631
5 RHCP 0.236 -1.671 0.253 -1.514 0.369 -0.886 0.485 -0.052 - - 0.682 1.259 0.603 0.248 0.941 2.720
6 RLCard 0.111 -2.288 0.124 -2.459 0.187 -1.821 0.309 -1.121 0.318 -1.259 - - 0.522 0.168 0.943 2.471
7 CQN 0.190 -1.685 0.216 -1.534 0.306 -1.037 0.379 -0.714 0.397 -0.248 0.478 -0.168 - - 0.889 1.912
8 Random 0.011 -3.036 0.008 -3.099 0.024 -2.721 0.033 -2.631 0.059 -2.720 0.057 -2.471 0.111 -1.912 - -

• ADP (Average Difference in Points): The average dif-
ference of points scored per game between A and B.
The base point is 1. Each bomb will double the score.

We find in practice that these two metrics encourage dif-
ferent styles of strategies. For example, if using ADP as
reward, the agent tends to be very cautious about playing
bombs since playing a bomb is risky and may lead to larger
ADP loss. In contrast, with WP as objective, the agent tends
to aggressively play bombs even if it will lose because a
bomb will not affect WP. We observe that the agent trained
with ADP performs slightly better than the agent trained
with WP in terms of ADP and vice versa. In what follows,
we train and report the results of two DouZero agents with
ADP and WP as objectives, respectively7. More discussions
of the two objectives are provided in Appendix D.2.

We first launch a preliminary tournament by letting each pair
of the algorithms play 10,000 decks. We then compute the
Elo rating score for the top 3 algorithms for a more reliable
comparison, i.e., DouZero, DeltaDou, and SL, by playing
100,000 decks. An algorithm wins a deck if it achieves
higher WP or ADP summed over the two games played on
this deck. We repeat this process five times with different
randomly sampled decks and report the mean and standard
deviation of the Elo scores. For the evaluation with the
bidding phase, each deck is played six times with different
perturbations of DouZero, DeltaDou, and SL in different
positions. We report the result with 100,000 decks.

Implementation Details. We run all the experiments on a
single server with 48 processors of Intel(R) Xeon(R) Silver
4214R CPU @ 2.40GHz and four 1080 Ti GPUs. We use
45 actors, which are allocated across three GPUs. We run a
learner in the remaining GPU to train the Q-networks. Our
implementation is based on TorchBeast framework (Küttler
et al., 2019). The detailed training curves are provided in

7For WP, we give a +1 or -1 reward to the final timestep based
on whether the agent wins or loses a game. For ADP, we directly
use ADP as the rewards. DeltaDou and CQN were trained with
ADP and WP as objectives, respectively.

WP ADP
800

900

1000

1100

1200

El
o
ra
tin

g
sc
or
e

DouZero

DeltaDou

SL

0% 20% 40% 60% 80% 100%
0

250

500

750

1000

1250

1500

El
o
ra
tin

g
sc
or
e

DouZero
(1625.11)

Figure 4. Left: Elo rating scores of DouZero, DeltaDou, and SL
by playing 100,000 randomly sampled decks. We report the mean
and standard deviation across 5 different random seeds. Right: Elo
rating scores on Botzone, an online platform for DouDizhu com-
petition. DouZero ranked the first among the 344 bots, achieving
an Elo rating score of 1625.11 as of October 30, 2020.

Appendix D.5. Each shared buffer has B = 50 entries with
size S = 100, batch size M = 32, and ε = 0.01. We
set discount factor γ = 1 since DouDizhu only has a non-
zero reward in the last timestep and early moves are very
important. We use ReLU as the activation function for each
layer of MLP. We adopt RMSprop optimizer with a learning
rate ψ = 0.0001, smoothing constant 0.99 and ε = 10−5.
We train DouZero for 30 days.

5.2. Performance against Existing Programs

To answer RQ1, we compare DouZero with the baselines
offline and report its result on Botzone (Zhou et al., 2018),
an online platform for DouDizhu competition (more details
are provided in Appendix E).

Table 1 summarizes the WP and ADP of head-to-head com-
pletions among DouZero and all the baselines. We make
three observationss. First, DouZero dominates all the
rule-based strategies and supervised learning, which demon-
strates the effectiveness of adopting reinforcement learning
in DouDizhu. Second, DouZero achieves significantly bet-
ter performance than CQN. Recall that CQN similarly trains
the Q-networks with action decomposition and DQN. The
superiority of DouZero suggests that DMC is indeed an
effective way to train the Q-networks in DouDizhu. Third,
DouZero outperforms DeltaDou, the strongest DouDizhu

DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning

Per for m ance against basel i nes Winning thr eshold

0 10 20 30
Training Days

0.0

0.2

0.4

0.6

W
P

(a) WP against SL

0 10 20 30
Training Days

−2

−1

0

AD
P

(b) ADP against SL

0 10 20 30
Training Days

0.0

0.1

0.2

0.3

0.4

0.5

0.6

W
P

(c) WP against DeltaDou

0 10 20 30
Training Days

−3

−2

−1

0

AD
P

(d) ADP against DeltaDou

Figure 5. WP and ADP of DouZero against SL and DeltaDou w.r.t. the number of training days. DouZero outperforms SL with 2 days
of training, i.e., the overall WP is larger than the threshold of 0.5 and the overall ADP is larger than the threshold of 0, and surpasses
DeltaDou within 10 days, using a single server with four 1080 Ti GPUs and 48 processors. We provide the full curves for each position
and the curves w.r.t. timesteps in Appendix D.3.

Table 2. Comparison of DouZero, DeltaDou and SL with the
bidding phase by playing 100,000 randomly sampled decks.

DouZero DeltaDou SL

WP 0.580 0.461 0.381
ADP 0.323 -0.004 -0.320

AI in the literature. We note that DouDizhu has very high
variance, i.e., to win a game relies on the strength of the
initial hand card, which is highly dependent on luck. Thus,
a WP of 0.586 and an ADP of 0.258 suggest a signifi-
cant improvement over DeltaDou. Moreover, DeltaDou re-
quires searching at both training and testing time. Whereas,
DouZero does not do the searching, which verifies that the
Q-networks learned by DouZero are very strong.

The left-hand side of Figure 4 shows the Elo rating scores
of DouZero, DeltaDou, and SL by playing 100, 000 decks.
We observe that DouZero outperforms DeltaDou and SL
in terms of both WP and ADP significantly. This again
demonstrates the strong performance of DouZero.

The right-hand side of Figure 4 illustrates the performance
of DouZero on Botzone leaderboard. We note that Botzone
adopts a different scoring mechanism. In addition to WP, it
gives additional bonuses to some specific card categories,
such as Chain of Pair and Rocket (detailed in Appendix E).
While it is very likely that DouZero can achieve better
performance if using the scoring mechanism of Botzone as
the objective, we directly upload the pre-trained model of
DouZero that is trained with WP as objective. We observe
that this model is strong enough to beat the other bots.

5.3. Comparison with Bidding Phase

To investigate RQ2, we train a bidding network with su-
pervised learning using human expert data. We place the
top-3 algorithms, i.e., DouZero, DeltaDou, and SL, into
the three seats of a DouDizhu game. In each game, we ran-
domly choose the first bidder and simulate the bidding phase
with the pre-trained bidding network. The same bidding net-

0 10 20 30 40 50
Training Hours

0.0

0.1

0.2

0.3

0.4

0.5

0.6

W
P

45 Actors

30 Actors

15 Actors

0.0 0.5 1.0
Timesteps 1e9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

W
P

45 Actors

30 Actors

15 Actors

Figure 6. Left: The WP against SL w.r.t. training time using dif-
ferent number of actors Right: The WP against SL w.r.t. timesteps
using different number of actors.

work is used for all three algorithms for a fair comparison.
The results are summarized in Table 2. Although DouZero
is trained on randomly generated decks without the bidding
network, we observe that DouZero dominates the other
two algorithms in both WP and ADP. This demonstrates
the applicability of DouZero in real-world competitions
where the bidding phase needs to be considered.

5.4. Analysis of Learning Progress

To study RQ3, we visualize the learning progress of
DouZero in Figure 5. We use SL and DeltaDou as oppo-
nents to draw the curves of WP and ADP w.r.t. the number
of training days. We make two observations as follows.
First, DouZero outperforms SL in one day and two days of
training in terms of WP and ADP, respectively. We note that
DouZero and SL use the exactly same neural architecture
for training. Thus, we attribute the superiority of DouZero
to self-play reinforcement learning. While SL also performs
well, it relies on a large amount of data, which is not flexible
and could limit its performance. Second, DouZero outper-
forms DeltaDou in three days and ten days of training in
terms of WP and ADP, respectively. We note that DeltaDou
is initialized with supervised learning on heuristics and is
trained for more than two months. Whereas, DouZero
starts from scratch and only needs days of training to beat
DeltaDou. This suggests that model-free reinforcement
learning without search is indeed effective in DouDizhu.

DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning

0 10 20 30 40 50
Training Hours

0.0

0.1

0.2

0.3

0.4

0.5

0.6

W
P

DouZero

SARSA

Actor-Critic

0.0 0.5 1.0
Timesteps 1e9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

W
P

DouZero

SARSA

Actor-Critic

Figure 7. Left: The WP against SL w.r.t. training time for SARSA
and Actor-Critic Right: The WP against SL w.r.t. timesteps for
SARSA and Actor-Critic.

0 5 10 15 20 25
Training Days

0.3

0.4

0.5

Ac
cu

ra
cy

Figure 8. Average accuracy across the three positions on the human
data w.r.t. the number of training days for DouZero. We fit the
data points with a polynomial with four terms for better visualizing
the trend. The accuracy for SL is 84.2%. DouZero aligns with
human expertise in the first five days of training but discovers novel
strategies beyond human knowledge in the later training stages.
The curves for all the three positions are provided in Appendix D.4.

We further analyze the learning speed when using different
numbers of actors. Figure 6 reports the performance against
SL when using 15, 30, and 45 actors. We observe that using
more actors can accelerate the training in wall-clock time.
We also find that all three settings show similar sample
efficiency. In the future, we will explore the possibility of
using more actors across multiple servers to further improve
the training efficiency.

5.5. Comparison with SARSA and Actor-Critic

To answer RQ4, we implement two variants based on
DouZero. First, we replace the DMC objective with the
Temporal-Difference (TD) objective. This leads to a deep
version of SARSA. Second, we implement an Actor-Critic
variant with action features. Specifically, we use Q-network
as a critic with action features and train policy as an actor
with action masks to remove illegal actions.

Figure 7 shows the results of SARSA and Actor-Critic with
a single run. First, we do not observe a clear benefit of
using TD learning. We observe that DMC learns slightly
faster than SARSA in wall-clock time and sample efficiency.
The possible reason is that TD learning will not help much
in the sparse reward setting. We believe more studies are
needed to understand when TD learning will help. Second,
we observe the Actor-Critic fails. This suggests that simply

10−3 10−2 10−1 100

Average Inference Time per Step in Second

DeltaDou
CQN

RHCP-v2
RHCP

DouZero
SL

RLCard
Random

Figure 9. Comparison of inference time.

adding action features to the critic may not be enough to
resolve the complex action space issue. In the future, we will
investigate whether we can effectively incorporate action
features into the actor-critic framework.

5.6. Analysis of DouZero on Expert Data

For RQ5, we calculate the accuracy of DouZero on the
human data throughout the training process. We report the
model trained with ADP as objective since the game app
from which the human data is collected also adopts ADP.
Figure 8 shows the results. We make two interesting obser-
vations as follows. First, at the early stages, i.e., the first five
days of training, the accuracy keeps improving. This sug-
gests that the agents may have learned some strategies that
align with human expertise with purely self-play. Second,
after five days of training, the accuracy decreases dramati-
cally. We note that the ADP against SL is still improving
after five days. This suggests that the agents may have dis-
covered some novel and stronger strategies that humans can
not easily discover, which again verifies the effectiveness of
self-play reinforcement learning.

5.7. Comparison of Inference Time

To answer RQ6, we report the average inference time per
step in Figure 9. For a fair comparison, we evaluate all
the algorithms on the CPU. We observe that DouZero is
orders of magnitude faster than DeltaDou, CQN, RHCP,
and RHCP-v2. This is expected since DeltaDou needs to
perform a large number of Monte Carlo simulations, and
CQN, RHCP, and RHCP-v2 require expensive card decom-
position. Whereas, DouZero only performs one forward
pass of neural networks in each step. The efficient inference
of DouZero enables us to generate a large number of sam-
ples per second for reinforcement learning. It also makes it
affordable to deploy the models in real-world applications.

5.8. Case Study

To investigate RQ7, we conduct case studies to understand
the decisions made by DouZero. We dump the logs of the
competitions from Botzone and visualize the top actions
with their predicted Q-values. We provide most of the case
studies, including both good and bad cases, in Appendix F.

DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning

Top-3 Moves

P
A

S
S

P
A

S
S

L
a

n
d

lo
rd

P
ea

sa
n

t
(D

o
u

Z
er

o
)

Peasant (DouZer o)

0.971 0.808 0.784

Figure 10. A case study dumped from Botzone, where the three
players play cards in counter-clockwise order. The Peasant agent
learns to play small Solo to cooperate with the other Peasant to
win the game. Note that the other players’ hands are showed face
up solely for better visualization but are hidden in the real game.
More case studies are provided in Appendix F.

Figure 10 shows a typical case when the two Peasants can
cooperate to beat the Landlord. The Peasant on the right-
hand side only has one card left. Here, the Peasant at the
bottom can play a small Solo to help the other Peasant
win. When looking into the top three actions predicted by
DouZero, we make two interesting observations. First,
we find that all the top actions outputted by DouZero are
small Solos with high confidence to win, suggesting that the
two Peasants of DouZero may have learned to cooperate.
Second, the predicted Q-value of action 4 (0.808) is much
lower than that of action 3 (0.971). A possible explanation
is that there is still a 4 out there, so that playing 4 may not
necessarily help the Peasant win. In practice, in this specific
case, the other Peasant’s only card is not higher than 4 in
rank. Overall, action 3 is indeed the best move in this case.

6. Related Work
Search for Imperfect-Information Games. Counterfac-
tual Regret Minimization (CFR) (Zinkevich et al., 2008) is a
leading iterative algorithm for poker games, with many vari-
ants (Lanctot et al., 2009; Gibson et al., 2012; Bowling et al.,
2015; Moravčı́k et al., 2017; Brown & Sandholm, 2018;
2019a; Brown et al., 2019; Lanctot et al., 2019; Li et al.,
2020b). However, traversing the game tree of DouDizhu
is computationally intensive since it has a huge tree with a
large branching factor. Moreover, most of the prior studies
focus on zero-sum settings. While some efforts have been
devoted to addressing the cooperative settings, e.g., with
blueprint policy (Lerer et al., 2020), it remains challeng-
ing to reason about both competing and cooperation. Thus,
DouDizhu has not seen an effective CFR-like solution.

RL for Imperfect-Information Games. Recent studies
show that Reinforcement Learning (RL) can achieve com-
petitive performance in poker games (Heinrich et al., 2015;
Heinrich & Silver, 2016; Lanctot et al., 2017). Unlike CFR,

RL is based on sampling so that it can easily generalize
to large-scale games. RL has been successfully applied in
some complex imperfect-information games, such as Star-
craft (Vinyals et al., 2019), DOTA (Berner et al., 2019) and
Mahjong (Li et al., 2020a). More recently, RL+search is
explored and shown to be effective in poker games (Brown
et al., 2020). DeltaDou adopts a similar idea, which first in-
fers the hidden information and then uses MCTS to combine
RL with search in DouDizhu (Jiang et al., 2019). However,
DeltaDou is computationally expensive and heavily relies
on human expertise. In practice, even without search, our
DouZero outperforms DeltaDou in days of training.

7. Conclusions and Future Work
This work presents a strong AI system for DouDizhu. Some
unique properties make DouDizhu particularly challenging
to solve, e.g., huge state/action space and reasoning about
both competing and cooperation. To address these chal-
lenges, we enhance classic Monte-Carlo methods with deep
neural networks, action encoding, and parallel actors. This
leads to a pure RL solution, namely DouZero, which is
conceptually simple yet effective and efficient. Extensive
evaluations demonstrate that DouZero is the strongest AI
program for DouDizhu up to date. We hope the insight that
simple Monte-Carlo methods can lead to strong policies in
such a hard domain will motivate future research.

For future work, we will explore the following directions.
First, we plan to try other neural architectures, such as con-
volutional neural networks and ResNet (He et al., 2016).
Second, we will involve bidding in the loop for reinforce-
ment learning. Third, we will combine DouZero with
search at training and/or test time as in (Brown et al., 2020),
and study how to balance RL and search. Fourth, we will ex-
plore off-policy learning to improve the training efficiency.
Specifically, we will study whether and how we can improve
the wall-clock time and the sample efficiency with experi-
ence replay (Lin, 1992; Zhang & Sutton, 2017; Zha et al.,
2019b; Fedus et al., 2020). Fifth, we will try explicitly mod-
eling collaboration of the Peasants (Panait & Luke, 2005;
Foerster et al., 2016; Raileanu et al., 2018; Lai et al., 2020).
Sixth, we plan to try scalable frameworks, such as SEED
RL (Espeholt et al., 2019). Last but not least, we will test
the applicability of Monte-Carlo methods on other tasks.

Acknowledgements
We thank our colleagues in Kuai Inc. for building the
DouDizhu environment and the helpful discussions, Qiqi
Jiang from DeltaDou team for helping us set up DeltaDou
models, and Songyi Huang8 from RLCard team for devel-
oping demo. We would also like to thank the anonymous
reviewers and the meta-reviewer for the insightful feedback.

8https://github.com/hsywhu

https://github.com/hsywhu

DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning

References
Beleznay, F., Grobler, T., and Szepesvari, C. Compar-

ing value-function estimation algorithms in undiscounted
problems. Technical Report TR-99-02, MindMaker Ltd,
1999.

Berner, C., Brockman, G., Chan, B., Cheung, V., Dkebiak,
P., Dennison, C., Farhi, D., Fischer, Q., Hashme, S.,
Hesse, C., et al. Dota 2 with large scale deep reinforce-
ment learning. arXiv preprint arXiv:1912.06680, 2019.

Bowling, M., Burch, N., Johanson, M., and Tammelin, O.
Heads-up limit hold’em poker is solved. Science, 347
(6218):145–149, 2015.

Brown, N. and Sandholm, T. Superhuman ai for heads-up
no-limit poker: Libratus beats top professionals. Science,
359(6374):418–424, 2018.

Brown, N. and Sandholm, T. Solving imperfect-information
games via discounted regret minimization. In AAAI Con-
ference on Artificial Intelligence, 2019a.

Brown, N. and Sandholm, T. Superhuman ai for multiplayer
poker. Science, 365(6456):885–890, 2019b.

Brown, N., Lerer, A., Gross, S., and Sandholm, T. Deep
counterfactual regret minimization. In International Con-
ference on Machine Learning, 2019.

Brown, N., Bakhtin, A., Lerer, A., and Gong, Q. Combining
deep reinforcement learning and search for imperfect-
information games. arXiv preprint arXiv:2007.13544,
2020.

Dulac-Arnold, G., Evans, R., van Hasselt, H., Sunehag, P.,
Lillicrap, T., Hunt, J., Mann, T., Weber, T., Degris, T., and
Coppin, B. Deep reinforcement learning in large discrete
action spaces. arXiv preprint arXiv:1512.07679, 2015.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,
I., et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In Interna-
tional Conference on Machine Learning, 2018.

Espeholt, L., Marinier, R., Stanczyk, P., Wang, K., and
Michalski, M. Seed rl: Scalable and efficient deep-rl with
accelerated central inference. In International Conference
on Learning Representations, 2019.

Fedus, W., Ramachandran, P., Agarwal, R., Bengio, Y.,
Larochelle, H., Rowland, M., and Dabney, W. Revisit-
ing fundamentals of experience replay. In International
Conference on Machine Learning, 2020.

Foerster, J. N., Assael, Y. M., De Freitas, N., and Whiteson,
S. Learning to communicate with deep multi-agent re-
inforcement learning. arXiv preprint arXiv:1605.06676,
2016.

Gibson, R., Lanctot, M., Burch, N., Szafron, D., and Bowl-
ing, M. Generalized sampling and variance in counterfac-
tual regret minimization. In AAAI Conference on Artificial
Intelligence, 2012.

Gray, J., Lerer, A., Bakhtin, A., and Brown, N. Human-
level performance in no-press diplomacy via equilibrium
search. arXiv preprint arXiv:2010.02923, 2020.

Guo, Y., Oh, J., Singh, S., and Lee, H. Genera-
tive adversarial self-imitation learning. arXiv preprint
arXiv:1812.00950, 2018.

Hasselt, H. V. Double q-learning. In Advances in Neural
Information Processing Systems, 2010.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In IEEE conference on
computer vision and pattern recognition, 2016.

Heinrich, J. and Silver, D. Deep reinforcement learning
from self-play in imperfect-information games. arXiv
preprint arXiv:1603.01121, 2016.

Heinrich, J., Lanctot, M., and Silver, D. Fictitious self-play
in extensive-form games. In International Conference on
Machine Learning, 2015.

Jiang, Q., Li, K., Du, B., Chen, H., and Fang, H. Deltadou:
Expert-level doudizhu ai through self-play. In Interna-
tional Joint Conferences on Artificial Intelligence, 2019.

Johanson, M., Waugh, K., Bowling, M., and Zinkevich, M.
Accelerating best response calculation in large extensive
games. In International Joint Conferences on Artificial
Intelligence, 2011.

Küttler, H., Nardelli, N., Lavril, T., Selvatici, M., Sivakumar,
V., Rocktäschel, T., and Grefenstette, E. Torchbeast:
A pytorch platform for distributed rl. arXiv preprint
arXiv:1910.03552, 2019.

Lai, K.-H., Zha, D., Li, Y., and Hu, X. Dual policy dis-
tillation. In International Joint Conference on Artificial
Intelligence, 2020.

Lanctot, M., Waugh, K., Zinkevich, M., and Bowling, M.
Monte carlo sampling for regret minimization in exten-
sive games. Advances in Neural Information Processing
Systems, 2009.

Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A.,
Tuyls, K., Pérolat, J., Silver, D., and Graepel, T. A uni-
fied game-theoretic approach to multiagent reinforcement

DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning

learning. In Advances in neural information processing
systems, 2017.

Lanctot, M., Lockhart, E., Lespiau, J.-B., Zambaldi, V.,
Upadhyay, S., Pérolat, J., Srinivasan, S., Timbers, F.,
Tuyls, K., Omidshafiei, S., et al. Openspiel: A frame-
work for reinforcement learning in games. arXiv preprint
arXiv:1908.09453, 2019.

Lerer, A., Hu, H., Foerster, J. N., and Brown, N. Improving
policies via search in cooperative partially observable
games. In AAAI Conference on Artificial Intelligence,
2020.

Li, J., Koyamada, S., Ye, Q., Liu, G., Wang, C., Yang, R.,
Zhao, L., Qin, T., Liu, T.-Y., and Hon, H.-W. Suphx:
Mastering mahjong with deep reinforcement learning.
arXiv preprint arXiv:2003.13590, 2020a.

Li, K., Xu, H., Zhang, M., Zhao, E., Wu, Z., Xing, J., and
Huang, K. Openholdem: An open toolkit for large-scale
imperfect-information game research. arXiv preprint
arXiv:2012.06168, 2020b.

Lin, L.-J. Self-improving reactive agents based on reinforce-
ment learning, planning and teaching. Machine Learning,
8(3-4):293–321, 1992.

Mania, H., Guy, A., and Recht, B. Simple random search
provides a competitive approach to reinforcement learn-
ing. arXiv preprint arXiv:1803.07055, 2018.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International Conference on Machine Learning, 2016.

Moravčı́k, M., Schmid, M., Burch, N., Lisỳ, V., Morrill, D.,
Bard, N., Davis, T., Waugh, K., Johanson, M., and Bowl-
ing, M. Deepstack: Expert-level artificial intelligence in
heads-up no-limit poker. Science, 356(6337):508–513,
2017.

Panait, L. and Luke, S. Cooperative multi-agent learning:
The state of the art. Autonomous agents and multi-agent
systems, 11(3):387–434, 2005.

Raileanu, R., Denton, E., Szlam, A., and Fergus, R. Mod-
eling others using oneself in multi-agent reinforcement
learning. In International conference on machine Learn-
ing, 2018.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):
604–609, 2020.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., et al. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Sci-
ence, 362(6419):1140–1144, 2018.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Szepesvári, C. Algorithms for reinforcement learning. Mor-
gan and Claypool, 2009.

Terry, J. K., Black, B., Jayakumar, M., Hari, A., Sullivan,
R., Santos, L., Dieffendahl, C., Williams, N. L., Lokesh,
Y., Horsch, C., et al. Pettingzoo: Gym for multi-agent
reinforcement learning. arXiv preprint arXiv:2009.14471,
2020.

Thrun, S. and Schwartz, A. Issues in using function approx-
imation for reinforcement learning. In Proceedings of the
1993 Connectionist Models Summer School Hillsdale, NJ.
Lawrence Erlbaum, 1993.

van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In AAAI Confer-
ence on Artificial Intelligence, 2016.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, 575
(7782):350–354, 2019.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 8(3-4):229–256, 1992.

Ye, D., Chen, G., Zhang, W., Chen, S., Yuan, B., Liu, B.,
Chen, J., Liu, Z., Qiu, F., Yu, H., et al. Towards playing
full moba games with deep reinforcement learning. arXiv
preprint arXiv:2011.12692, 2020a.

DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning

Ye, D., Liu, Z., Sun, M., Shi, B., Zhao, P., Wu, H., Yu, H.,
Yang, S., Wu, X., Guo, Q., et al. Mastering complex
control in moba games with deep reinforcement learning.
In AAAI Conference on Artificial Intelligence, 2020b.

You, Y., Li, L., Guo, B., Wang, W., and Lu, C. Com-
binational q-learning for dou di zhu. arXiv preprint
arXiv:1901.08925, 2019.

Zahavy, T., Haroush, M., Merlis, N., Mankowitz, D. J., and
Mannor, S. Learn what not to learn: Action elimination
with deep reinforcement learning. In Advances in Neural
Information Processing Systems, 2018.

Zha, D., Lai, K.-H., Cao, Y., Huang, S., Wei, R., Guo, J.,
and Hu, X. Rlcard: A toolkit for reinforcement learning
in card games. arXiv preprint arXiv:1910.04376, 2019a.

Zha, D., Lai, K.-H., Zhou, K., and Hu, X. Experience
replay optimization. In International Joint Conference
on Artificial Intelligence, 2019b.

Zha, D., Lai, K.-H., Zhou, K., and Hu, X. Simplifying
deep reinforcement learning via self-supervision. arXiv
preprint arXiv:2106.05526, 2021a.

Zha, D., Ma, W., Yuan, L., Hu, X., and Liu, J. Rank
the episodes: A simple approach for exploration in
procedurally-generated environments. In International
Conference on Learning Representations, 2021b.

Zhang, S. and Sutton, R. S. A deeper look at experience
replay. NIPS Deep Reinforcement Learning Symposium,
2017.

Zhou, H., Zhang, H., Zhou, Y., Wang, X., and Li, W. Bot-
zone: an online multi-agent competitive platform for
ai education. In Proceedings of the 23rd Annual ACM
Conference on Innovation and Technology in Computer
Science Education, pp. 33–38, 2018.

Zinkevich, M., Johanson, M., Bowling, M., and Piccione,
C. Regret minimization in games with incomplete infor-
mation. In Advances in Neural Information Processing
Systems, 2008.

