
DORO: Distributional and Outlier Robust Optimization

Runtian Zhai * 1 Chen Dan * 1 J. Zico Kolter 1 Pradeep Ravikumar 1

Abstract

Many machine learning tasks involve subpopu-
lation shift where the testing data distribution is
a subpopulation of the training distribution. For
such settings, a line of recent work has proposed
the use of a variant of empirical risk minimiza-
tion(ERM) known as distributionally robust op-
timization (DRO). In this work, we apply DRO
to real, large-scale tasks with subpopulation shift,
and observe that DRO performs relatively poorly,
and moreover has severe instability. We iden-
tify one direct cause of this phenomenon: sen-
sitivity of DRO to outliers in the datasets. To
resolve this issue, we propose the framework of
DORO, for Distributional and Outlier Robust Op-
timization. At the core of this approach is a re-
fined risk function which prevents DRO from
overfitting to potential outliers. We instantiate
DORO for the Cressie-Read family of Rényi di-
vergence, and delve into two specific instances
of this family: CVaR and χ2-DRO. We theoret-
ically prove the effectiveness of the proposed
method, and empirically show that DORO im-
proves the performance and stability of DRO with
experiments on large modern datasets, thereby
positively addressing the open question raised by
(Hashimoto et al., 2018). Codes are available at
https://github.com/RuntianZ/doro.

1. Introduction
Many machine learning tasks require models to perform
well under distributional shift, where the training and the
testing data distributions are different. One type of distri-
butional shift that arouses great research interest is subpop-
ulation shift, where the testing distribution is a specific or
the worst-case subpopulation of the training distribution.
A wide range of tasks can be modeled as subpopulation
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shift problems, such as learning for algorithmic fairness
(Dwork et al., 2012; Barocas & Selbst, 2016) where we
want to test model’s performance on key demographic sub-
populations, and learning with class imbalance (Japkowicz,
2000; Galar et al., 2011) where we train a classifier on an
imbalanced dataset with some minority classes having much
fewer samples than the others, and we want to maximize
the classifier’s accuracy on the minority classes instead of
its overall average accuracy.

Distributionally robust optimization (DRO) (Namkoong &
Duchi, 2016; Duchi & Namkoong, 2018) refers to a fam-
ily of learning algorithms that minimize the model’s loss
over the worst-case distribution in a neighborhood of the
observed training distribution. Generally speaking, DRO
trains the model on the worst-off subpopulation, and when
the subpopulation membership is unknown, it focuses on
the worst-off training instances, that is, the tail performance
of the model. Previous work has shown effectiveness of
DRO in subpopulation shift settings, such as algorithmic
fairness (Hashimoto et al., 2018) and class imbalance (Xu
et al., 2020).

However, in our empirical investigations, when we apply
DRO to real tasks on modern datasets, we observe that DRO
suffers from poor performance and severe instability during
training. The issue that DRO is sensitive to outliers has
been raised by several previous papers (Hashimoto et al.,
2018; Hu et al., 2018; Zhu et al., 2020) . In this paper, we
study the cause of these problems with DRO, and develop
approaches to address them.

In particular, we identify and study one key factor that we
find directly leads to DRO’s sub-optimal behavior: DRO’s
sensitivity to outliers that widely exist in modern datasets.
In general, DRO maximizes a model’s tail performance by
putting more weights on the “harder” instances, i.e. those
which incur higher losses during training. On the one hand,
this allows DRO to focus its attention on worst-off sub-
populations. But on the other hand, since outliers are intu-
itively “hard” instances that incur higher losses than inliers,
DRO is prone to assign large weights to outliers, resulting
in both a drop in performance, and training instability. To
provide empirical insights into how outliers affect DRO, in
Section 3 we conducted experiments examining how the per-
formance of DRO changes as we removed or added outliers

https://github.com/RuntianZ/doro


DORO: Distributional and Outlier Robust Optimization

Loss

D
e

n
s
it
y

DRO
DORO

Outliers

Figure 1. DORO avoids overfitting to outliers.

to the dataset. The results of these experiments indicate that
outliers bring about the observed bad performance of DRO.
Thus, it is crucial to first enhance the robustness of DRO to
outliers before applying it to real-world applications.

To this end, we propose DORO, an outlier robust refinement
of DRO which takes inspiration from robust statistics. At
the core of this approach is a refined risk function which
prevents DRO from overfitting to potential outliers. Intu-
itively speaking, the new risk function adaptively filters
out a small fraction of data with high risk during training,
which is potentially caused by outliers. Figure 1 illustrates
the difference between DRO and DORO. In Section 4 we
implement DORO for the Cressie-Read family of Rényi
divergence, and for our theoretical and empirical study we
primarily focus on CVaR-DORO and χ2-DORO. In Section
5 we provide theoretical results guaranteeing that DORO
can effectively handle subpopulation shift in the presence
of outliers. Then, in Section 6 we empirically demonstrate
that DORO improves the performance and stability of DRO.
We conduct large-scale experiments on three datasets: the
tabular dataset COMPAS, the vision dataset CelebA, and
the language dataset CivilComments-Wilds.

Contributions Our contributions are summarized below:

• We demonstrate that the sensitivity of DRO to outliers
is a direct cause of the irregular behavior of DRO with
some intriguing experimental results in Section 3.

• We propose and implement DORO as an outlier robust
refinement of DRO in Section 4. Then, in Section 5 we
provide theoretical guarantees for DORO.

• We conduct large-scale experiments in Section 6 and
empirically show that DORO improves the perfor-
mance and stability of DRO. We also analyze the effect
of hyperparameters on DRO and DORO.

Related Work Distributional shift naturally arises in
many machine learning applications and has been widely
studied in statistics, applied probability and optimization
(Shimodaira, 2000; Huang et al., 2006; Bickel et al., 2007;
Quionero-Candela et al., 2009). One common type of distri-
butional shift is domain generalization where the training
and testing distributions consist of distinct domains, and
relevant topics include domain adaptation (Patel et al., 2015;
Wang & Deng, 2018) and transfer learning (Pan & Yang,

2009; Tan et al., 2018). Another common type of distribu-
tional shift studied in this paper is subpopulation shift, where
the two distributions consist of the same group of domains.
Subpopulation shift is closely related to algorithmic fairness
and class imbalance. For algorithmic fairness, a number
of fairness notions have been proposed, such as individual
fairness (Dwork et al., 2012; Zemel et al., 2013), group fair-
ness (Hardt et al., 2016; Zafar et al., 2017), counterfactual
fairness (Kusner et al., 2017) and Rawlsian Max-Min fair-
ness (Rawls, 2001; Hashimoto et al., 2018). The setting of
subpopulation shift is most closely related to the Rawlsian
Max-Min fairness notion. Several recent papers (Hashimoto
et al., 2018; Oren et al., 2019; Xu et al., 2020) proposed
using DRO to deal with subpopulation shift, but it was also
observed that DRO was prone to overfit in practice (Sagawa
et al., 2020a;b). (Hashimoto et al., 2018) raised the open
question whether it is possible to design algorithms both
fair to unknown latent subpopulations and robust to outliers,
and this work answers this question positively.

Outlier robust estimation is a classic problem in statistics
starting with the pioneering works of (Tukey, 1960; Huber,
1992). Recent works in statistics and machine learning (Lai
et al., 2016; Diakonikolas et al., 2017; Prasad et al., 2018;
Diakonikolas et al., 2019) provided efficiently computable
outlier-robust estimators for high-dimensional mean estima-
tion with corresponding error guarantees. Outliers have a
greater effect on the performance of DRO than ERM (Hu
et al., 2018), due to its focus on the tail performance, so
removing this negative impact of outliers is crucial for the
success of DRO in its real-world applications. One closely
related recent work is (Lee et al., 2020), and DORO can
be viewed as a combination of risk-averse and risk-seeking
methods discussed in this paper.

2. Background
This section provides the necessary background of subpopu-
lation shift and DRO.

2.1. Subpopulation Shift

A machine learning task with subpopulation shift requires
a model that performs well on the data distribution of each
subpopulation. Let the input space be X and the label space
be Y . We are given a training set containing m samples i.i.d.
sampled from some data distribution P over X × Y . There
are K predefined domains (subpopulations) D1, · · · ,DK ,
each of which is a subset of X × Y . For example, in an
algorithmic fairness task, domains are demographic groups
defined by a number of protected features such as race and
sex. Let Pk(z) = P (z|z ∈ Dk) be the conditional training
distribution over Dk, where z = (x, y). The goal is to
train a model fθ : X → Y parameterized by θ ∈ Θ that
performs well over every Pk. Denote the expected risk
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over P by R(θ;P ) = EZ∼P [`(θ;Z)] where `(θ; z) is a
measurable loss function. Then the expected risk over Pk is
Rk(θ;P ) = EZ∼Pk [`(θ;Z)]. The objective is to minimize
the worst-case risk defined as

Rmax(θ;P ) = max
k=1,··· ,K

Rk(θ;P ) (1)

Several different settings were studied by previous work:

Overlapping vs Non-overlapping The overlapping set-
ting allows the domains to overlap with each other while
non-overlapping does not. For example, suppose we have
two protected features: race (White and Others) and sex
(Male and Female). Under either setting we will have four
domains. Under the overlapping setting we will have White,
Others, Male and Female, while under the non-overlapping
setting we will have White Male, White Female, Others
Male and Others Female. All the experiments in this work
are conducted under the overlapping setting. Each instance
may belong to zero, one or more domains.

Domain-Aware vs Domain-Oblivious Some previous
work has assumed that domain memberships of instances are
known at least during training. This is called the domain-
aware setting. However, (Hashimoto et al., 2018) argue
that in many real applications, domain memberships are
unknown during training, either because it is hard to ex-
tract the domain information from the input, or because it
is hard to identify all protected features. Thus, a line of
recent work (Hashimoto et al., 2018; Lahoti et al., 2020)
studies the domain-oblivious setting, in which the training
algorithm does not know the domain membership of any
instance (even the number of domains K is unknown). In
this work, we focus on the domain-oblivious setting.

2.2. Distributionally Robust Optimization (DRO)

Under the domain-oblivious setting, we cannot compute the
worst-case risk since we have no access to D1, · · · ,DK . In
this case, the framework of DRO instead maximizes the
performance over the worst-off subpopulation in general.
Specifically, given some divergence D between distribu-
tions, DRO aims to minimize the expected risk over the
worst-case distributionQ (that is absolutely continuous with
respect to training distribution P , so that Q� P ) in a ball
w.r.t. divergence D around the training distribution P .

Thus, while empirical risk minimization (ERM) algorithm
minimizes the expected riskR(θ;P ), DRO minimizes the
expected DRO risk defined as:

RD,ρ(θ;P ) = sup
Q�P

{EQ[`(θ;Z)] : D(Q ‖ P ) ≤ ρ} (2)

for some ρ > 0. Different divergence functions D derive
different DRO risks. In this work, we focus on the Cressie-

Read family of Rényi divergence (Cressie & Read, 1984)
formulated as:

Dβ(Q ‖ P ) =

∫
fβ(

dQ

dP
)dP (3)

where β > 1, and fβ(t) is defined as:

fβ(t) =
1

β(β − 1)

(
tβ − βt+ β − 1

)
(4)

An advantage of the Cressie-Read family is that it has the
following convenient dual characterization (see Lemma 1
of (Duchi & Namkoong, 2018) for the proof):

RDβ ,ρ(θ;P ) = inf
η∈R

{
cβ(ρ)EP [(l(θ;Z)− η)β∗+ ]

1
β∗ + η

}
(5)

where β∗ = β
β−1 , and cβ(ρ) = (1 + β(β − 1)ρ)

1
β .

The following proposition shows that DRO can handle sub-
population shift under the domain-oblivious setting. The
only information DRO needs during training is α, the ratio
between the size of the smallest domain and the size of the
population. See the proof in Appendix A.1.

Proposition 1. Let α = mink=1,··· ,K P (Dk) be the mini-
mal group size, and define ρ = fβ( 1

α ). Then

Rmax(θ;P ) ≤ RDβ ,ρ(θ;P ) (6)

While the Cressie-Read formulation only defines the f -
divergence for finite β ∈ (1,+∞), it can be shown that
the dual characterization is valid for β = ∞ as well, for
which the DORO risk becomes the well-known conditional
value-at-risk (CVaR) (See e.g. (Duchi & Namkoong, 2018),
Example 3). In our theoretical analysis and experiments,
we delve into two most widely-used sepecial cases of the
Cressie-Read family: (i) β = ∞, which corresponds to
CVaR; (ii) β = 2, which corresponds to χ2-DRO risk used
in (Hashimoto et al., 2018). Table 1 summarizes the relevant
quatities in these two special cases.

Table 1. CVaR and χ2-DRO. α is the ratio between the size of the
smallest domain and the size of the population.

CVaR χ2-DRO

β ∞ 2
β∗ 1 2
ρ − log(α) 1

2
( 1
α
− 1)2

cβ(ρ) α−1
√

1 + ( 1
α
− 1)2

Dβ(Q ‖ P ) sup log dQ
dP

1
2

∫
(dQ/dP − 1)2dP

DRO Risk CVaRα(θ;P ) RD
χ2 ,ρ(θ;P )

For example, the dual form of CVaR is

CVaRα(θ;P ) = inf
η∈R
{α−1EP [(`(θ;Z)− η)+] + η} (7)
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It is easy to see that the optimal η of (7) is the α-quantile of
l(θ;Z) defined as

qθ(α) = inf
q
{PZ∼P (`(θ;Z) > q) ≤ α} (8)

The dual form (7) shows that CVaR in effect minimizes the
expected risk on the worst α portion of the training data.

The following corollary of Proposition 1 shows that
both CVaRα(θ;P ) and RDχ2 ,ρ(θ;P ) are upper bounds of
Rmax(θ;P ), so that minimizing either of them guarantees
a small worst-case risk (see the proof in Appendix A.2):

Corollary 2. Let α = mink=1,··· ,K P (Dk) be the minimal
group size, and ρ = 1

2 ( 1
α − 1)2. Then

Rmax(θ;P ) ≤ CVaRα(θ;P ) ≤ RDχ2 ,ρ(θ;P ) (9)

3. DRO is Sensitive to Outliers
Although the construction of DRO aims to be effective
against subpopulation shift as detailed in the previous sec-
tion, when applied to real tasks DRO is found to have poor
and unstable performance. After some examination, we pin-
point one direct cause of this phenomenon: the vulnerablity
of DRO to outliers that widely exist in modern datasets. In
this section, we will provide some intriguing experimental
results to show that:

1. DRO methods have poor and unstable performances.

2. Sensitivity to outliers is a direct cause of DRO’s poor
performance. To support this argument, we show that
DRO becomes good and stable on a “clean” dataset
constructed by removing the outliers from the original
dataset, and new outliers added to this “clean” dataset
compromise DRO’s performance and stability.

We conduct experiments on COMPAS (Larson et al., 2016),
a recidivism prediction dataset with 5049 training instances
(after preprocessing and train-test splitting). We select two
features as protected features: race and sex. The two pro-
tected features define four overlapping demographic groups:
White, Others, Male and Female. A two-layer feed-forward
neural network with ReLU activations is used as the classi-
fication model. We train three models on this dataset with
ERM, CVaR and χ2-DRO. Then we remove the outliers
from the training set using the following procedure: We first
train a model with ERM, and then remove 200 training in-
stances that incur the highest loss on this model, as outliers
are likely to have poorer fit. Then we reinitialize the model,
train it on the new training set with ERM, and remove 200
more instances with the highest loss from the new training
set. This process is repeated 5 times, so that 1000 training
instances are removed and we get a new training set with

(a) Average (Original) (b) Worst (Original)

(c) Train Loss (Original) (d) Test Loss (Original)

(e) Average (Outliers removed) (f) Worst (Outliers removed)

(g) Average (Labels flipped) (h) Worst (Labels flipped)

(i) Average (Original) (j) Worst (Original)

Figure 2. Average/Worst-case test accuracies on the COMPAS
dataset (Original, “clean” with the outliers removed, and “clean
with label noise” with 20% of the labels flipped). The second row
shows the train/test loss of ERM and DRO on the original dataset
(average over all samples). The last row shows the performance of
DORO on the original dataset.

4049 instances. Note that this procedure is not guaranteed to
remove all outliers and retain all inliers, but is sufficient for
the purposes of our demonstration. We then run the three
algorithms again on this same “clean” training set.

We plot the test accuracies (average and worst across four
demographic groups) of the models achieved by the three
methods in Figure 2. The first row shows the results on
the original dataset, and the second row shows the results
on the “clean” dataset with the outliers removed. We can
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see that in the first row, for both average and worst-case
test accuracies, the DRO curves are below the ERM curves
and jumping up and down, which implies that DRO has
lower performance than ERM and is very unstable on the
original dataset. However, the third row shows that DRO
becomes good and stable after the outliers are removed. For
comparison, in the second row we plot the train/test loss on
the original dataset of the three methods (for ERM we plot
the ERM loss, and for DRO we plot the corresponding DRO
loss). The train and test losses of DRO descend steadily
while the average and worst-case accuracies jump up and
down, which indicates that the instability is not an optimiza-
tion issue, but rather stems from the existence of outliers. It
should also be emphasized that these outliers naturally exist
in the original dataset since no outliers have been manually
added yet.

To further substantiate our conclusion, we consider another
common source of outliers: incorrect labels. We randomly
flip 20% of the labels of the “clean” COMPAS dataset with
the outliers removed, and run the three training methods
again. The results are plotted in the fourth row of Figure
2, which shows that while the label noise just slightly in-
fluences ERM, it significantly downgrades the performance
and stability of the two DRO methods.

Likewise, (Hu et al., 2018) also found in their experiments
that DRO had even lower performance than ERM (see their
Table 1). Essentially, DRO methods minimize the expected
risk on the worst portion of the training data, which con-
tains a higher density of outliers than the whole population.
Training on these instances naturally result in the observed
bad performance of DRO.

In the next section we will propose DORO as a solution
to the problem revealed by the experiments in this section.
We plot the performances of the two DORO algorithms we
implement in the last row of Figure 2, which compared to
the first row shows that DORO improves the performance
and stability of DRO on the original dataset.

4. DORO
Problem Setting The goal is to train a model on a dataset
with outliers to achieve high tail performance on the clean
underlying data distribution P . Denote the observed con-
taminated training distribution by Ptrain. We formulate
Ptrain with Huber’s ε-contamination model (Huber, 1992),
in which the training instances are i.i.d. sampled from

Ptrain = (1− ε)P + εP̃ (10)

where P̃ is an arbitrary outlier distribution, and 0 < ε < 1
2

is the noise level. The objective is to minimizeRmax(θ;P ),
the worst-case risk over the clean distribution P .

Algorithm 1 DORO with Dβ Divergence

Input: Batch size n, outlier fraction ε, minimal group
size α
for each iteration do

Sample a batch z1, · · · , zn ∼ Ptrain

Compute losses: `i = `(θ, zi) for i = 1, · · · , n
Sort the losses: `i1 ≥ · · · ≥ `in
Find η∗ = arg minη F (θ, η) where F (θ, η) = cβ(ρ) ·
[ 1
n−bεnc

∑n
j=bεnc+1(`(θ; zij )− η)β∗+ ]1/β∗ + η

Update θ by one step to minimize `(θ) = F (θ, η∗)
with some gradient method

end for

DORO Risk We propose to minimize the following ex-
pected ε-DORO risk:

RD,ρ,ε(θ;Ptrain) =

inf
P ′
{RD,ρ(θ;P ′) : ∃P̃ ′ s.t. Ptrain = (1− ε)P ′ + εP̃ ′}

(11)
The DORO risk is motivated by the following intuition: we
would like the algorithm to avoid the “hardest” instances
that are likely to be outliers, and the optimal P ′ of (11)
consists of the “easiest” (1− ε)-portion of the training set
given the current model parameters θ. The ε in DORO is
a hyperparameter selected by the user since the real noise
level of the dataset is unknown. Let the real noise level of
Ptrain be ε0. For any ε ≥ ε0, there exist P̃0 and P̃ such that
Ptrain = (1− ε0)P + ε0P̃0 = (1− ε)P + εP̃ , so we only
need to make sure that ε is not less than the real noise level.

The following proposition provides the formula for com-
puting the DORO risk for the Cressie-Read family (See the
proof in Appendix A.3.1):

Proposition 3. Let ` be a continuous non-negative loss
function, and suppose Ptrain is a continuous distribution.
Then the formula for computing the DORO risk with Dβ is

RDβ ,ρ,ε(θ;Ptrain) =

inf
η
{cβ(ρ)EZ∼Ptrain

[(`(θ;Z)− η)β∗+ |

PZ′∼Ptrain
(`(θ;Z ′) > `(θ;Z)) ≥ ε]

1
β∗ + η}

(12)

Remark In Proposition 3, we assume the continuity of
Ptrain to keep the formula simple. For an arbitrary distribu-
tion Ptrain, we can obtain a similar formula, but the formula
is much more complex than (12). The general formula can
be found in Appendix A.3.2.

With this formula, we develop Algorithm 1. In the algorithm,
we first order the batch samples according to their train-
ing losses, then find the optimal η∗ using some numerical
method (we use Brent’s method (Brent, 1971) in our imple-
mentation), and finally update θ with some gradient method.
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Note that generally it is difficult to find the minimizer of
the DORO risk for neural networks, and our algorithm is in-
spired by the ITLM algorithm (Shen & Sanghavi, 2019), in
which they proved that the optimization converges to ground
truth for a few simple problems. Particularly, using the quan-
tities listed in Table 1, we can implement CVaR-DORO and
χ2-DORO. In the sections that follow, we will focus on the
performances of CVaR-DORO and χ2-DORO in particu-
lar. We denote the CVaR-DORO risk by CVaRα,ε(θ;Ptrain),
and the χ2-DORO risk byRDχ2 ,ρ,ε(θ;Ptrain).

5. Theoretical Analysis
Having the DORO algorithms implemented, in this section
we prove that DORO can effectively handle subpopulation
shift in the presence of outliers. The proofs to the results in
this section can be found in Appendix A.4. We summarize
our theoretical results as follows:

1. The minimizer of DORO over the contaminated dis-
tribution Ptrain achieves a DRO risk close to the mini-
mum over the clean distribution P (Theorem 5). We
complement our analysis with information-theoretical
lower bounds (Theorem 6) implying that the optimality
gaps given by Theorem 5 are optimal.

2. The worst-case risk Rmax over P is upper bounded
by the DORO risk over Ptrain times a constant factor
(Theorem 7). This result parallels Corollary 2 in the
uncontaminated setting and guarantees that minimizing
the DORO risk over Ptrain effectively minimizesRmax

over P .

Our results are based on the following lemma which lower
bounds the DORO risk over Ptrain by the infimum of the
original DRO risk in a TV-ball centered at P :
Lemma 4. Let TV(P,Q) = 1

2

∫
X×Y |P (z) − Q(z)|dz be

the total variation, and Ptrain be defined by (10). Then the
DORO risk can be lower bounded by:

RD,ρ,ε(θ;Ptrain) ≥

inf
P ′′
{RD,ρ(θ;P ′′) : TV(P, P ′′) ≤ ε

1− ε
}

(13)

The main results we are about to present only require very
mild assumptions. For the first result, we assume that ` has
a bounded (2k)-th moment on P , a standard assumption in
the robust statistics literature:
Theorem 5. Let Ptrain be defined by (10). Denote
the minimizer of the DORO risk by θ̂. If ` is non-
negative, and `(θ̂;Z) has a bounded (2k)-th moment:
EZ∼P [l(θ̂;Z)2k] = σ2k

2k < +∞, then we have:

CVaRα(θ̂;P )− inf
θ

CVaRα(θ;P ) ≤ Oα,k(1)σ2kε
1− 1

2k

(14)

and if k > 1, then we have:

RDχ2 ,ρ(θ̂;P )− inf
θ
RDχ2 ,ρ(θ;P ) ≤ Oρ,k(1)σ2kε

( 1
2−

1
2k )

(15)

Furthermore, the above optimality gaps are optimal:
Theorem 6. There exists a pair of (P, Ptrain) where
Ptrain = (1 − ε)P + εP ′ and P has uniformly bounded
2k-th moment: ∀θ ∈ Θ, EP [l(θ, Z)2k] ≤ σ2k

2k such that for
any learner with only access to Ptrain, the best achievable
error in DRO over P is lower bounded by

CVaRα(θ̂;P )− inf
θ∈Θ

CVaRα(θ;P ) ≥ Ωα,k(1)σ2kε
1− 1

2k

(16)

RDχ2 ,ρ(θ̂;P )− inf
θ∈Θ
RDχ2 ,ρ(θ;P ) ≥ Ωρ,k(1)σ2kε

( 1
2−

1
2k )

(17)

We make a few remarks on these theoretical results. The
O(ε1−

1
2k ) and O(ε

1
2−

1
2k ) rates resemble the existing works

on robust mean/moment estimation, see e.g. (Kothari et al.,
2018; Prasad et al., 2020). The robust mean estimation prob-
lem can be seen as a special case of CVaR when α = 1,
where CVaR of any θ is just the mean of l(θ, Z). On the
other hand, the connection between CVaR and robust mo-
ment estimation can be built with the dual characterization
(5): for any fixed dual variable η, evaluating the dual is
nothing but a robust (β∗-th) moment estimation of the ran-
dom variable (l(θ, Z) − η)+. However, the problem we
are trying to tackle in the above theorems is more challeng-
ing, in the sense that (1) DRO risk involves taking infimum
over all η ∈ R, but the moments of (l(θ, Z)− η)+ are not
uniformly bounded for all possible η’s; and (2) the optimal
dual variable η∗ can be very different even for distributions
extremely close in total-variation distance. In Appendix A.4
we discuss how to overcome these difficulties in detail.

Our second result is a robust analogue to Corollary 2: we
show that the worst-case riskRmax can be upper bounded
by a constant factor times the DORO risk CVaRα,ε, under
the very mild assumption that ` has a uniformly bounded
second moment on P andRmax is not exceedingly small:
Theorem 7. Let Ptrain be defined by (10). Let α =
mink=1,··· ,K P (Dk), and ρ = 1

2 ( 1
α − 1)2. If `(θ;Z) is a

non-negative loss function with a uniformly bounded second
moment: EZ∼P [`(θ;Z)2] ≤ σ2 for all θ, then we have:

Rmax(θ;P ) ≤ max{3CVaRα,ε(θ;Ptrain), 3α−1σ

√
ε

1− ε
}

≤ max{3Dχ2,ρ,ε(θ;Ptrain), 3α−1σ

√
ε

1− ε
}

(18)

Note that a similar result can be derived under the bounded
2k-th moment condition with different constants.
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6. Experiments
In this section, we conduct large-scale experiments on mod-
ern datasets. Our results show that DORO improves the
performance and stability of DRO. We also analyze the
effect of hyperparameters on DRO and DORO.

6.1. Setup

Datasets Our goal is to apply DRO to real tasks with sub-
population shift on modern datasets. While many previous
work used small tabular datasets such as COMPAS, these
datasets are insufficient for our purpose. Therefore, apart
from COMPAS, we use two large datasets: CelebA (Liu
et al., 2015) and CivilComments-Wilds (Borkan et al., 2019;
Koh et al., 2020). CelebA is a widely used vision dataset
with 162,770 training instances, and CivilComments-Wilds
is a recently released language dataset with 269,038 train-
ing instances. Both datasets are captured in the wild and
labeled by potentially biased humans, so they can reveal
many challenges we need to face in practice.

We summarize the datasets we use as follows: (i) COMPAS:
recidivism prediction, where the target is whether the person
will reoffend in two years; (ii) CelebA: human face recogni-
tion, where the target is whether the person has blond hair;
(iii) CivilComments-Wilds: toxicity identification, where
the target is whether the user comment contains toxic con-
tents. All targets are binary. For COMPAS, we randomly
sample 70% of the instances to be the training data (with
a fixed random seed) and the rest is the validation/testing
data. Both CelebA and CivilComments-Wilds have official
train-validation-test splits, so we use them directly.

Domain Definition On COMPAS we define 4 domains
(subpopulations), and on CelebA and CivilComments-Wilds
we define 16 domains for each. Our domain definitions
cover several types of subpopulation shift, such as differ-
ent demographic groups, class imbalance, labeling biases,
confounding variables, etc. See Appendix B.1 for details.

Training We use a two-layer feed-forward neural network
activated by ReLU on COMPAS, a ResNet18 (He et al.,
2016) on CelebA, and a BERT-base-uncased model (Devlin
et al., 2019) on CivilComments-Wilds. On each dataset, we
run ERM, CVaR, χ2-DRO, CVaR-DORO and χ2-DORO.
Each algorithm is run 300 epochs on COMPAS, 30 epochs
on CelebA and 5 epochs on CivilComments-Wilds. For
each method we collect the model achieved at the end of
every epoch, and select the best model through validation.
(On CivilComments-Wilds we collect 5 models each epoch,
one for every ∼20% of the training instances.)

Model Selection To select the best model, we assume
that the domain membership of each instance is available
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Figure 3. Test accuracies of CVaR and CVaR-DORO on CelebA
(α = 0.1, ε = 0.01).
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Figure 4. Test accuracies of χ2-DRO and χ2-DORO on CelebA
(α = 0.3, ε = 0.01).

in the validation set, and select the model with the highest
worst-case validation accuracy. This is an oracle strategy
since it requires a domain-aware validation set. Over the
course of our experiments, we have realized that model
selection with no group labels during validation is a very
hard problem. On the other hand, model selection has a huge
impact on the performance of the final model. We include
some preliminary discussions on this issue in Appendix B.2.
Since model selection is not the main focus of this paper,
we pose it as an open question.

6.2. Results

The 95% confidence intervals of the mean test accuracies
on each dataset are reported in Table 2. For every DRO and
DORO method, we do a grid search to pick the best α and ε
that achieve the best worst-case accuracy (see the optimal
hyperparameters in Appendix B.3). Each experiment is
repeated 10 times on COMPAS and CelebA, and 5 times on
CivilComments-Wilds with different random seeds. Table
2 clearly shows that on all datasets, DORO consistently
improves the average and worst-case accuracies of DRO.

Next, we analyze the stability of the algorithms on the
CelebA dataset. We use the α that achieves the optimal
DRO performance for each of CVaR and χ2-DRO, and com-
pare them to DORO with the same value of α and ε = 0.01.
χ2-DRO achieves its optimal performance with a bigger
α than CVaR because it is less stable. To quantitatively
compare the stability, we compute the standard deviations
of the test accuracies across epochs and report the results
in Table 3. To further visualize the training dynamics, we
run all algorithms with one fixed random seed, and plot the
test accuracies during training in Figures 3 and 4. Table
3 shows that the standard deviation of the test accuracy of
DORO is smaller and in Figures 3a and 4a the DORO curves
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Table 2. The average and worst-case test accuracies of the best models achieved by different methods. (%)

Dataset Method Average Accuracy Worst-case Accuracy

COMPAS

ERM 69.31± 0.19 68.83± 0.18
CVaR 68.52± 0.31 68.22± 0.30

CVaR-DORO 69.38± 0.10 69.11± 0.05
χ2-DRO 67.93± 0.40 67.32± 0.60
χ2-DORO 69.62± 0.16 69.22± 0.11

CelebA

ERM 95.01± 0.38 53.94± 2.02
CVaR 82.83± 1.33 66.44± 2.34

CVaR-DORO 92.91± 0.48 72.17± 3.14
χ2-DRO 83.85± 1.42 67.76± 3.22
χ2-DORO 82.18± 1.17 68.33± 1.79

CivilComments-Wilds

ERM 92.04± 0.24 64.62± 2.48
CVaR 89.11± 0.76 63.90± 4.42

CVaR-DORO 90.45± 0.70 68.00± 2.10
χ2-DRO 90.08± 0.92 65.55± 1.51
χ2-DORO 90.11± 1.09 67.19± 2.51

Table 3. Standard deviations of average/worst-case test accuracies
during training on CelebA. (α = 0.1 for CVaR/CVaR-DORO;
α = 0.3 for χ2-DRO/χ2-DORO. ε = 0.01) (%)

Method Average Worst-case

ERM 0.73± 0.06 8.59± 0.90
CVaR 11.53± 1.72 21.47± 0.71

CVaR-DORO 4.03± 1.57 16.84± 0.91
χ2-DRO 8.88± 2.98 19.06± 1.18
χ2-DORO 1.60± 0.34 13.01± 1.40
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Figure 5. Effect of ε on the test accuracies of CVaR/χ2-DORO on
CelebA (α = 0.2). DORO with ε = 0 is equivalent to DRO.

are flatter than the DRO curves, which implies that DORO
improves the stability of DRO. Although it is hard to tell
whether DORO has a more stable worst-case accuracy from
the figures, our quantitative results in Table 3 confirm that
DORO has more stable worst-case test accuracies.

6.3. Effect of Hyperparameters

In this part, we study how α and ε affect the test accura-
cies of DORO with two experiments on CelebA, providing
insight into how to select the optimal hyperparameters.

In the first experiment, we fix α = 0.2, and run the two
DORO algorithms with different values of ε. The results are
plotted in Figure 5. We can see that for both methods, as
ε increases, the average accuracy slightly decreases, while
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Figure 6. Effect of α on the test accuracies of DRO and DORO on
CelebA (ε = 0.01).

the worst-case accuracy first rises and then drops. Both
average and worst-case accuracies will drop if ε is too big.
Moreover, both methods achieve the optimal worst-case
accuracy at ε = 0.005. We conjecture that the real noise
level of the CelebA dataset is around 0.005, and that the
optimal ε should be close to the real noise level.

In the second experiment, we run DRO and DORO (ε =
0.01) with different values of α. The results are plotted in
Figure 6. First, we observe that for all methods, the optimal
α is much bigger than the real α of the dataset. The real α
of the CelebA dataset is around 0.008 (see Appendix B.1,
Table 1), much smaller than those achieving the highest
worst-case accuracies in the figures. Second, in all four
figures the overall trend of the average accuracy is that it
grows with α. Third, both CVaR-DORO and χ2-DORO
achieve the optimal worst-case accuracy at α = 0.25, but
the worst-case accuracy drops as α goes to 0.3.



DORO: Distributional and Outlier Robust Optimization

7. Discussion
In this work we pinpointed one direct cause of the perfor-
mance drop and instability of DRO: the sensitivity of DRO
to outliers in the dataset. We proposed DORO as an outlier
robust refinement of DRO, and implemented DORO for the
Cressie-Read family of Rényi divergence. We made a pos-
itive response to the open question raised by (Hashimoto
et al., 2018) by demonstrating the effectiveness of DORO
both theoretically and empirically.

One alternative approach to making DRO robust to outliers
is removing the outliers from the dataset via preprocessing.
In Section 3 we used a simple version of iterative trimming
(Shen & Sanghavi, 2019) to remove outliers from the train-
ing set. Compared to iterative trimming, DORO does not
require retraining the model and does not throw away any
data. In addition, preprocessing methods such as iterative
trimming cannot cope with online data (where new instances
are received sequentially), but DORO is still feasible.

The high-level idea of DORO can be extended to other al-
gorithms that deal with subpopulation shift, such as static
reweighting (Shimodaira, 2000), adversarial reweighting
(Hu et al., 2018; Lahoti et al., 2020) and group DRO
(Sagawa et al., 2020a). The implementations might be differ-
ent, but the basic ideas are the same: to prevent the algorithm
from overfitting to potential outliers. We leave the design of
such algorithms to future work.

There is one large open question from this work. In our ex-
periments, we found that model selection without domain in-
formation in the validation set is very hard. In Appendix B.2
we study several strategies, such as selecting the model with
the lowest CVaR risk or the lowest CVaR-DORO risk, but
none of them is satisfactory. A recent paper (Michel et al.,
2021) proposed two selection methods Minmax and Greedy-
Minmax, but their performances are still much lower than
the oracle’s (see their Table 2a). (Gulrajani & Lopez-Paz,
2021) also pointed out the difficulty of model selection in
domain-oblivious distributional shift tasks. Thus, we believe
this question to be fairly non-trivial.
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