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A. Omitted Proof
A.1. Proof for Proposition 1
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We then analyze the error for any environment:
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[1 −Ee[Ŷ eY e]],
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In the test environment, since Ze and Y e are independent and pe = 0.5. As a result, the error in test environment for the
regular classifier is Erre = P[ 1
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Now let us consider the optimal sparse max-margin classifier. For d = 2, the max-margin classifier for the above data
distribution is simply winv = 1 and wsp = 0. Since Zeinv = Y e, in both train and test, the sparse classifier has a perfect
accuracy in both train and test environments.

Next, we compare the margins. The margin for freg is Y ewT
spZsp ≥ c

√

D
2

with a probability at least 1 − δ (the proof follows
directly from Hoeffding’s inequality and we refer to the Appendix A of Nagarajan et al. (2020)). In comparison, fdsparse that
assigns weights to invariant and spurious parts as follows winv = 1 and wsp = 0 achieves a margin of Y ewinvZinv = 1.
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B. More Discussion
One possible algorithm we do not explore in this work is the IRM games (Ahuja et al., 2020). This approach sees the IRM
formulation from a game theory perspective across different environments and design a corresponding algorithm. The
algorithm has one network per environment thus the number of parameters scale in number of environments. In order to
make comparisons apple to apple, we keep all the methods to have the same parameter complexity. IRM games will have
more parameters so we do not compare with it. Other methods including extra parameters (e.g., auxiliary neural networks)
are also not considered due to analogous reason and we shall explore them in future work.

We notice there is a deep connection between Parascandolo et al. (2020) and our work. Our MRM explicitly learn a
subnetwork architecture and only update the corresponding subset of weights, while Parascandolo et al. (2020) also restricts
its optimization within a subset of weights by “and mask” algorithm, which only updates a parameter when gradients across
domains are consensus to each other. However, this method may need a appropriate large number of domains to work (see
details in their paper) and hence is not among the studied algorithms in this paper. In the future work, we intend to explore
the relationship between the structure of our digit module and the subset found by their “and mask” under more domains.

Similar to our method, Dropout (Srivastava et al., 2014) also only updates part of the network during training. We list some
of the main difference here: Dropout aims to prevent overfitting by simply not updating whole model parameters towards
one single function, while we pursue to identify one particular functional module architecture within full network; Dropout
only randomly zero out the updating gradients, while we intentionally pick particular functional part of the model in an
end-to-end way; what’s more, Dropout is not activated during testing inference time, while our subnetwork is kept for all
following stages.

In Hooker et al. (2019; 2020), the authors propose that model compression will hurt the accuracy on underrepresented groups
with negligible impacts on overall accuracy, which seems contradictory to our results. Here we state about the difference in
the settings and claim that their works are actually consistent in spirit to ours. First of all, their work do not target OOD
problems or invariant prediction, but focus on long tail underrepresented subgroups in IID situations. In our context “bias”
means a spurious / shortcut way of inference and we aim to zero out the spurious part in the model parameters, while their
settings don’t contain a spurious feature that will bias the model prediction, hence most of the parameters are rightful and
shouldn’t be got rid of. As a result, it’s natural for model compression to hurt in their cases. What’s more, our method utilize
a much more careful subnetwork selection method where we aim to maximize the in-domain performance when searching
structures, ensuring that we do not wipe off the useful and rightful part of parameters.

In Bengio et al. (2019) and its following analysis (Priol et al., 2020), the authors claim that a better knowledge of true causal
relationship will bring a faster speed of transferring learning. While on the other hand, from Figure 1 we can see a good
subnetwork leads to faster convergence and better performance. Although we do not target a causally promising algorithm
in this work (our main goal is to get rid of spurious correlation for OOD problems), we claim our approach is connected
with causal discovery (Bengio et al., 2019) stated above, in the sense of capturing causal relationship hidden in data better
(please note that invariant prediction can be seen as a higher level of transfer learning in an OOD sense).

C. More on Experiments
C.1. Dataset details

FULLCOLOREDMNIST. We use ten colors taken from Ahmed et al. (2021) for all the data. Their RGB values are: [0,
100, 0], [188, 143, 143], [255, 0, 0], [255, 215, 0], [0, 255, 0], [65, 105, 225], [0, 225, 225], [0, 0, 255], [255, 20, 147],
[160, 160, 160]. Each image is of size 3 × 32 × 32 and the whole dataset contains 60000 images. The difference between
Ahmed et al. (2021) and ours are significant: their whole data is deemed to come from “majority group” and “minority
group”, where the images from “majority group” are colored with previous mentioned ten colors and those from “minority
group” are colored with other fifty different colors. In contrast, all of our images are colored with these ten colors. We set a
bias relationship to connect each digit and each color one by one and define bias coefficient to be the ratio of bias data that
follows the relationship, as described in Section 3.1. Besides, their data are pooled and integrated as one domain before
presented to algorithms. Our dataset is also different with Arjovsky et al. (2019), where they use label noise intentionally to
make the correlation between label and color to be higher than the one between label and digit. This makes ERM severely
biased towards color and thus fails in test domain. On the contrary, we do not impose any sort of label noise and leave label
as the ground truth digit information. What’s more, Arjovsky et al. (2019) use binary classification and two colors, which is
a much simpler setting. Our setting is also different from Nam et al. (2020), which is not multi environment and only has
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Table 4. Generalization performance on FULLCOLOREDMNIST with oracle validation.

METHODS TRAIN ACCURACY TEST ACCURACY

ERM 98.10 ± 0.10 58.04 ± 1.95
MRM 98.90 ± 0.05 73.21 ± 0.58

IRM 98.17 ± 0.12 59.55 ± 1.90
MODIRM 98.67 ± 0.20 70.35 ± 3.22

REX 98.83 ± 0.09 76.17 ± 1.53
MODREX 99.28 ± 0.05 82.13 ± 0.82

DRO 98.94 ± 0.11 78.56 ± 1.42
MODDRO 99.38 ± 0.06 85.67 ± 0.51

UNBIAS 99.05 ± 0.04 97.86 ± 0.20

Table 5. Generalization performance on COLOREDOBJECT with oracle validation.

METHODS TRAIN ACCURACY TEST ACCURACY

ERM 87.58 ± 2.42 44.39 ± 2.44
MRM 94.00 ± 0.56 55.03 ± 1.76

IRM 87.63 ± 2.32 44.49 ± 2.15
MODIRM 92.95 ± 0.41 52.55 ± 0.65

REX 89.28 ± 1.35 46.07 ± 2.59
MODREX 82.65 ± 1.85 55.56 ± 3.16

DRO 91.84 ± 2.17 53.20 ± 1.15
MODDRO 92.32 ± 1.37 55.46 ± 1.43

UNBIAS 92.32 ± 1.80 72.77 ± 3.48

one domain.

COLOREDOBJECT. We imitate Ahmed et al. (2021) to take ten objects as invariant features and put them on ten different
color backgrounds. We use the ten colors mentioned above, and take the following ten objects: boat, airplane, truck, dog,
zebra, horse, bird, train, bus, motorcycle. Each image is of size 3 × 64 × 64 and the whole dataset contains 10000 images.
The difference between ours and Ahmed et al. (2021) is similar to FULLCOLOREDMNIST: their settings contain a minority
group which has many other backgrounds than the mentioned ten color backgrounds.

SCENEOBJECT. We imitate Ahmed et al. (2021) to take ten objects as invariant features and put them on ten different
scenery backgrounds (beach, canyon, building facade, staircase, desert sand, crevasse, bamboo forest, broadleaf, ball pit
and kasbah). We use the same ten object classes mentioned above. Each image is of size 3 × 64 × 64 and the whole dataset
contains 10000 images. The difference between ours and Ahmed et al. (2021) is similar to FULLCOLOREDMNIST: their
settings contain a minority group which has many other backgrounds than the mentioned ten scenery backgrounds.

C.2. Experimental details

For the results in the main text, we take a commonly used policy to report the last step accuracy. We also apply the another
evaluation method (the “oracle validation” in Gulrajani & Lopez-Paz (2020)) to report accuracy, and provide corresponding
results in Table 4, 5 and 6. These results are consistent to those in main text, showing the validity of our conclusion. For
both method, we take a similar approach to Gulrajani & Lopez-Paz (2020), and the difference is that we take a finite search
set for hyperparameters instead of sampling of a human defined distribution. For all datasets, we search the regularization
coefficient of IRM and REx in {1e − 1,5e − 1,1,1e1,1e2,1e3,1e4}, the step when the regularization is added into training
in {0,1000,2000}. Furthermore, we also search a binary option about whether to scale down the whole loss term by the
regularization coefficient as in Arjovsky et al. (2019). For DRO we search the group proportion step size ηq (notation taken
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Table 6. Generalization performance on SCENEOBJECT with oracle validation.

METHODS TRAIN ACCURACY TEST ACCURACY

ERM 95.04 ± 2.13 37.44 ± 1.15
MRM 98.83 ± 0.26 39.49 ± 0.15

IRM 92.66 ± 0.24 37.54 ± 0.94
MODIRM 94.63 ± 0.54 40.04 ± 1.90

REX 92.73 ± 1.61 39.39 ± 0.96
MODREX 96.72 ± 0.53 40.79 ± 1.62

DRO 94.53 ± 2.17 36.64 ± 1.35
MODDRO 93.52 ± 5.90 40.99 ± 1.70

UNBIAS 85.47 ± 2.37 56.91 ± 1.31

from Sagawa et al. (2019)) in {1e − 4,1e − 3,1e − 2,1e − 1,1}. For the subnetwork structure learning, we follow Csordás
et al. (2020) to use Adam optimizer and search the logit learning rate among {1e − 2,1e − 1,1} and the sparsity coefficient
among {1e − 8,1e − 7,1e − 6,1e − 5,1e − 4,1e − 3}. For Figure 4(a), the x-axis is in log scale and ranges from 1e − 5 to
1e − 3 for sparse cases.

For FULLCOLOREDMNIST, all experiments are measured by computing mean and standard deviation across five trials
with random seeds. For optimization we use SGD + momentum (0.9) with 1e − 4 weight decay, where the initial learning
rate is 1e − 1 and is decayed every 600 steps for all algorithms. We take the batch size to be 128. The training process longs
for 2000 steps (and thus N1 is also 2000). N2 is set to 2000, and it can be seen from Table 7 that the importance of this
hyperparameter is very limited. We use a simple ConvNet with three convolutional layers with feature map dimensions of 64,
128 and 256, each followed by a ReLU nonlinear and a batch normalization layer. The fourth layer is a fully connected layer.
For COLOREDOBJECT, all experiments are measured by computing mean and standard deviation a cross three trials with
random seeds. The learning rate is 1e − 1 and decays every 1200 steps. The training process longs for 2000 steps. Others
are kept the same with previous dataset. We use Wide ResNet 28-2 architecture (Zagoruyko & Komodakis, 2016). To adapt
to 64 × 64 image size, we replace the average pooling layer with window size 8 to one with size 16. For SCENEOBJECT, we
use a learning rate of 5e − 2 which decays every 1200 steps. Other unmentioned settings are kept consistent as above. We
use Tesla V100 GPU to perform the experiments.

C.3. More empirical results
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Figure 7. (a) Convergence speed comparison for modules of ERM. (b)(c)(d) Analogy of Figure 2(b) for other algorithms.

We affirm that color is more fitted to neural network prior by plotting the digit accuracy of digit module and color accuracy
of color module w.r.t. the training process in Figure 7(a). The two modules are both learned given the same ERM trained
model at every step. The result shows that the training of color module converges much faster than the digit one, and thus
showing that neural networks have a natural favor for color (texture) information than digit (shape) information as shown
in Zeiler & Fergus (2014); Ritter et al. (2017); Brendel & Bethge (2019); Shi et al. (2020). We also plot the behaviors of
digit module learning of three OOD algorithms in Figure 7(b) 7(c) and 7(d). These three plots show a very similar results
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Figure 8. The digit / color accuracy for some logical operation results of learned digit and color module.

to Figure 2(b). We omit the behavior of color module of these algorithms since it’s very similar to that of ERM shown in
Figure 7(a).

We play with the obtained digit and color module with several basic logical operations in Figure 8. The intersection of digit
and color module is important as its complement behaves trivially in Figure 8(e) and 8(f). However, the intersection module
alone can not express predictiveness (Figure 8(a)) for digit identification. We show that it needs to be combined with other
part to work in Figure 8(g) and 8(h). We also additionally visualize the two modules for the linear layer in Figure9(a) and
get similar results to that in Figure 3.
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Figure 9. Compensatory experimental results.

For completeness we also compare with magnitude pruning, although it’s not for out-of-distribution generalization and its
structure search process is data independent like us. The results for ERM on FULLCOLOREDMNIST are in Figure 9(b).
We can see our methods surpass this widely used pruning approach (e.g., by the original lottery ticket hypothesis paper
and most prevailing approaches (Han et al., 2015; Zhu & Gupta, 2017)) in all level of sparsity. Please see more related
discussion in Section C.4. Furthermore, we do ablation about the hyperparameters of subnetwork learning in the stage 2 of
MRM algorithm in Table 7 to show the importance of proper level of “good” sparsity (instead of random sparsity, whose
importance is restricted as discussed in main text). In Table 7 we also show results with different values of N2 in MRM
algorithm. Although N2 we adopt is not the optimal setting, we simply use it since it’s enough to achieve an approximate
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Table 7. Ablation for hyperparameters of subnetwork learning. All numbers are out-distribution generalization accuracy.

LR
α

1e − 3 1e − 4 1e − 5 1e − 6 1e − 7

1e − 2 50.45 ± 2.70 68.56 ± 0.39 67.46 ± 0.42 64.13 ± 1.05 63.25 ± 1.12

1e − 1 36.95 ± 2.25 67.83 ± 0.81 72.98 ± 0.58 71.91 ± 0.85 71.30 ± 0.55

1 21.76 ±1.29 50.19 ± 2.33 65.54 ± 2.16 66.31 ± 2.56 65.51 ± 3.31

N2 ACCURACY

1000 71.46 ± 1.89

2000 72.98 ± 0.58

3000 73.39 ± 0.84

5000 73.70 ± 0.59

Table 8. Ablation for the third stage of MRM.

METHODS W/ STAGE 3 W/O STAGE 3

MRM 72.98 ± 0.58 62.99 ± 1.96

MODIRM 70.86 ± 2.12 58.87 ± 2.40

MODREX 82.06 ± 0.73 77.48 ± 2.30

MODDRO 85.53 ± 0.61 80.47 ± 1.87

convergence of stage 2. We further do ablation about MRM for with or without stage 3 in Table 8, showing the importance
of the last stage and the validity of our functional lottery ticket hypothesis.

C.4. Towards a different pruning method

In this paper we propose an OOD algorithm coined as MRM. Here we point out that MRM can actually be seen as a
different pruning method and can be applied to IID tasks as well. We do not state this explicitly in the main text since it’s
not closely related to our OOD research category. We slightly modify MRM to serve as a pruning algorithm in this way: we
also use three stages training paradigm as MRM in main text, but specifically for stage 2, we jointly train the subnetwork
structure and model parameters, and let the algorithm break the looping once the specified sparsity level is reached. We shall
not claim this method to be a novel pruning method as we notice that it’s similar (though stille different) to Louizos et al.
(2018), which for unknown reasons is not taken into baseline consideration by recent pruning works. We now show related
experimental results in the sense of pruning settings (which is IID generalization) in Table 9. The codes and baseline results
are based on Wang et al. (2020). We also keep the hyperparameters setting to be consistent with Wang et al. (2020), and take
the modular learning rate 0.01 and modular sparsity regularization 0.0001. Our method outperforms other baseline methods,
especially for extremely sparse 98% pruning ratio cases. We think of this as an insightful advantage of our approach.

Table 9. Our pruning method on CIFAR10 with ResNet32 across different pruning ratios.

METHODS
RATIO

90% 95% 98%

FULL NETWORK 94.23 – –

OBD (LECUN ET AL., 1989) 94.17 93.29 90.32
MLPRUNE (ZENG & URTASUN, 2018) 94.21 93.02 90.31

LT (FRANKLE & CARBIN, 2018) 92.31 91.06 88.78
LT REWIND (FRANKLE ET AL., 2020) 93.97 92.46 89.18

DSR (MOSTAFA & WANG, 2019) 92.97 91.61 88.46
SET (MOCANU ET AL., 2018) 92.30 90.76 88.29

DEEP-R (MOCANU ET AL., 2018) 91.62 89.84 86.45
SNIP (LEE ET AL., 2018) 92.59 91.01 87.51

GRASP (WANG ET AL., 2020) 92.38 91.39 88.81

OURS 94.19 93.36 92.80


