Meta Learning for Support Recovery in High-dimensional Precision Matrix
Estimation: Supplementary Material

A. Proof of Lemma 1

Define SY, := {A € RV*N|A - 0}. We first prove the following result:
Lemma 2. For () defined in (4), if @ € SY,, then £(R) is strictly convex.

Proof. The gradient of £(2) is:
K
ve@) =Y T® (S“f) - Q‘1> (17)
k=1
The Hessian of £({2) is:
V2 (Q) =TI (Q)
where ' (Q) = Q71 @ Q1 € RV *V?,

Since Q) € SJ+V+’ we have Q > 0 and thus Q' = 0. According to Theorem 4.2.12 in (Horn et al., 1994), any eigenvalue of
'(Q) =07t ® Q! is the product of two eigenvalues of 27, hence positive. Therefore,

rQ =o
V3 (Q) =0
£(Q) is strictly convex. O

Now consider £(2) 4+ A||€2[|1. Since A > 0, by Lemma 2, we know £(2) + A||€2]|; is strictly convex for Q € S¥, . Therefore,
the problem in (5) is strict convex and has a unique solution Q.

For Q(E+1 in (6), we have
VED(Q) = 5+ ot

and
VHERD Q) =T(Q) =0 o0

(
Thus according to the proof of Lemma 2, we know /(5+1)(Q) is strictly convex. Then (K +f)(Q) + A||Q|1 is strictly
convex for A > 0 on S¥, . Notice that the constraints supp(£2) C supp(£2) and diag(€2) = diag(2) in (6) can be expressed

as Q;; = 0 for (,7) ¢ S and Q; = Q; fori € {1,...,n}. Therefore the constraints are linear. Furthermore, (6) is strictly
convex for A > 0 on SV, .

B. Proof of Theorem 1

Our proof follows the primal-dual witness approach (Ravikumar et al., 2011) which uses Karush-Kuhn Tucker conditions
(from optimization) together with concentration inequalities (from statistical learning theory).
B.1. Preliminaries

Before the formal proof, we first introduce two inequalities with respect to the matrix ¢, -operator-norm ||| ..

Lemma 3. For a pair of matrices A € R™*", B € R"*P and a vector x € R", we have:

[AZ (oo < ([l ool 0 (18)

IABll 0 < AN 1Bl o (19)
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Proof. Note that

Azl = max |{as.2)
< max [l ol

1<i<m

= [l Allloo llll o

where a; is the vector corresponding to the i-th row of A and (-, -) is the inner product. Similarly, we have

|AB|[oc = max |[[a;B|x
1<i<m
q n
= max 32| 304
== k=1 j=1
n q
< e 1l Y018
_121%);1_ ‘Aw| |Bjk|
Jj=1 k=1
n
<

q
max Z |A;;| max Z | B |
1<i<m — 1<Ii<n 1

Jj=1

n
e, 3 LAl
J:

AT o B oo

Then we prove Theorem 1 with the five steps in the primal-dual witness approach.

B.2. Step 1

Let (Qg,0) denote the N x N matrix such that Qg = 0. For any Q = (Q5,0) € S¥,, we need to verify that
[V2€ ((Qs, O))}SS > 0.

According to Lemma 2, since (Q25,0) € S f 1, we have
V20 ((Qs,0)) = 0 (20)

Denote the vectorization of a matrix A with vec(A) or A. We use |S| to denote the number of elements in S. Then we have

H
[sz((ﬂs,o))}ss e RISIXISI For Vo € RISI, v # 0, there exists a matrix A € RN*N | A =£ 0, such that Ag = . Thus
we have

o [V (5.0 g = [A3] [920((925.0)] o 43

= (45,0 ]Tv%((as,o»m
>0

where the inequality follows from (20). Hence [V ((Qs,0))] gg 0. Thus the step 1 in primal-dual witness is verified.

B.3. Step 2

Construct the primal variable Q by making Qg = 0and solving the restricted problem:

Qg = arg min ~ £((2s,0)) + A|Qs|l1 21
(Qs,0)esY,
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B.4. Step 3

Choose the dual variable Z in order to fulfill the complementary slackness condition of (5):
Zij =1, ifQij >0
Zij=—1, ifQ;; <0 (22)
Zij S [7171], lffllj =0

Therefore we have R
[Z]l0e <1 (23)

B.5. Step 4

Z is the subgradient of ||Q]|;. Solve for the dual variable Zg- in order that (€2, Z) fulfills the stationarity condition of (5):

[w((s)s, ))LJMZS:O (24)

Ve ((925,0))] f F s =0 (25)

B.6. Step 5

Now we need to verify that the dual variable solved by Step 4 satisfied the strict dual feasibility condition:
1Zseloe < 1 (26)

which, according to the stationarity condition, is equivalent to

%H Ve ((25,0))] e <1 @7

This is the crucial part in the primal-dual witness approach. If we can show the strict dual feasibility condition holds, we can
claim that the solution in (21) is equal to the solution in (5), i.e., Q = €). Thus we will have

supp (Q) = supp (Q) C S =supp (Q)

B.7. Proof of the Strict Dual Feasibility Condition
Plug the gradient of loss function (17) in the stationarity condition of (5), we have
K

S T® (zw - Q—l) +AZ =0 (28)

DefineS = Q L, Wk .=35F®) 5 0:=Q—Q, RV):= Q! -S4+ QWO L. Then we can rewrite (28) as

S TOWE LT (QTQT — R(W)) +AZ =0 (29)
k

From vectorization of product of matrices, we have:

R T P (30)

where I' := Q~! ® Q1. Then vectorize both sides of (29) and we can get:

T(FSS\IJS—RS)+ZT 4;+)\Z —0 31)

k=1
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K
_ S — 3 =
T (rscsxps - RSC) + Y TOWE 42 Zse =0
k=1

_)
where we write R(¥) as R for simplicity. By solving (31) for Ug, we get:

K
— 1 — { =
Vg = ?rgg (TRS =S W - )\Z5>

k=1

_ _ s

where we write ([ss) ™! as Fg; for simplicity. Plug (33) in (32) to solve for Zge:
= 1 = 1 1 —
Zge = —~TTgesVg + ~TRge — ~ Y T®WE
s N Lses¥s + s X ; Se

K
1. - — 3 = 1 —
= —ercsrgé <TRS — ZTWW;’~c — /\ZS> + T Rse —
k=1
A

k=1

According to (18) and the expression above, we have:

- 1 _ — K 3 _ _ =
1Zselleo <5 IPsesTss (TRs -y rw ) loc + I sesT55 Zs
k=1

K
1 —_— k
o5 (S 1o

k=1

1= _ — K ““3
<3 IFsesTsslll. (THRSHOO +I1Y THwg oo)

k=1

- o 1 — K
s+ (TR 13T oW
k=1

=
where we have used || Zs || < 1 by (23).

Therefore under Assumption 1, we have:

- - 2 _ K
1Zselloo = 1 Z5: oo < 25 <T||?5|oo i ZT<’€>W<’“§||OO> f1-a
k=1

If we can bound the two terms: T||ﬁ\|oo, I Zkl»(:l T(’“)I/V(kg lloo < %)‘, then we will have:

1Zse

@

w§1_§<1

From all the reasoning so far, we have the following Lemma:

Lemma 4. If we have T||R(¥) o, | S 0 E oo < 9, then
1Zselloo < 1,

i.e., the strict-dual feasibility condition is fulfilled.

K K
1 = — { YL Y = —
= —Tgesl3h (TRS =S rowl ) +TsesTsh s + 5 <TR5c =S rMw )

(32)

(33)
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Thus the key step is to bound T||§||C>C and || S5, T(’“)W(k; o by %*. We will first consider T||§||oo

We have the following Lemma in (Ravikumar et al., 2011) (Lemma 5):

Lemma 5. For any p € RV*N | If we have ||pl < sz then the matrix J(p) = 37, (—=1)*(Q1p)* will satisfy
|HJTH|OO < 2 and the matrix R(p) := (1 + p) =1 — Q=1 + Q71 pQ =1 will satisfy:

R(p) = Q7 'pQ 7 pJ (p)Q! (34)
and
1R(p) e < SdlollZr G5)
Here ks, := ||Z|| = |27 ||, d := maxi<icn # {5 : 1 < j < N, Q5 # 0}

For R(p) defined in the above Lemma, we vectorize R(p)gs and then we have

—> _ _ _ _ _
R(p)s =vec ([(Q+p) ™' = Q71 ) + vec ([ pQ7]s)
=vee ([(Q4p) s — [Q7'] s) + Tsspd
where the first line follows from the definition of R(p) in Lemma 5 and the second line follows from (30)

Define 1 := [|T54||.. For @ € RV*¥, define the subgradient of (21) as G(Qs), i.e., G(Qgs) = —T[Q s +

Zle T(k)igk) + AZg. Since we have proved in Step 1 that ¢ is strictly convex, Qg is the only solution of the restricted
problem of (21). Therefore (25 is the only solution that satisfies the stationary condition G(€2g) = 0.

(36)

Next for p € RN*N  define F(pg) = —%fggﬁ(()s + ps) + pg. Then:
F(pd) =pé & G(Qs +ps) =0 Qs+ ps = Qg

Thus the fixed point of F'(+) is U'g = Qs — Qg and it is unique.

Now define r := 2kp (T + ZK T(k) Tngd’ m} Define the ¢, radius-r ball

B(r) :={ps : ||psllec < r}. ForVps € ]B(r), define p = (pg,0), i.e., [p]s = ps and [p]se = 0. We have:

(k)||oo). Suppose 7 < min{

K
G(Qs +ps) =T (—[(Q+p) s +[Q27Ys) + Y THW +2Zs
k=1

Then,

K
1- _ B _ -
F(ps) = — T g5vee (T (-[@+p) s +[Q27Ys) + > THW + Azs> + 73

k=1
=Ty {vec ([(+ )]s = [27"]s) + Fssps} — Lggvec (Z TRW + /\Zs> a7
k=1
—T31R(p)s — =T'5} (Z T<k>—§ +)Z )
T
Va

where the third line follows from (36). For V5 defined above we have:

Valloo <58 1525 + Z T ww
,\ T(k)
T
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where the first inequality follows from (18), the second inequality follows from (23) and the third line follows from the
definition of r.

For V; defined in (37) we have: ~
Villso < [ITss /I L IIR(0) 5 loo

< rpl[R(p)lloo

3
< kp | =drd 2

2

IN

3
idm%ﬁfr
T

< Z
-2

where the first inequality is due to (18) and the second inequality is due to Lemma 5 and ||p||oc = ||p5]|co < 7

Thus ||F(p&)||lse < 7, F(pd) € B(r), which indicates F(B(r)) C B(r). By Brouwer’s fixed point theorem (see e.g.,

(Ortega & Rheinboldt, 2000)), there exists some fixed point of () in B(r). We have proved that the fixed point of F'(-) is
U and it is unique, therefore g € B(r), i.e., | ¥ = [[Vs|lsc < r. Thus by Lemma 5, || R(¥)||oc < 3d[¥|/Z k3.

From all the reasoning so far, we have the following Lemma:

( .
Lemma 6. Ifr = 2xp (% Iy, TTMW(I“)Hoo) < min {3712(1, m} then

=
[V]low <7

and

3
IR(W) o < P |20n%

If || Zszl *W(k) oo < & with € > 0, then choosing A = 875 we will have

a

- aA
TEOWE < =2
b> oo < %
k=1
as well as X«
A 7® 8
— 9 | 2 (k) (2
r = 2kp <T+szl 7 WPl | < 26p <a+1>5
For &£ < §* := 2Kf&2+8)2 min { Snliw Sﬂ%lﬁfd }, we have r < min {@, Wlnfd } Thus according to Lemma 6, we have
8
1) = [ slloe <7 < 2 (- +1)
Therefore,
3
1R(®) oo <5dlW[IZ k3,
8 2
< 6dn%m% (a + 1) 52
8 2\ ax
3.2
= <6dl‘i2;‘€r (a + 1) f) 87
a
< =
- 8T
Then by Lemma 4, Zge o < 1 and the strict dual feasibility condition is fulfilled. According to the primal-dual witness

approach, supp(€2) = supp(£2) C supp (Q2).

From all the reasoning so far, we can state the following lemma.
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Lemma 7. [f|| ZK TW (*)|| oo < & with € € (0,68*], then choosing X = 32, we have Q) = Q, supp(Q) C supp (Q)
and

A = 8
9= Sl = ¥l < 20 (2 4 1) ;
() (i) .
For the next step, we need to prove the tail condition of ZK L=w® thatis, for £ > 0, | ZK TW®| o < ¢ with
high probability.
B.8. Proof of the Tail Condition
Note thatfor k =1, ..., K,

W =50 £ =5 5 L 50 _5=5® 5G4 (Q4 A<k>)‘1 _s (39)

Here {A(®}X | are ii.d. random matrices following the distribution P specified in Definition 3. To achieve the tail
condition of ZK T(k)

respect to the empmcal sample covariance matrices {f](k) } 15:1 separately.

W), we can bound the random terms with respect to {A(k)}iil and the random terms with

We have assumed that the sample size is the same for all tasks, i.e., there are n samples for each of the K tasks and
T®) /T = 1/K. For the sample covariance matrices, we have the following lemma:

Lemma 8. For {Xt(k)}l <i<n,1<k<K following a family of random N -dimensional multivariate sub-Gaussian distributions
of size K with parameter o described in Definition 3, we have

K 1 (k) (k) nKuv?
&(k o (k
P E — (X7 =X >v| <expq — 40)
L_lK( ! J> ] { 128(1—1—402)272}
and
||§ (m w)) oo > | <2N(N +1)e nkv? 1)
[e%e] = X -
P11 (14 402)% 2

for k) = L~ x B (XN 1 <4 j < N, and0 < v <8 (14 402) 7

The proof of this lemma is in Section G.
For {AMW}K we have the following lemma

Lemma 9. For {A(k)}szl in a family of random N -dimensional multivariate sub-Gaussian distributions of size K with
parameter o described in Definition 3, define

K K
1 _ -1
(K il (k)

HAD,. A Z 2> (2+a®) 42)

k: k=1

Then we have
AL K2

Pl|[H — E[H]||, > t] < 2Nexp{ 1;;3“2} (43)

fort > 0and Anin = Amin(Q).

The proof of this lemma is in Section H.

Our goal is to find a probability upper bound for || ZK T(k) W) oo > & with 0 < & < §*. According to (39) and the
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condition 8 < §*/2, we have

K

|@f“ww 1> Loy
T k:lK >
L (a0 5 L\ s
SHZ?(E -5 ) ?ZE = Yoo
k=1 k=1
W]
=" = (5% = £0) oo + | H — E[H] + E[H] - £ (44)
k=1
K 1 B
=13 = (5% = £9) lloo + I1H — ELH]Il, + IELH] — Sllos
k=1
W]
< 2 () _ 5k
<Y (8 ) oo + 1H — ELH] I, + 8

b
Il

1

where we have used the property that || A[|, > ||A||« for any matrix A (see e.g., (Horn & Johnson, 2012)).
Now for ¢ € (0,9*/2], consider

£=6+6%)2 (45)
then0<§§5*,5+7§£and)\:%:%.

According to the condition 3 < 6* /2, we know that 6* /2 — § > 0. Set t = §*/2 — (3 in (43). Then,

128¢2 2

max

MK /6 2
PHH—EUMM>5V2—MS2Nmm< min (—B)) (46)
By (44) and (45), we have

K R B 5
{ Z% (m) - z(k)) loo < dand [|H —E[H]||, < < — 5} = {|| Z W<k>|| }
k=1

and thus

[” Z W(k)H < g] >P [H Z ( - i(k)) o <dand ||H —E[H]|l, < 5 ﬁ]

K

1 /e = 0*

=vwa@W—zWMm>mwm—mmm>2—4
k=1

K
>1—< l”Z ! (i(@_i(@) oo > 6

k=1

1 ALK (6 2
=1-P [ ( k>—2<’€>) >5]—2Nexp< S (2—5)>
1

max

(47)

+PMH—M]M>—B>

where we have applied (46) for the last step.
When0 < § < 8 (1 + 402) v, we can let v = § in (41) to get

Ko nKs?
—(S® —S®) |0 >0] <1—2N(N +1)exp{ — 48)
|%2K( ) <1 2N+ Dexp § ~ e (
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When § > 8 (1 + 40?) v, we set v = 8 (1 + 402) v in (41) to get

K K
P lll > & (50 - 50 g > 51 <P [n 3 (809 -5 o > 8 (14 40?) 7}
k=1 k=1

nK(8 (1 +40?) )32
<2N(N + 1) exp { o8 (i - 402)2)72 49)

_ON(N + 1)exp{—n2K}

Consider the maximum value of the two upper bounds in (48) and (49). We can get
K nk 6> nk
P —(i](k)—i(k)) 0o > 0| <max{2N(N +1)expq — J2N(N + 1) ex {—}
[n; = [ (V+ Dexp § ~ e s (VW Dewp | =

2
=2N(N + 1)exp —@min 5—2,1
2 64 (1 + 402)” ~2

(50)
According to (47) and (50), we have

* 2
[”Z —w®|, < g} >1-P [”Z (W) —2(’“>) oo > 6] —2Nexp< IA;;;K (62 —ﬁ) )

de

2
>1-2N(N + 1) exp —ﬂmin 5—2,1 (51)
64 (1 + 402)% 72

2
XL 5* 2
9N mm z
eXp( 12862, <2 ﬂ) )
Namely, with probability at least

nk 52 Ao o i
1-2N(N +1 ——— mi 1 —2N it 2
W Dexp < 2 { 64 (1+ 402)272’ }> o < 128¢H0x ( 2 B) >

T(k)

we have || ZK W) || < € < 6%, supp(Q) C supp (Q) and according to Lemma 7, we have

A = 8 8
19— 0 = e < 20 (24 1) €=ne (5 41) 254)
which completes our proof of Theorem 1.

C. Proof of Theorem 2

We have the following lemma as a sufficient condition for the sign-consistency of (5).
Lemma 10. For € € (0,6%], if

IIZ W < i (52)

and

CUmln 8
> —
3 2Kp (a + 1> 13 (53)

where Wyin 1= Ming jjes |Qij |, then the estimate O of (5) is sign-consistent.
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The proof is in Section L.

In the remaining part of the proof, we assume that the condition 3 < 6 /2 stated in Theorem 2 is satisfied. We will consider
two cases for different wy,;, > 0.

Case (i). If
2 1 1
Wmin > ——— min e (54)

8+« 3ksd 3K Kpd

then
0< ot =6
and <
Wmin *
9 Z 2/‘6fw (CV, + 1) 1)

Thus for & = §*, (53) holds. Then according to (51), with probability at least

nkK (6% /2)2 ALK (6 2
1—2N(N+1 . S A EPAR—— I .Y — Lmin -
(N 1) exp ( g M { 64 (1 + 402)% 2’ PP T8z, \ 2 ’

nk (57)? MK (5* )2
=1—2N(N+1)exp | ——— min , 1 — 2N exp | ——22n -
( ) exp < 2 {256(1 +402)% 2 Pl 1082, \ 2 b

we have || Zszl #W(k) loo < 6* and thus by Lemma 10, we have that (5) is sign-consistent.

Case (ii). If

Wmin < 20 min 1 L
T8t 3ksd’ 3rdkpd |7

then
min 8 *
s < 2Kp ( + 1) )
2 o
and
0<dl =¢ <6
Thus
min 8
“inin 0 ( + 1) o (55)
2 le}

Now apply (51) with ¢ = §" = 6T, we have

K

(k) ! S% 2
Pl ZTTW(MHW < 5’] >1-2N(N +1)exp (—”QK min{w,lD

k=1
(S ()
>1-2N(N +1)exp (722K min {m, 1})
. 2
(S (5

2
=1-2N(N +1)exp —%min (o) 51
2 256 (1 4 402)"~2

)‘ilninK 0" ?
—2Nexp <_128c$nax (2 _ﬁ) )
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Therefore with probability at least

nK (1) MK (5* )2
1—2N(N +1)exp [ ——— min , 1 —9Nexp | ——min— (-~ _
(N +1) p< 2 {256(1 t402)2 42 Pl 182\ 2 7/

T(k)

we have || ZkK 1 W®)| ., < ¢ and thus by Lemma 10, sign-consistency is guaranteed.

In conclusion, when 7 < 47 /2, with probability at least

nkK . (612 MK (6 2
1—2N(N +1 e O g l) oNexp | —Smin (0
(N + )eXp( 2 mm{256(1 +do2)2y2 P | “1age2 (3 77

the estimator €2 is sign-consistent and thus supp(Q) = supp (Q), which completes our proof of Theorem 2.

D. Proof of Theorem 3

For VQ € [-1/(2d),1/(2d)]N*N, let Q(E) := I + Q ® mat(E) for E € £ where £ is the set of all possible values of
E generated according to Theorem 3 and mat(E) € {0, 1}V*¥ is defined as follows: mat(E);; = 1if (i,7) € E and
mat(E);; = 0if (4,5) ¢ E for VE € £. Then we know (E) is real and symmetric. Thus its eigenvalues are real. By
Gershgorin circle theorem (Golub & Van Loan, 2012), for any eigenvalue A of Q(E), A lies in one of the Gershgorin circles,
ie, A —Q(E);;| < Zl# |2(E) ;1| holds for some j. Since mat(E);; = 0 and |Qj;| < 2—1d forl1 <[ < N, we have
QE)j; =1land 32, [Q(E)j| <d- 55 = 5. Thus A € [2,2
multiple Gaussian graphical model. Now cons1der Q(E)~!. Because any eigenvalue p1 of [(E)]~! is the reciprocal of an
cigenvalue of QX(E), we have |u| € [2,2].

] and Q(F) is positive definite. Thus, we have constructed a

Use A1 (A) to denote the largest eigenvalue of matrix A. for E, E’ € £, according to Theorem H.1.d. in (Marshall et al.,
2010), we have

AM(QENUE) ) < M(QUENM(QE) ) <

M\w

which gives us
tr (UE)QUE)™") < NA(QUENQUE) ') <3N (56)

For Q = {Q(k)}szl, we know that there is a bijection between £ and the set of all circular permutations of nodes
V = {1,..,N}. Thus |£], i.e., the size of £, is the total number of circular permutations of N elements, which is
Cg := (N —1)!/2. Since F is uniformly distributed on &, the entropy of E given Q is H(E|Q) = log Cg.

Consider a family of N- dimensional random multivariate Gaussian distributions of size K with covariance matrices

from each of the K distributions. Then for the mutual mformatlon ]I(X E |Q) We have the following bound:

I(X; E|Q) < ZZKL g0l Px|e.0)

E E'
02 ZZZZKL X(k)\EQ(k)HPXU‘)\E' Q(k))

E E' k=1t=1 (57)
“cz ZZZ {U(I-i-Q(k)@mat( ))(I+Q(k)®mat(E))‘1)

E E' k=1

— N +log

det(I + Q" © mat(E))
det(I + QW © mat(E’))]

Since the summation is taken over all (F, E') pairs, the log term cancels with each other. For the trace term, by (56), we
have
r ((1 +0O® & mat(EN(I +Q® & mat(E))_1> <3N (58)
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forl <k < Kand E,E’ € £. Putting (58) back to (57) gives

I(X; E|Q) < %ZZZ (3N — N) = nNK (59)

E E k=1

For any estimate S of S, define £ = {(i, ) : (i,j) € S,i # j}. Since E C S, we have P{S # S} > P{E # E}. Then by
applying Theorem 1 in (Ghoshal & Honorio, 2017), we get

P{S # S} > P{E # B}
I(X; S1Q) + log2
=TS
_ nNK +log?2
log[(N —1)!/2]

For log((N — 1)!), we have:

log((N Z log

N-1
2/ log zdx
1

=(N—-1)log(N—-1)— N +2

N -1
=(N—-1)logN + (N —1)log +2-N

Since

N -1 1
(N —1)log +2:2—(N—1)log(1+Nl)22—1>0

we have
log((N—-1)!)> (N —-1)logN — N =NlogN — N —log N
log((N —1)!/2) =log((N — 1)!) —log2 > Nlog N — N —log 2N
For N > 5, Nlog N — N —log 2N > 0, thus we have

nNK + log2 nNK + log?2

P{S#S}>1- log[(N —1)!/2] =~ NlogN — N — log 2N

which completes our proof of Theorem 3.

E. Proof of Theorem 4

By assumption, we have successfully recovered the true support union in the first step, i.e., supp( ) = S. Since there are
constraints that supp(2) C supp(£2) = S and diag(€2) = diag(£2) in (6), we have

(KD () = (REFD Q) — log det ()

. (60)
= (SEFDS ) —logdet ()
where S(EK+1).5 .— (fngH), 0) . Then the Lagrangian of the problem (6) is
(D) 4+ N9 + (s, D) + (v, diag(@ — ) (1)
where 1 € RV*N 1 € RV are the Lagrange multipliers satisfying j1g = O Here we set = S(K+1).5 (E(K+1) 0)
and v = dlag(E(K+1) — 2E+D)Y in (61). Define WE+D) .= S(K+1).8u _ $3(K+1).50r  With the primal-dual witness

approach, we can get the following lemma similar to Lemma 7.
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Lemma 11. Under Assumption 2, if ||[WE+D |, < & with ¢ € (0,054, then choosing X = 06(2731), we have
supp(QUETD) C supp (QEFD) and

. _ 8
[QUEHD — QU+ < 2r ey <a(K+1) + 1> 3 (62)

The proof is in Section J.

By the definition of (K1), we know that Wt ) = 0 and Wi ™Y = [SUKH) - D] Thus || F+D]|,, =

[[SE+D - SEFD]g | . Since we have assumed || S5+ ||, < 4K+ according to Lemma 8 and the proof of (50),
we have

off

P [|wE+D) < 5(”1”} _p [”g(fm) sy < 5<K+1>,q

(K+1) (K+1),1)2 (63)
n © ) 1})

St 2l exp (_ 2 min{64(1+4a2)2(v<”1>)2’

because Sy is symmetric.

Similar to Lemma 10, we have the following lemma for the sign-consistency of QUEFD i (6).
Lemma 12. For & € (0,6K+D*] if
W < (64)

and
(K+1)

min 8
2 2 2Kpucey (a(K+1) * 1) ¢ (63)

, then the estimate QEFD iy (6) is sign-consistent.

where wWyin 1= ming jyes [€i;

The proof is in Section K. Similar to the proof of Theorem 2, we consider two cases of wl(ﬁj_ b,
Case (i). If
20K +1) 1 1
wgf:l) > 3T oKD min { s dEFD 3/€%(K+1)/‘6F(K+1>d(KH) } (66)
then
0 < §EFDT — 5K+«
and

(K+1) 8 ( :
min _ K+1),x
T > QHF(K+1) (OM + 1) )
Thus for £ = §E+L.* (65) holds. Then according to (63), with probability at least
(K+1) (§(K+1)1)2
n .
1 — 2|Sos| exp <— 5 mln{64(1_’_402)2(7([(“))2,1})

we have || (K+1) loo <= §(K+1):* and thus by Lemma 12, we have that (6) is sign-consistent.

Case (ii). If

(K+1) 2aE+Y 1 1
. ——— INIn
— 8 + a(K+1) ks d KD 3’€%(K+1) ki dEHD

then
(K+1)

min 8 K+1),x
T < 2Iif(K+1) (OM + ]_) (5( )

and
0 < §EFDT — s(E+1) < SUEAH1),x
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Then

(K+1)

: 8
m;l - > 2K{p(K+1) (a(K+1) + 1) SUE+1)./ (67)

For £ = §(K+1)/ = §(K+1).T (65) holds. Now according to (63), with probability at least

. o5 n(K+1) ) (5(K+1),T)2 .
— 2| Sof| exp < 5 mm{64(1+402)2(7(K+1))27 })

we have ||[IWE+D|| o < §EFD = §(K+1):1 and thus by Lemma 12, sign-consistency is guaranteed.

In conclusion, with probability at least

. o5 n(K+1) ) (5(K+1),T)2 .
— 2| Sof| exp ( 5 mm{64(1+402)2(7(K+1))27 })

the estimator (1) is sign-consistent and thus supp(Q(X+1) = supp (5 +1), which completes our proof of Theorem
4.

F. Proof of Theorem 5

For VQ € [~1/(Nlogs),1/(Nlogs)|V*N, BEE+D ¢ € we know Q(EEFD) = T + Q © mat(E5+Y) is real and
symmetric, where mat(-) € {0, 1} *¥ is defined in the proof of Theorem 3. Thus its eigenvalues are real. By Gershgorin
circle theorem (Golub & Van Loan, 2012), for any eigenvalue A\ of Q(E(K ‘H)), A lies in one of the Gershgorin circles,
ie, [N = QEEF) ;1 < 37 [QEEFD) ;)| holds for some j. Since mat(EH+Y) ;5 = 0 and [Q;| < 1/(Nlogs)
for1 < [ < N, we have Q(E(K‘H))jj = 1. Meanwhile, there are at most s/2 non-zero elements in any row of

mat(EX V) because |[EEHD| < s and mat(EH D) is symmetric. Thus -, [Q(E) ;| < 3N15gs- Then we have

A€ [1 — o fog -1+ 5y fog s} and Q(E (K *1)) is positive definite. Thus, we have constructed a Gaussian graphical model.
Now consider Q(E(E+1))~1, Because any eigenvalue y of Q(EE+1))~1 is the reciprocal of an eigenvalue of Q(EE+1),
we have [p| < 1/(1 = gx55)-

For any E(X+1) | p(K+1) ¢ € according to Theorem H.1.d. in (Marshall et al., 2010), we have

~ - 14+ 3 —
AI(Q(E(K+1))Q(E(K+1))—1) < )\1(Q(E(K-H))))\l(Q(E(K+1))—1) ~ _ " 2Nlogs

T 1= 2Nfogs
which gives us
5 B 1+ ~——
tr (Q(E(K+1))Q(E(K+1))—1) < N)\l(Q(E(K+1))Q(E(K+1))—1) < Nl 2Niogs (68)
~ 2Nlogs

According to the definition of £, we know that |£| = 25/2. Since E(X*1) is uniformly distributed on £, the entropy of
EE+1) given Q is

H(BXD|Q) = log|€] = S log2 (69)

Now let X := {X,}1<i<, be the samples from a N-dimensional multivariate Gaussian distribution with covariance b))
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generated according to Theorem 5. For the mutual information I(X; E(X+1)|Q), we have the following bound:

1
IXEFQ) <— > > KL(Pxpuesn ol Pyaocen o)
| | E(K+1) f(K+1)

Z Z ZKL Px,|pacen, QHPXt\E<K+1) Q)

E(K+1) E(K+1) t=1
= > [ ( (I +Qemat(EEtINTI +Q o mat(E(K“)))*l)
E(K-H) E(K+1)
det(I +Q ©® mat(E(K“)))}
det(I + Q ® mat(E(E+1)))

(70)

Since the summation is taken over all (E(X+1) | E(K+1)Y pairs, the log term cancels with each other. For the trace term, by
(68), we have

_ 1 + S5
tr ((1 +Qomat(EETINI+Q o mat(E<K+1>))*1) < N% (71)
" 2Nlogs

for B+ pUK+HL) ¢ £ Putting (71) back to (70) gives

I(X; EE+D|Q) ggi Sy <2NlogN>

E(K+1) B(K+1) 2N log s
__ns 1 72)
S
2logs1— TN Tozs
2ns
~ logs

According to our assumption that 4 < s < N.

Define B(K+1) .= {(,5) € SE+D) # j}. By applying Theorem 1 in (Ghoshal & Honorio, 2017), we get

P{SETD 2 GUCHDY SprRUcHD) o fK+1)
- I(X; EE+D|Q) + log 2
- H(EXAD|Q)
120255 +log?2
log €]
_y_ Toar +1og2
5 log 2
4n 2
(log2)(logs) s

where the third inequality is by (72).

G. Proof of Lemma 8

We first prove the following lemma showing that (40) and (41) hold for deterministic covariance matrices {Z(’“) }le.
Lemma 13. For K deterministic matrices {SW YK and v > |EW|| for 1 < k < K, consider the samples
{Xt(k) b<t<ni<k<x C RY satisfying the following conditions:

(i) E [Xt(k)] — 0, Cov (Xt(k)> =SWfr1<t<n, 1<k<K;

(ii) {Xt(k)} are independent;
1<t<n, 1<k<K
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(k)

(iii)
VEi

Then for the empirical sample covariance matrices {ﬁ](’“)}kKZl, (40) and (41) hold for 1 < 1,5 < Nand 0 < v <
8 (1+40?) vy

is sub-Gaussian with parameter o for 1 <1 < N, 1 <t <n, 1 <k < K.

Proof. First consider the element-wise tail condition. For 1 < ¢, 57 < N, we need to find an upper bound of the following

probability:
K n
[Kzz®u$@%p4 -

_ N X% oy XE £
Lets; := maxi<g<K Z(k (k) . (k) (k) .

) — 3
iis S5 = maxlSkSKZ ti T A Xig \/? i \/W We have

o= {5 (058 )|

Define U(k) X(k) Xt(kj), Vt(f]) : Xt(lz) — Xt(k-). Then for any r € R,

4;()?5,’?)?5,’?—%?))=kZ;{(Uf’2) 2(r+p(’“>)} kt{(t”) (—ﬁE—j—“))} (74)

) ) )

Thus
2nKv
3 <P || { ) 2 (v }\>
) -2
(75)
2nKv
P ‘ (f) r— 5 }‘>
Now define )
k k (k
28 () 2 (r+ 1)
Applying the inequality (a + b)™ < 2™(a™ 4+ b™) on Zt( 12, we have
k) |m m k _(k
sl <o e ot + (o o))
S(k) 5 ()
Let (" = /2 r? =y [ 25 then
ZH 2 g0 g0 _ g0,
_ ® (k)
WhereXt(,Iz) = 2 g N

Assume that )_(t(’lz) is sub-Gaussian with parameter o for < i < N, 1 <t < n,1 < k < K, and then we have
E [ep (M) = E e ((X0)] < o0 { 5o (1))
which shows that Xt( Z) is sub-Gaussian with parameter arf ). Then
E [eXp (/\Ut(]zg)} =E [exp ( ) exp ( t(lz)ﬂ
<8 [oxp (2059 " [exp (22)]

<en{xa* | ()" + (1))}
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2 2
Therefore Ut(f; is sub-Gaussian with parameter aff) = a\/ 2 [(rfk)) + (T‘§k)) } . Similarly, we can prove that Vt(f]) is

sub-Gaussian with parameter al(f) as well. Also note that ag?) <oy2(141)=20.
As it is well-known (see e.g., Lemma 1.4 in (Buldygin & Kozachenko, 2000)), for a sub-Gaussian random variable X with

Ao
2

parameter o, i.e., X that satisfies E [eAX] < exp ( ), we have:

Elx<2(2)" o (77)

Apply this lemma on Ut(’iz with s = 2m, m > 2 and we get

m 2 m 2m
=[] <2 (%) (o5

According to the inequality m/! > (%)m, we have

(k) |2m
m! K
Plug in (76) and we have
E||z&™\ " m]n 4 50
U t,ij } <2% [22m+1 (051?))2 ] (7"+Pw)
m! Y (ml)™
o oy 1002)
<om 42w (aij ) v :

Note that h(m) defined above decreases with m and ‘ ,65;-6)] <1

(r(k))2+(r<.k))2
Since (74) holds for Vr € R, we can choose r = % Then we have » < 1 and
2 2 2
2% = (uh)’ - ((rg’@) () 4 2[;;?)

E [Zt“ﬂ -0

Thus

and furthermore,

<h(2)

3 (ai(j’.‘))Q +4 (r + |ﬁ§f)|)

<8 (1 + (a§;>)2>

<8 (1+40?)

1
Define B := 8 (1 + 40?). If X is a random variable such that E [X] = 0, (%) "™ < Bform > 2, then

o~ XE k| e e B X Ny (AB)?
ZMA]_HZ/\ - §1+Z(/\B)§1+W
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when [A| < %. Meanwhile,
(AB)? A B? 22
1+ =< 1 < 2)°B
+1—\)\|B_6Xp 1-|\B < exp ( )
when |A| < 5L Therefore for [A| < 5L,
M (2B)?
E [e’\X] < exp (2)\232) = exp ((2>> (79)

Then for X;, 1 < i < n independent and satisfying E [X;] = 0, (%) < B when m > 2, we can claim that for

2
] < 2exp (—;;) (80)

0<e<2B,

ZXi > ne] <P {etZ?zlxi >e ]

In fact, for 0 < ¢ < 5L,
n
L_1

<e "R [et X Xl} @0

(i)
xp

nt>B? — tne)

Thus choosing t = 475 < ﬁ, we can get

- ne?
P [Z X; > ne} < exp (_832>

i=1

Similarly, we can also prove that
- < ne?
; XrL < —ne| < exp _@

2
+P ZX < ne] <2exp(—§;2)

=1

—]P’lZX > ne
i=1

1 <t<n,1<k< K. These random variables are independent by our assumption and satisfy

Thus l

Now consider Zt( Z),

1
7 _ slz0]"]\ " 2y _ : 2
E {Zm]} =0,8up,,>g | 8 (14 40®) = B by our proof. Then according to (80), for 0 < 2* < 2B, i.e
0<v<8 (1 + 402) 7y, we have:
2nK1/ AnKv? }
7! 2exp{ ————~
‘ Z t w =2 &xp { 8B2~2
(82)
nKuv?
=2exp — 5
128 (1 + 402)" 2

Since v > max; <p<i | ZF) |00 = maxj<j<n 81 > /5;5; for 1 < i,j < N, we have

2nKv k) 2nK1/
<P ‘ ANAIDS
>ty > 2

/505 55

<%e nKv? (83)
o d
=P 128 (1 +402)% 42

P[22
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Plug in the definition of Z *) we have

t,ig5°
2
S {E) 2| > S| <200 ey &
/ 5i5; 128 (1 +402)"~2
Similarly, we can also prove that for 0 < v < 8 (1 + 40?) v
InK Kv?
\Z{(m) (r—pﬁf))}!> | <2expq - (85)
\/5i8; 128 (1 4 402)" 2

Thus according to (75), we have

mmM¥K%>2ww%b2§

k
~ 2nKv
(6 )
i5j

+P
<4dexp
{ 128 (1 + 40—2)2 2 }

ie.,
n

K1A, 1K
rlIS ko)) -k 5

k=1 k=1t=1

<A4e nkv:
<pd —
=P T 128 (1 4 402)2 2

for0 <v <8 (1 + 402) ~. Then consider the £,-norm of »*F) — (k) Since i("’), 2 (k) are all symmetric and N X N,
we have the following bound:

K K
P [II > (B -2®) o> u] < MY U = (80 -5 | > u]
k=1 k:l

K2
<2N(N +1) exp{ nevy }

k k o (k
(xHx® -sP)| > 1/]
87

(88)

128 (1 + 402)%

for 0 < v < 8 (1 + 40?) v, which completes our proof of Lemma 13. 0O

Now consider the setting when { % (%) }HE_ | are randomly generated based on Definition 3. According to Lemma 13, we have

K
L ok (k) (k) K nKv?
P —(s® s >y‘ SONK | < oxpd - (89)
[; K ( %] iJ ) { }k_l p 128 (1 +402)2 72
P [” ii (2(@ _ 2(1«)) oo > y‘{zw)}kK_ll < 2N(N + l)exp{— nkv? _ } (90)
=K 128 (1 4 402)° ~2

for £k = Ly xW(XINT 1 < j < N,and 0 < v < 8(1+ 402) v with ~ specified in (2) of the corrected
condition (ii) in Definition 3.
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Then by the law of total expectation (see e.g., (Weiss et al., 2005)), we have

P [ S L (s s) P [ 5oL (st 50)
K\Y v K \7u ij

k=1 k=1
<E,- nKv?
SRS PP T g (1 4 402)7 12

nKv?
=exp{ — 5
128 (1 +402)"~2

> V‘| =Egsmyx > V’{E(k)}§_1H

Therefore,
K K
Pl Zi (g(k) B g(k)) oo > v| =Egaons [B|1Y L (g(k) B g(k)) o > V’{g(k)}x
1 K > {01, Pt K oo k=1
nKv?
<Es 2N(N + 1) exp{ —
R [ (N +1) p{ 128 (14 402)% 72 H
K 2
=IN(N +1)expq ————
128 (1 + 402)" 2

which completes the proof of Lemma 8. Also notice that the proof above does not rely on any assumption on the distribution
of {Z(k)}szl. Thus, (40) and (41) hold as long as condition (iii), (iv) and (v) in Definition 3 are satisfied.

H. Proof of Lemma 9

By definition, H is a function that maps K matrices to a symmetric matrix of dimension N, since Q%) = Q4+ A*) = 0 with
probability 1 according to condition (ii) in Definition 3. For Vk € {1,..., K}, let {AM ... A®) AT A’} be an
i.i.d. family of random matrices following distribution P in Definition 3. Consider H\¥) = H(A® ... A®) . AWK))
and Hék) =H(AD, . A®  ATF)) We have

1 _ _
-0 Ao s avy

2
Y TR P
2
1~ 5 L 0
<—|l@+ a4 —|ll@+ a®)r |
S R A
Since Pa~pl|Ally < cmax < %] = 1 with Amin = Amin(€2) by (2) and since 2 > 0, we have
B ~ ) 2Cm:
o) A(k) -1 Q—lm < Cmax < max
H‘( + ) 2 = /\min(>\min - Cmax) - >\r2nin
and
B ~ 2c
0 A/(k) -1 Qflm < Cmax max
H’( + ) 2 )\min(>\mil’l - Cmax) - )‘?nin
according to Equation (7.2) in (El Ghaoui, 2002). Plug the above inequalities in (91) and we can get
o -5 = s -« s -ot s o
1 2 K 9 K 2 KAI2nin

Fork =1,..., K, define A = %%IN with Iy € RV*N being an identity matrix. Then by (92), we have

min

(Y — ) < 47
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where X <Y «<— Y - X » 0.

2
Define 03 := H‘Zszl A2 HL = Zkl,(zl ( Acyax ) — 15¢us Then according to Corollary 7.5 in (Tropp, 2011), we have

KX2 . KX\ i
+2 A K2
B < _ < _Zmin-27 93
P Amax (H — E[H]) > #] < Nexp{ ggg} = Nexp{ 128¢2,, } &9

Consider —H(AM ..., AU)), We have
(=) = (~H3"))? < A7

The conditions of Corollary 7.5 in (Tropp, 2011) are also satisfied. Thus, we have

2 4 2
B[~ Auin (H — E[H]) > 1] = P s ((—H) — (~E[H])) > ] < N exp {—;UA} < Nexp {—jgg“} 94)

max

By (93) and (94), we have

PIH —E[H]|ly > t] =P Amax(H — E[H]) > ¢, = Amin(H — E[H]) > 1]
SP [)‘max H - E[HD > t] + P [_)\min(H - ]E[H]) > t] (95)
)‘flninl(t2
ver (=g}

which gives us (43).

1. Proof of Lemma 10

For § € (0,6], we have proved that if || Zle Tq(,k) W) | < € then [|Allo < 257 (2+1)¢ Q = Q and supp(Q2) C
supp(2).

Therefore if we further assume that

we will have o o
> A = 12— e

Then for any (i,j) € S¢ = [supp(?)]°, Qi; = 0, we have [supp(Q)]° C [supp(fl)r and thus (4,7) € [supp(fl)r,

Qij =0= Qij
For any (i, j) € S = supp(2), we have

A A A A Wmin 1 =
€3 = Qis| <2 = Ol < == =5 min Oy < 510y]
1 = A _ 1 -
= —5l] = Qij = Qi < 5]
If Qij > 0, then
1_ A _
7591] S Qij - sz
~ 1_
Qij > 59” >0

If Qij < 0, then

N 1
Qij < QQ” <0

In conclusion, sign(€2;;) = sign(€2;) for V4, j € {1,2, ..., N'}. The estimate {2 in (5) is sign-consistent.
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J. Proof of Lemma 11

Plug 1 = S(K+1),8° — (igf+l), 0) and v = diag(E(F+1 — S(K+1)) in (61). We have the following optimization problem
A(K+1) _ (K1) S (K+1),8° LKA KA1y g ¢
Q = arg min / Q) + A2 + (E , Q) + (diag(® SEHL) diag(Q — Q)

Qesy,

Now we can prove with the five steps in the primal-dual witness approach.

J.1. Step 1
For (Qgcci1),0) € SV, , we need to verify [VZ0E+D (Q)] g 41y gacsny = 0. In fact,
VE(KJFJ')(Q) _ 2(K+1)7S —_Q! (96)
VHERD@Q) =T(@) =0 e 0! 97)

For (Qgct1),0) € SV, we have I'((Qgcxc11),0)) = 0, VZAEFD(Q) & 0. Thus following the same steps in section B.2 ,
we can prove [V2/E+TD(Q)] gxer1) grern) = 0.
J.2. Step 2

Construct the primal variable Q by making Q[ sa<+nje = 0 and solving the restricted problem:

QS(K+1) =arg min f(K—H) ((QS(K+1) 5 0)) + /\||QS(K+1) ||1
(2g0c41),0)€SY, (98)

+ (DS Qg , 0)) + (diag(S5 T — K1), diag((Qsoern, 0) — )

J.3. Step 3
Choose the dual variable Z in order to fulfill the complementary slackness condition of (61):

Zij =1, if Qi >0

Zij=—1, ifQ;; <0 (99)

Zij € [-1,1], ifQ;; =0
Therefore we have 3

2] <1 (100)

J.4. Step 4

Z is the subgradient of ||Q2]|;. Solve for the dual variable Z [s(<+n]e in order that (Q, Z) fulfills the stationarity condition of
(61):
{VE(KH) ((QS(K“”O>>}S(K+1> + Mg + Indiag(RHEFD — BTy = o (101

{VE(KH) ((QS(“”’O))} stcrnge T AZjsoesn)e + Sfé{i;‘rﬂﬁ =0 (102)

where Iy € RV*Y is an identity matrix.

J.5. Step 5
Now we need to verify that the dual variable solved by Step 4 satisfied the strict dual feasibility condition:
1 Zgsexcvelloo < 1 (103)

If we can show the strict dual feasibility condition holds, we can claim that the solution in (98) is equal to the solution in (6),
ie., Q= QU+ Thus we will have

supp (Q(KH)) = supp (Q) C SUE+D) — supp (Q(K+1))
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J.6. Proof of the Strict Dual Feasibility Condition

Plug (96) in the stationarity condition of (6), we have
SEFDS Q71 4 A Z 4 SEFDST 4 Tudiag(SEH — K = ¢ (104)

Define ¥ := QO — QUE+D R(W) := Q1 — SEHD L SEFDGEEFD Notice that W E+D = S+ Sar _ 53(K+1), 5o,
Then we can rewrite (104) as

0 =SFDS _ Q1 4 AZ  SEFDS" 4 T diag(SEH! — K+
_N(E+1),S _ (Q _ K+ i(K+1)q,g(K+1)) _ SE+D 4 SEFD)GREFD) | S (K+,S°
+ Iydiag(SXF — SEFY) L AZ
=KD Sor 1 Tydiag(SEH)) — R(W) — SEFDS 4 [y diag(SE+ — K+ L A7
—0(E+D),Sor _ $(K+1),5 | S H(K+1) _ R(U) +\Z
=W EHD L SESDHEFD _ R(W) + A Z

(105)

Now apply Lemma 7 with K = 1 and we can get Lemma 11.

K. Proof of Lemma 12

For ¢ € (0,6(6FY~] in Lemma 11, we have proved that if IWED | < ¢ then [[QU+D — QU+ <
2k (srery + 1) € and supp(QUEHD) C supp(QUE+D),
Therefore if we further assume that

(K+1)

Yrnin 8
5 > 2Kpr+1) <04(K+1) + 1> 13

we will have
SEFD
Zmin HQ(K+1) _ Q(KH)HOO
9 >

Then for any (i, ) € [SE+V]¢ = [supp(QU+D)]%, QE;(+1) = 0, we have [supp(QU+1)]° C {supp(Q(K“))} and
thus (i, j) € [supp(QA )|, QD — 0 =+
For any (i,j) € S+ = supp(QE+1D), we have

(K+1)

QUSHD _ Q) < e _guen < S L g < Lgoce)
ij i = = 9 2 1<k, <N Kl — 2"

1, 5 (x+1) A+ A(K+1) _ L s (K41
= _§|Qz‘j | < Q;; — < *|Qij |
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In conclusion, sign(flz(-fﬂ)) = sign(Qg{H)) forVi,j € {1,2,..., N}. The estimate Q¥ +1) in (6) is sign-consistent.



