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Abstract

In this paper we consider the problem of learn-
ing an e-optimal policy for a discounted Markov
Decision Process (MDP). Given an MDP with .S
states, A actions, the discount factor v € (0, 1),
and an approximation threshold € > 0, we pro-
vide a model-free algorithm to learn an e-optimal
policy with sample complexity O(%) !
and success probability (1 — p). For small enough
€, we show an improved algorithm with sample
complexity O(if(llni_(}/)g)) While the first bound
improves upon all known model-free algorithms
and model-based ones with tight dependence on
S, our second algorithm beats all known sample
complexity bounds and matches the information

theoretic lower bound up to logarithmic factors.

1. Introduction

Reinforcement learning (RL) (Burnetas & Katehakis, 1997)
studies the problem of how to make sequential decisions to
learn and act in unknown environments (which is usually
modeled by a Markov Decision Process (MDP)) and max-
imize the collected rewards. There are mainly two types
of algorithms to approach the RL problems: model-based
algorithms and model-free algorithms. Model-based RL al-
gorithms keep explicit description of the learned model and
make decisions based on this model. In contrast, model-free
algorithms only maintain a group of value functions instead
of the complete model of the system dynamics. Due to their
space- and time-efficiency, model-free RL algorithms have
been getting popular in a wide range of practical tasks (e.g.,
DQN (Mnih et al., 2015), TRPO (Schulman et al., 2015),
and A3C (Mnih et al., 2016)).
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'In this work, the notation é() hides poly-logarithmic factors
of S;A,1/(1 —~),and 1/e.

In RL theory, model-free algorithms are explicitly defined
to be the ones whose space complexity is always sublinear
relative to the space required to store the MDP parameters
(Jin et al., 2018). For tabular MDPs (i.e., MDPs with finite
number of states and actions, usually denoted by S and
A respectively), this requires that the space complexity to
be 0(S2A). Motivated by the empirical effectiveness of
model-free algorithms, the intriguing question of whether
model-free algorithms can be rigorously proved to perform
as well as the model-based ones has attracted much attention
and been studied in the settings such as regret minimization
for episodic MDPs (Azar et al., 2017; Jin et al., 2018; Zhang
et al., 2020)).

In this work, we study the PROBABLY-APPROXIMATELY-
CORRECT-RL (PAC-RL) problem, i.e., to designing an
algorithm for learning an approximately optimal policy. We
will focus on designing the model-free algorithms, and un-
der the model of discounted tabular MDPs with a discount
factor . The RL algorithm runs for infinitely many time
steps. At each time step ¢, the RL agent learns a policy 7y
based on the information collected before time ¢, observes
the current state s;, makes an action a; = m¢(s;), receives
the reward r; and transits to the next state s, according
to the underlying environments. The goal of the agent is to
learn the policy 7; at each time ¢ so as to maximize the -
discounted accumulative reward V™ (s;). More concretely,
we wish to minimize the sample complexity for the agent to
learn an e-optimal policy, which is defined to be the number
of time steps that V™ (s;) < V*(s;) — €, where V* is the
optimal discounted accumulative reward that starts with s,
and the formal definitions of both V™ and V* can be found
in Section 2.

The PAC-RL addresses the important problem about how
many trials are required to learn a good policy. We also note
that in the PAC-RL definition, the exploration at each time
step has to align with the learned policy (i.e., a; = m(s¢)).
This is stronger than the usual PAC learning definition in
other online learning settings such as multi-armed bandits
(see, e.g., (Even-Dar et al., 2006)) and PAC-RL with a
simulator (see Section 1.2), where the exploration actions
can be arbitrary and may incur a large regret compared to
the optimum.
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Quite a few algorithms have been proposed over the past
nearly two decades for the PAC-RL problem. For model-
based algorithms, MoRmax (Szita & Szepesvari, 2010)

achieves the 0(8124(11117(1/);))) sample complexity, and UCRL-

~ (Lattimore & Hutter, 2012) achieves O(%“S)/p)) Itis
also worthwhile to mention that R-max (Brafman & Ten-

nenholtz, 2003) was designed for learning the more general

stochastic games and achieves the O(%l(l/p)) sample

complexity in our setting (as analyzed in (Kakade, 2003)).
Unfortunately, none of these algorithms matches the in-
formation theoretical lower bound Q(%) proved by
(Lattimore & Hutter, 2012). On the model-free side, known
bounds are even less optimal — the delayed ()-learning al-
gorithm proposed by (Strehl et al., 2006) achieves the sam-
ple complexity of O(%(}/)m) and recent work (Dong
et al., 2019) made an improvement to O(%ﬂ/ﬁ)) via a
more carefully designed ()-learning variant. Besides the
results above, (Pazis et al., 2016) provided 0) (W)
sample complexity. However, their algorithm consumes
O(%) space cost and O (%) computational
cost each step, which is far beyond the cost of both model-
based and model-free algorithms when € is small.

1.1. Our Results

We design a model-free algorithm that achieves asymptoti-
cally optimal sample complexity, as follows.

Theorem 1. By the model-free algorithm UCB-
MULTISTAGE-ADVANTAGE, for any discounted MDP
with S states, A actions, and the discount factor -,

14
any approximation threshold ¢ € (0, a = ,4)2 ) and fail-
ure probability parameter p, with probability (1 — p),
the sample complexity to learn an e-optimal policy

with UCB-MULTISTAGE-ADVANTAGE is bounded by
O(SAln(l/p))
e(1-)3%

In the theorem statement, poly(S, A,1/(1 — +)) stands for
a universal polynomial that is independent of the MDP. Our
UCB-MULTISTAGE-ADVANTAGE algorithm is model-free,
which uses only O(SA) space , and its time complexity
per time step is O(1). In contrast, the model-based algo-
rithms have to consume Q(S? A) space. For asymptotically
small €, the sample complexity of UCB-MULTISTAGE-
ADVANTAGE matches the information theoretic lower bound
of Q(%) up to poly-logarithmic terms, and improves
upon all known algorithms in literature, even including the
model-based ones. In Appendix A, we present a tabular
view of the comparison between our algorithms and the
previous works.

To prove Theorem 1, we make two main technical contri-
butions. The first one is a novel relation between sample

complexity and the so-called clipped pseudo-regret, which
can also be viewed as the clipped Bellman error of the
learned value function and policy at each time step. This
relation enables us to reduce the sample complexity analysis
to bounding the clipped pseudo-regret. Our second tech-
nique is a multi-stage update rule, where the visits to each
state-action pair are partitioned according to two types of
stages. An update to the Q)-function is triggered only when
a stage of either type has concluded. The lengths of the two
types of stages are set by different choices of parameters
so that we can reduce the clipped pseudo-regret while still
maintaining a decent rate to learn the value function. Finally,
we also spend much technical effort to incorporate the vari-
ance reduction technique for RL via reference-advantage
decomposition introduced in the recent work (Zhang et al.,
2020).

A more detailed overview of our techniques is available in
Section 4. Since the proof of Theorem 1 is rather involved,
we will first provide a proof of the following weaker state-
ment, and defer the full proof of Theorem 1 to Appendix D.

Theorem 2. By the model-free algorithm UCB-
MULTISTAGE, for any approximation threshold
e € (0, ﬁ] and any failure probability parameter
p, with probability (1 — p), the sample complexity to

learn an e-policy with UCB-MULTISTAGE is bounded by
o)
€ _’Y 9.0 .

We highlight that the sample complexity bound in Theo-
rem 2 holds for every possible ¢ € (0, ﬁ] Although the
dependency on «y becomes (1—+)~5-5, UCB-MULTISTAGE
still beats all known model-free and model-based algorithms
with tight dependence on S. The proof of Theorem 2
does not rely on the variance reduction technique based
on reference-advantage decomposition (Zhang et al., 2020),
but is sufficient to illustrate both of our main technical con-
tributions.

1.2. Additional Related Works

The PAC-RL problem has also been extensively studied
under the setting of finite-horizon episodic MDPs (Dann
& Brunskill, 2015; Dann et al., 2017; 2019), where the
sample complexity is defined as the number of episodes
in which the policy is not e-optimal. Assuming H is the
length of an episode, the optimal sample complexity bound

is O(W), proved by (Dann et al., 2019). Note that
the sample complexity bounds for finite-horizon episodic
MDP do not imply sample complexity bounds for infinite-
horizon discounted MDP because one e-optimal episode
may contain non-e-optimal steps. Also we note that existing
algorithms for the finite-horizon case are model-based. It
is still an open problem whether model-free algorithm can
achieve near-optimal sample complexity bound for the finite-
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horizon case.

Much effort has also been made to study the PAC learning
problem for discounted infinite-horizon MDPs, with the
access to a generative model (a.k.a., a simulator). In this
problem, the agent can query the simulator to draw a sample
s' ~ P(:|s, a) for any state-action pair (s, a), and the goal
is to output an e-optimal policy (with probability (1 — p))
at the end of the algorithm. This problem has been studied
in (Even-Dar & Mansour, 2003; Azar et al., 2011; Ghesh-
laghi et al., 2012; Sidford et al., 2018b;a), and (Sidford

et al., 2018a) achieves the almost tight sample complexity
O( SAlIn(1/p) )
e(1—)3 /7

2. Preliminaries

A discounted Markov Decision Process is given by the five-
tuple M = (S, A, P,r,7), where S x A is the state-action
space, P is the transition probability matrix, r is the de-
terministic reward function? and «y € (0, 1) is the discount
factor.

The RL agent interacts with the environment for infinite
number of times. At the ¢-th time step, the agent learns
a policy m; based on the samples collected before time
t, observes s;, executes a; = m(st), receives the reward
r(st, at), and then transits to s;1 according to P(-|s¢, at).

Given a deterministic® stationary policy 7 : S — A, the
value function and () function are defined as

lZ v 17" St’ﬂ' St)) S1 =S8,a¢ = W(St))]

Q" (Sa CL) = r(s,a) + ’YP(|57 a)TV
where we use zy to denote x "y for  and y of the same
dimension and use P , to denote P(-|s, a) for simplicity.

The optimal value function is given by V*(s) =
sup, V™ (s) and the optimal @Q-function is defined to be
Q*(s,a) =r(s,a) +vPs o V* forany (s,a) e S x A.

We present below the formal definitions for sample com-
plexity and PAC-RL .

Definition 1 (e-sample complexity). Given an algorithm
G and € € (0 %,Y], the e-sample complexity for G is

pIrey! [V*(St)’—l V7™ (se) > el

Definition 2 ((¢, p)-PAC-RL). An algorithm G is said to
be (e,p)-PAC-RL ( Probably Approximately Correct in RL)
if for any € € (0, = 7] p > 0, with probability 1 — p, the

™t is easy to generalize our results to stochastic reward func-
tions.

3In this work, we mainly consider deterministic policies since
the optimal value function can be achieved by a deterministic
policy.

= T(S, CL) + ’yps,avﬂ—»

sample complexity of G is bounded by some polynomial in

(SA——ln( ))-

1 e 1—n?

When € and p are clear in the context, we simply write (e, p)-
PAC-RL and e-sample complexity as PAC-RL and sample
complexity respectively. The goal is to propose an PAC-RL
algorithm to minimize the sample complexity.

3. The UCB-MULTISTAGE Algorithm

In this section, we introduce the UCB-MULTISTAGE
algorithm. The algorithm takes S, A, vy,¢€, sets H =

W, = 7} and B = +/H. Throughout the
paper, we set ¢t = In(2/p). The algorithm is described in
Algorithm 1. For each state-action pair (s, a), the samples
are partitioned into consecutive stages. When a stage is
filled, we update (s, a) and V(s) according to the sam-
ples in the stage via the usual value iteration method. The
most interesting aspect about our method is that two types
of stages, namely the type-I and type-II stages, are intro-
duced. More concretely, the length of the j-th type-I stage
is roughly é; ~ H (1 + 1/H)?/ and the length of the j-th
type-1I stage is roughly &; ~ H(1 + 1/H).

max{

We note that the recent work (Zhang et al., 2020) designed
a (single-)stage-based model-free RL algorithm for regret
minimization. Our type-II stage is similar to their work, and
its goal is to make sure that the value function is learned
at a decent rate. In contrast, our type-I stage is new: it is
shorter than the type-II stage, so that triggers more frequent
updates and helps to reduce the difference between the value
functions learned in neighboring type-I stages. The hyper-
parameter B is used to adjust the frequency of type-I updates
(i.e., updates triggered by type-I stage). The two types of
stages work together to reduce the clipped pseudo-regret,
and therefore achieve low sample complexity.

The precise definition of the stages. Let d; = H,
djs1 = [(1 + £)d;] for all j > 1. The sizes of the j-
th type-I and type-II stage are given by é; = dj;/p) and
€; = d; respectively.

3 5 2
Let No = c; - M for some large enough

constant ¢;. We stop updatlng Q(s,a) if the number of
visits to (s, a) is greater than Ny, since the value functions
will be sufficiently learned by that time.

Therefore, the time steps when an update is triggered by

the typeI and type-II stages are respectively given by

= {7 6l <5 < J}andﬁ = {7 el <

< J}, Where J = max{]|zl 1€ < Ny} and J =

max{j| SV~ e < No} . Without loss of generality, we
assume that 37 & = No.
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The statistics. We maintain the following statistics during
the algorithm: for each (s, a), we use N (s, a), N(s,a), and
N (s,a) to respectively denote the total visit number, the
visit number in the current type-I stage and the visit number
in the current type-II stage of (s,a). We also maintain
(s, a) and fi(s, a), which are respectively the accumulators
for state values V' (s) (where s’ is the next state observed
after (s, a)) during the current type-I and type-II stages.

~s

We also remark that throughout the paper we will use
to denote the quantities related to the type-I stage, and use
‘”’ to denote the quantities related to the type-II stage.

Algorithm 1 UCB-MULTISTAGE
Initialize: V(s,a) € S x A: Q(s,a) — = ’y’
N(s,a), N(s,a),N(s,a),ji(s,a), fi(s,a) < 0;
fort=1,2,3,... do
Observe sy;
Take action a; = arg max, Q(s¢, a) and observe s;1;
\\ Maintain the statistics

«—

(s,a,s") « (st,at, St+1);

n:= N(s,a) < N(s,a) + 1;
7= N(s,a) — N(s,a) +1;
fi:= fi(s, a) — fi(s,a) + V(s');
n:= N(s,a) <« N(s,a)+ 1;
fi:= (s, a) — [i(s,a) + V(s');

\\ Update triggered by a type-I stage
if n € £ then

b — min{2+/H21/7,1/(1 — 7)}; (1)
Q(s,a) < min{r(s,a) + 'y(ﬂ/ﬁ) +0,Q(s,a)};

2
N(s,a) < 0;
fi(s,a) < 0;
V(s) « maxQ(s,a);
end if
\\ Update triggered by a type-II stage
if n € £ then
b« min{2/H2/n,1/(1 —7)}
Q(s,a) < min{r(s,a) + v(f/n) + b, Q(s,a)};
3)
N(s,a) < 0;
f(s,a) <« 0;
V(s) < maxQ(s,a);
end if
end for

4. Technical Overview

Both of the algorithms introduced in this paper are variants
of -learning, where the optimistic value function V" and the
(Q-function are maintained. For each time ¢, we use V; and
Q: to denote the corresponding functions at the beginning
of the time step. The learned policy m; will always be the
greedy policy based on @y, i.e., m;(s) = arg max, Q+(s, a)
for all s € S. Below we explain the main techniques used
in UCB-MULTISTAGE as well as UCB-MULTISTAGE-
ADVANTAGE.

Reducing Sample Complexity to Bounding the Clipped
Pseudo-Regret. For any time ¢, define the pseudo-regret
vector ¢, to be the vector such that for any s € S,

¢u(s) = Vi(s) = (r(s,me(s)) + ¥ Psm () V2)-

We now outline our first technical idea that the sample com-
plexity can be bounded by the total clipped pseudo-regret,
approximately in the form of (5) (up to a ! factor and an
additive error term).

Note that ¢, can also be viewed as the Bellman error vector
of the value function V; and the policy 7;. Let P, be the
transition matrix such that P, (s) = P () forany s € S.
By Bellman equation we have that

V-V
=Pr, (Vi = V™) + ¢4
= (VPﬂ)Q(Vt - V) + VPr Pt + Pt

(Vpﬂt)iqst'

[l
s

I
o

K2

Define clip(z,y) = zl [z > y] for z,y € R and

clip(z,y) = [clip(z1,%), ..., clip(z,,y)] "
forx = [z1,...,2,]" € R™.
Therefore, if Vi(st) — V™ (s:) > ¢, then for some constant
M > 1,
[ee]
- e(l —
1], 3 (e elipa, o)
i=0
: e(l—9)
>1] Pr,)" | ¢ —
St ;(’Y t) <¢t M )
0
1 e(1-9)
=17 P, )" )
St 1;0(7 t) ¢t 1— v M
€
= Vilse) =V™(se) = 57
(M —1)e
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where 1, is the unit vector with the only non-zero entry at
s and the first inequality is by the fact clip(z,y) = x — y
for z,y > 0. Forany H = O(In(((1 —v)e)~1)/(1 —v)),
it then follows that

[[Vi(se) = V7™ (s1) > €] e

( Z VP, ) clip(6y, €(1 7)/M)>- €)

We now sum up (4) over all time steps ¢. If we can carefully
design the algorithm so that 7, V; (and therefore ¢;) do
not change frequently, we have m; = m4; and ¢y = @y
for small enough ¢ and most ¢, and therefore we can upper
bound >}, I[Vi(st) — V™ (s¢) > €] € by the order of

)/ M)

3 (P, elip (G (1 —7)/M)
1=0

clip(g¢(se), e(1

t=>1

—7)/M), (5)

where the approximation (5) also uses the assumption
that 7y = my; and ¢ = ¢¢y; hold for most ¢ and
7. In Lemma 5, we formalize this intuition and show
that if we set M = 8H(1 — ), the sample complexity
=1 L[Vi(s:) — V™ (s¢) > €] can be upper bounded by
O(H /e€) - 33y~ clip(@¢(st), €(1 —v)/M) (plus an additive
error), and therefore we only need to upper bound the total
clipped pseudo-regret.

The Multi-Stage Update Rule. As stated before, the de-
sign of type-I stage is our main technical contribution. To
better explain the intuition and motivate the type-I stage, let
us consider a fixed state-action pair (s, a). Suppose at time
step (t—1), (s, a) is visited and the visit number reaches the
end of a type-I stage, then the following update is triggered:

Q+(s,a) < min{r(s,a)

3<\~2

where 7 is the number of samples in this stage, [; is time
of the i-th sample in the stage, and b denotes the explo-
ration bonus. Thanks to the update rule, V; and ), are
non-increasing in ¢. By concentration inequalities and the

Z Sl +1 Qt—l(sva)}v

proper design of b, we get
Qt (37 a)

< r(s,a) + 20 + P o

§<\~2

3

. 1 &
<r(s,a) 4+ 2b+vPs o Vi +vPs .0 (V Z Vi — Vt>
na

(6)

< 7r(s,a) + 20 + Py o Vi + YPs.o(V, — V5), (7)

where ¢t = min; Zi is the start time of the stage and ¢ is the
start time of the next stage. Let a = m,(s). By the definition
of ¢;(s) and optimism of V;, when Q;(s,a) — Q*(s,a) <
€(1 —~v)/M, we have that

clip(y(s), e(1 —~)/M)
< clip(Q¢(s,a) — Q*(s,a),e(1

In the case Q¢(s,a) — Q*(s,a) =
averaging argument we have that

clip(¢:(s), €(1 = v)/M)

\chp(2b+’yPsa(Vt Vi), e(1

< 2clip(2b, €(1 — 7)/(2M))
+0(7)-

—/M)=0 ®)

e(1 — ~v)/M, with an

—7)/M)

Ps,adip(vi - ‘/f? 6(1 - ’7)/(2M)) 9

On the benefit of type-II stages, N:(s,a)
Q:i(s,a) — Q*(s,a) < e(1 —~)/M. So it suffices to bound

I[Ni(s,a) < No]Ps,qclip(Vy — Vg, e(1 —v)/(2M))
+ I[Ny(s,a) < No|clip(2b, (1 — ~)/M) (10)

> Ny implies

‘We now discuss how to deal with the two terms and how the
parameter B affects the bounds.

Bounding the first term of (10). We first focus on the sec-
ond term (I[NVy(sy,ar) < Nol|Psqclip(Vi — V4, e(l
v)/(2M))) in (10). For each j, let t; = t;(s,a) be the
start time of the j-th stage of (s, a). The total contribution
of the second term in (10) is bounded by the order of

D)6 Paaclip (( Viiii(s,a)), €(1—7)/(2M)) .
s,a j
(11)

Thanks to the updates triggered by the type-II stages, V;
converges to V* at a rate that is independent of B. Increas-
ing B will shorten the length of the type-I stages, making
Vi 1(s,a) closerto Vi (s q), and reduce the magnitude of
(11). In Lemma 8, we formalize this intuition and show
that when M = 8H(1 — ), (11) can be upper bounded

—1(s,a) —
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by O(SAH®In(1/p)/(eB)). Therefore, choosing a large
enough B will eliminate the H factors in the numerator.

Bounding the second term of (10). On the other hand, how-
ever, a larger B means smaller number of samples in the
type-I stages, leads to a bigger estimation variance, and
therefore forces us to choose a greater exploration bonus
b. We have to choose B = ©(v/H) to achieve the optimal
balance between the two terms in (10).

To utilize the full power of our multi-stage update rule,
we would like to set B = ©(H?). However, the second
term in (10) becomes much bigger. In the next subsection,
we discuss how to deal with this problem via the variance
reduction method, which leads to the asymptotically near-
optimal bound in Theorem 1.

Variance Reduction via Reference-Advantage De-
composition. This technique is only used in UCB-
MULTISTAGE-ADVANTAGE and the proof of Theorem 1,
which is deferred to Appendix D due to space constraints.
We explain the technique as follows.

As discussed above, when B is set large, we suffer bigger
estimation variance, as fewer samples are allowed in the
type-I stages. In model-free regret minimization tasks, sim-
ilar problem arises where the algorithm (e.g., (Jin et al.,
2018)) can only use the recent tiny fraction of the samples
and incurs sub-optimal dependency on the episode length.
Recent work (Zhang et al., 2020) resolves this problem via
the reference-advantage decomposition technique.

The high-level idea is that, assuming we have a §-accurate
estimation of V*, namely the reference value function yref
such that |V — V*|, < §, we only need to use the
samples to estimate the difference Vref_y* which is called
the advantage. Therefore, the estimation error (incurred in
places such as (6)) will be much smaller when § is small.
Choosing § = 1/+/B, and together with the Bernstein-type
exploration bonus (see, e.g., (Azar et al., 2017; Jin et al.,
2018)), we are able to bound the total contribution of the
first term in (9) * by O(SA/(e(1 — 7)?), which (together
with the H factor in (5)) aligns with the (1 — ~)~2 factor
in the bound of Theorem 1. The discussion till now is
based on the access of the reference value function V*°f.
In reality, however, we need to learn the reference value
function on the fly. This will incur an additive warm-up
cost that polynomially depends on 1/4. However, since § is
independent of ¢, the extra cost is only a lower-order term.

“More precisely, we refer to the total contribution related to
the exploratlon bonus, which is actually in a different form from
the first term in (9). This is because b has to be re-designed using
the Bernstein-type exploration bonus technique and evolves to a
more complex expression. Please refer to Appendix D for more
explanation.

5. Analysis of Sample Complexity

In this section, we prove Theorem 2 for UCB-
MULTISTAGE. We start with a few notations: we use
Ni(s,a), Ni(s,a),Ni(s,a), Qi(s,a), Vi(s) to denote re-
spectively the values of N (s, a), N(s,a), N(s,a), Q(s,a),
V(s) before the t-th time step. Let 74(s,a), fi:(s,a)
and b'(s,a) be the values of (s, a), ji(s,a) and b(s, a)
(respectively) in the latest type-I update of Q(s,a) be-
fore the t-th time step. In other words, 7n:(s,a) is
the length of the type-1 stage immediately before the

current type-I stage with respect to (s,a); by(s,a) =
min{2+/H?21/7(s,a),1/(1 —v)}; and
¢ (s,a)
:[Lt(‘S’a) = Z ‘/Zt,i(s,a) (Sit,i(s.a)+1)ﬂ (12)
i=1

where I; ;(s, a) is the time step of the i-th visit among the
7¢(s, a) visits mentioned above. When ¢ belongs to the first
type-I stage of (s, a), we define 74(s,a) = 0, fi(s,a) = 0,
and by (s,a) = 1/(1 — 7).

Given (s,a) and a time step ¢ such that (s;,a;) = (s,a),
we use ji; (s, a) to denote the index of the type-I which (the
beginning of) the ¢-th time step belongs to with respect to
(s,a). For 1 < j < J, we use p(j, s, a) to denote the start
time of the j-th type-I with respect to (s, a). Besides, we de-
fine p(J + 1, 5, a) to be the time ¢ such that N;(s,a) = Np.
We also define p (s, a) := p(ji(s,a) — 1, s,a) if ji(s,a) =
2 and 0 otherwise, and p, (s, a) := p(ji(s,a) + 1, s, a).

5.1. The Good Event

Let (s, a) and j be fixed. With a slight abuse of notation, we

define /; to be the time when the i-th visit in the j-th type-I
H2, _1

é; ) 1—y
for j > 2. Define E) (s, a) be the event where the inequal-
ities below hold

—EV* (87,41) +

‘711

1
5. Z (VL (S[i+1) - Ps,a‘/[i) <

= ]

stage of (s, a) occurs. Define ) = min{2

> P V¥

€j

j0)

Similarly, let /; be the time when the i-th visit in the j-th

type-II stage of (s, a) occurs and b9) = min{2 hgf, e
for j > 1. Define E7(s, a) be the event where
1 * () *
—EV (s7,41) + 09 = P, ,V*;
€ i=1
N 5.
— — P, Vi) <bY
B g Sl +1) )
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hold.

The total good event F is then given by

ﬂ E(j)(s7a) ﬂ ﬂ ]

s,a,1<5<J s,a,1<5'<J

Fy = E(j/)(sv a)

13)

We claim that F; happens with large probability.
Lemma 3. P[E;] > (1 — SAH(J + J)p).

The following statement shows that {Q;} is a sequence of
non-increasing optimistic estimates of Q*.

Proposition 4. Conditioned on the event E1, it holds that

Qi(s,a) = Q*(s,a) and Qi11(s,a) < Q(s,a) for all

t>1and (s,a).

The proofs of Lemma 3, Proposition 4 and all the lemmas
in the remaining part of this section can be found in Ap-
pendix C. Throughout the rest of this section, the analysis
will be done assuming the successful event F;.

5.2. Using Clipped Pseudo-Regret to Bound Sample
Complexity

By the update rule (2), for any ¢t >
m¢(s), we have that

Vi(s) = V™ (s)

1 and s, letting a =

n¢(s,a)
< by(s,a) + s 721 Vir (i) (51, (s,a)+1)
=P VT
) 1 e (s,a)

< 2b4(s,a) +vPsq (s q) u; Lu(sia) V"
(14)

< 204(s,a) + WPs,a(VBt(s,a) - V) (15)

= 2b(s,a) + ¥ Ps.a(Vp, (s.0) = Vi) + 1Psa(Ve = V™).
(16)

where Inequality (14) is due to the concentration inequality,
which is part of the successful event E; defined in (41), and
Inequality (15) holds because p, (s, a) < I;.u(s,a) for any
1 < u < n(s,a) and the fact V; is non-increasing in ¢
(Proposition 4).

On the other hand, we also have

Vi(s) = V7 (s)

= Qi(s,a) — Q*(s,a) + Q*(s,a) — Q™ (s,a)

= Qi(s,a) — Q*(s,a) + yPs o (VF = V™)

< Qi(s,a) — Q*(s,a) + yPs,o(Ve — V™). (17)

Combining (16) and (17), we have that
Vi(s) = V7™ (s)
< min {2@(5, a) + ’yPsﬂ(VBt(s’a) - Vi),

Qu(s,a) — Q*(s,a)} + YPs o(Vi = V).

(18)
Therefore, we have that
P1(s) = Vi(s) — (r(s,a) + 7Ps,a Vi)
=Vi(s) = V™ (s) = vPs.a(Vi = V™)
< min {25t(s, a) + 'yPS,a(VBt(S)a) - V),
Qi(s,a) = Q*(s,a)}.  (19)

Define k, by setting k. (s) as the RHS of (19). Recall that
P, is the matrix such that P, (s) = P, (s forany s € S.
By Bellman equation we have that

V¥E(se) = V™ (sy) <V, = V™

(’}/Pﬂ't ) ¢

FEMS

1
< D (Pn)bt g Q0)

.
Il

0
; €
(’yp )Iit-‘rg.

«
D

By definition of k;(s), and noting that z <
for any x,y > 0, we further have that

clip(z,y) +y

V*(st) —
< Z wy (s, a)(min {2b:(s,a) + VPS’G(V&(SVG) - V),

s,a

V7™ (s¢)

Qi(s,a) — Q*(s,a)}) v <

8
21
. . 3€
< ;wt(s,a)(mm {chp(Qt(s,a) Q*(s,a), 4H)
s 1 € . €
2clip(b (s, a), S—H) + P, achp(VB (s,a) — Vi, S—H), })
€ €
+§wtsa)max{4H 4H+7P§a1 H}+§
< Ewt(s a)(min {clip(Q¢(s,a) — Q*(s,qa) i)
~ b b b ’4H b
.y €
2Chp(bt(sv a’) SH) + 'VPS aChp(VBt(s,a) - ‘/ty 87H)a })
Te
— (22
+ 3 (22)

where wy (s, a) = I[m(s) = ] ZH ! 1) (4Pr,)"1, is the

?
expected discounted visit number of (s, a) in the next
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steps following 7;; and Inequality (22) is due to an averag-
ing argument and the fact that 3 , w¢(s,a) < H.

Let
= Y wns,0) min {elip(Qu(s,0) — Q*(s.a). 25,
(2clip(5t(

+ v Ps, achp(VB Vi,

) SH) t(s,a) -

(23)

Define 7 = {t > 1|B; > ge}. By (22) we have that the
sample complexity of UCB-MULTISTAGE is bounded by

SV = V(30 = < DT [ ge] =171

t>1 t=1

To bound |77, we consider bounding >}, 3; instead, since

Yier B = 5 and therefore |T| < (8/€) - ey - Let
~ 3€
= mi li - Q* —
Bt := min {Clp(Qt(staat) Q" (st ar), 4H)
2clip(by (s, ay), 8H) +’yPSt’atchp(VBt(shat) Vi, 8H)}

(24)

If m; does not change very frequently, we have the approxi-
mation that 3; ~ Z —0 Btﬂ More formally, we prove the
following statement (see Appendix C.3 for the proof).

Lemma 5. Forany K > 1, it holds that

[Z B, = 12K H3 + 24SAH*BIn(Ny),
teT
N b < 3KH2L] < Hp.

t=1

By Lemma 5~and the discussion above, if we are able to
bound Y}, By < X (for X > 3H?.), then with high
probability, the sample complexity of UCB-MULTISTAGE
is bounded by roughly O(H /e) - X

5.3. Bounding the Clipped Pseudo-Regret

We now turn to bound Zt>1 Bt, By (24),for t such that
Ny(st,as) < No, we have that

B < (ZChp(bt(St,at) 8H)
+ 'YPst,atChp(Vg

t(st,at) ‘/ta SH))
(25)

and for V;(s,a) = Ny, we have

~ ) 3e

B <clip(Q¢(st, ar) — Q% (s¢, ay), E) (26)
The first term in (25) is exploration bonus for the type-I
stage. For this term, we have the following lemma (see

Appendix C.4 for proof).

s}

Lemma 6.
SABL
s <0 (o)

The exploration bonus is increasing in B because more
frequent updates implies fewer available samples in a single
update due to the limitation in model-free RL.

Z Chp(bt(st, a),

t=1

For the second term in (25), let oy = I[Ni(st,a:) <
No]Ps, a,clip(V,, (s,.a:) — Vs g57) for short. On benefit
of type-II update; we can ensure a decent convergence rate
for Q); (see Appendix C.7 for proof).

Lemma 7. Conditioned on the successful event of E1 de-
fined in (41), for any €; € [e, ﬁ] it holds that

0
Z H VYt St V*(St)) = 61]
t=1

8

Z I[Q¢(s¢,a:) — Q% (st ar)) = €1]
i=1

<SAH5 1n(6)b>
€2 '

By the basic convergence rate provided by Lemma 7, we
have that (see Appendix C.5 for proof)

Lemma 8. With probability 1 — (1 + 2SAH(J +
holds that

ZOLth

t=1

<0 27

I))p, it

SAH® In(32 f
<D<E)L + SABH® + SAH 1n(N0)> .

eB

The term oy reflects the difference of the value functions
between the neighboring updates. As mentioned in Sec-
tion 4, we can reduces this term by increasing B as long as

SAHPINCE) S larger SABH®. We highlight that Lemma 7
is necessary to derive Lemma 8 even when B is large. This
is due to the nature of model-free RL algorithms: more fre-
quent updates would incur large variances (and thus greater
exploration bonuses) due to fewer available samples be-
tween updates. As a result, without type-II updates, simply
increasing B would not guarantee a decent convergence rate.
In contrast, the type-1I updates use more available samples,
incurring a smaller exploration bonus, and thus guarantees

a decent convergence rate.

Moreover, by Lemma 7, we have the lemma below to bound
the term in (26) (see Appendix C.8 for proof).

Lemma 9. With probability 1 — (1 + 2SAH (J + J))p, for
any t = 1 such that Ny(s¢,a;) = Ny, it holds that

cip Qo) = Qo). o) =0



Model-Free RL: from Clipped Pseudo-Regret to Sample Complexity

Combining Lemma 6, Lemma 8 and Lemma 9, and by the
definition of (3;, we have that

Lemma 10. With probability 1 — (2 + 6SAH(J + J))p,
D=1 Bt is bounded by

<SABH4L SAHS In(42),
9, + E
€ eB

+ SABH? ln(No)) .

5.4. Putting Everything Together

Invoking Lemma 5 with K =

SAICRCEN & SABH In(No))

enough universal constant co, we have that conditioned on
the successful event F1,

co [ SABH*.
3H2, ( € +

> 1 for some large

P [2 By = 12KH> + 24SAH4Bln(NO)]
teT

< IP’[ DB = 12KH% + 24SAH*BIn(No),

teT
Z B < 3KH2L]
t=1
+P lZ By = 3KH2L] (28)
t=1
< (4SAH(J + J) + H + 2)p, (29)

where the second term in (28) bounded due to Lemma 10.
Combining Proposition 4 with (29), we obtain that with
probability 1 — (8SA(J + J) + (H + 3))p, it holds that

T
& < Z Bt
teT
5, SAHSIn(4Z
<o (SABH L ;1( ) + SAH4Bln(No)> :
€ €

(30)

Noting that B = v/ H, we conclude that the number of
e-suboptimal steps is bounded by

SAHSSIn(*£).  SAH*5In(Ny)
© €2 * €

<
€2

o (SAH“ In(42) (In(Ny) + L)>

for any € € (0, 12]. Noting that H = O(ﬁ), J =
O(SAH In(Np)) and J = O(SAHBIn(Ny)), we finish

. . »
the proof of Theorem 2 by replacing p with go———5—— TiniHTs"

6. Conclusion

We design a stage-based model-free ()-learning Algorithm
UCB-MULTISTAGE-ADVANTAGE, which achieves a near-

%ﬁ%@) for discount-

ted reinforcement leaning problem asymptotically. By ad-
justing the number of stages, we also show a non-asymptotic

sample complexity of O (%), which outperforms

optimal sample complexity of 0 (

all previous model-free and model-based algorithms with
tight dependence on S. We introduce a multi-stage update
rule for Q-learning algorithm, which may be useful for other
RL settings such as RL with linear function approximation.

References

Azar, M. G., Munos, R., Ghavamzadaeh, M., and Kappen,
H. J. Speedy g-learning. 2011.

Azar, M. G., Osband, I., and Munos, R. Minimax regret
bounds for reinforcement learning. In International Con-
ference on Machine Learning, pp. 263-272. PMLR, 2017.

Brafman, R. I. and Tennenholtz, M. R-MAX - A general
polynomial time algorithm for near-optimal reinforce-
ment learning. Journal of Machine Learning Research, 3
(2):213-231, 2003.

Burnetas, A. N. and Katehakis, M. N. Optimal Adaptive
Policies for Markov Decision Processes. 1997.

Dann, C. and Brunskill, E. Sample complexity of episodic
fixed-horizon reinforcement learning. In Advances in
Neural Information Processing Systems, pp. 2818-2826,
2015.

Dann, C., Lattimore, T., and Brunskill, E. Unifying PAC and
regret: Uniform PAC bounds for episodic reinforcement
learning. In Advances in Neural Information Processing
Systems 30: Annual Conference, pp. 5713-5723, 2017.

Dann, C., Li, L., Wei, W., and Brunskill, E. Policy cer-
tificates: Towards accountable reinforcement learning.
In International Conference on Machine Learning, pp.
1507-1516. PMLR, 2019.

Dong, K., Wang, Y., Chen, X., and Wang, L. Q-learning with
ucb exploration is sample efficient for infinite-horizon
mdp. arXiv preprint arXiv:1901.09311, 2019.

Even-Dar, E. and Mansour, Y. Learning rates for Q-learning.
Journal of Machine Learning Research, 5(Dec):1-25,
2003.

Even-Dar, E., Mannor, S., and Mansour, Y. Action elimina-
tion and stopping conditions for the multi-armed bandit
and reinforcement learning problems. Journal of Machine
Learning Research, 7(Jun):1079-1105, 2006.



Model-Free RL: from Clipped Pseudo-Regret to Sample Complexity

Freedman, D. A. et al. On tail probabilities for martingales.
the Annals of Probability, 3(1):100-118, 1975.

Gheshlaghi, A., Munos, R., and Kappen, H. On the sample
complexity of reinforcement learning with a generative
mode. 2012.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. Is
Q-learning provably efficient? In Advances in Neural
Information Processing Systems, pp. 4863—4873, 2018.

Kakade, S. On the sample complexity of reinforcement
learning. PhD thesis, University of London, 2003.

Lattimore, T. and Hutter, M. Pac bounds for discounted
mdps. In International Conference on Algorithmic Learn-
ing Theory, pp. 320-334. Springer, 2012.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529-533, 2015.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In

International conference on machine learning, pp. 1928—
1937, 2016.

Pazis, J., Parr, R. E., and How, J. P. Improving pac explo-
ration using the median of means. In Advances in Neural
Information Processing Systems, pp. 3898-3906, 2016.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
conference on machine learning, pp. 1889-1897, 2015.

Sidford, A., Wang, M., Wu, X., Yang, L., and Ye, Y. Near-
optimal time and sample complexities for solving markov
decision processes with a generative model. In Advances

in Neural Information Processing Systems, pp. 5186—
5196, 2018a.

Sidford, A., Wang, M., Wu, X., and Ye, Y. Variance reduced
value iteration and faster algorithms for solving markov
decision processes. In Proceedings of the 29th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 770—
787. SIAM, 2018b.

Strehl, A. L., Li, L., Wiewiora, E., Langford, J., and Littman,
M. L. PAC model-free reinforcement learning. In Pro-
ceedings of the 23rd International Conference on Ma-
chine learning, pp. 881-888, 2006.

Szita, I. and Szepesvari, C. Model-based reinforcement
learning with nearly tight exploration complexity bounds.
In Proceedings of the 27th International Conference on
Machine Learning, pp. 1031-1038, 2010.

Zhang, Z., Zhou, Y., and Ji, X. Almost optimal model-free
reinforcement learning via reference-advantage decom-
position. arXiv preprint arXiv:2004.10019, 2020.



Model-Free RL: from Clipped Pseudo-Regret to Sample Complexity

Appendices

A. Comparison with Previous Works

Table 1. Comparisons of PAC-RL algorithms for discounted MDPs

(Lattimore & Hutter, 2012)

Algorithm Sample complexity Space complexity
—7 a2
R-max (Kakade, 2003) @) M
e3(1—7)S
~ (SAIn(1
Model-based MoRmax (Szita & Szepesvari, 2010) O (111( 7? 6) ) O(S?A)
2(1 —
~ ZAIn(1
UCRL-~ (Lattimore & Hutter, 2012) @) M
(1 —9)3
~ Aln(1
Delayed Q-learning (Strehl et al., 2006) o (SAU/p)
et(1—7)®
Infinite (-learning O SAIn(1/p)
with UCB (Dong et al., 2019) (1 —7)"
~ (SAIn(1/p)
Model-free UCB-MULTISTAGE-ADVANTAGE O 21— ) O(SA)
(Theorem 1) (1_,7)14
(for e < “o5l)
~ Aln(1
UCB-MULTISTAGE (Theorem 2) o) ( “j q n( )f )5
€2(1 —~)5
~ Aln(1 -
MEDIAN-PAC(Pazis et al., 2016) o (SAd/p) O (SA2H4)
(1 =) ‘
Lower bound )

B. Technical Lemmas

Lemma 11. Let My, Mo, ..., My, ... be a series of random variables which range in [0, 1] and { Fi} x>0 be a filtration such
that My, is measurable with respect to Fy, for k > 1. Define u, := E [My|Fr_1].

Forany p e (0,1) and ¢ = 1, it holds that

Proof. Let A < 0 be fixed. Let M be a random variable taking values in [0, 1] with mean p. By convexity of e in z, we

have that E [e*M] < pe* + (1 — ) = 1+ p(e* — 1) < e*(¢" =1 Then we obtain that for any & > 1

B[tz | <1,

which means {Y} := e} Ty Mi—(e*=1) T, pa }k>o0 is a super-martingale with respect to {Fj}r>0. Let 7 be the least n
with ', pup = 4ce. Tt is easy to verify that | Yy ny| < e(1=eM)(eitl) for any n. By the optional stopping theorem, we
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have that E [Y,] < 1. Then
n n
P lﬂn, Z pr = 4et, Z My, < CL]
k=1 k=1
<P [Z M, < a}
k=1

1

R —
= e(l—eX)dcitAer”

€1y

1 1
e(l—eMdeit e S ect

By setting A = —3, we obtain that

= 122)c < p. The proof is completed. 0

Lemma 12 (Freedman’s Inequality, Theorem 1.6 of (Freedman et al., 1975)). Let (M,,)n>0 be a martingale such that My =
0 and |M,, — M,,_1| < c. Let Var,, = >;_, E[(My — My_1)?|F_1] for n = 0, where Fj, = o(My, M1, Ms, ..., My).
Then, for any positive x and for any positive v,

2
P[In : M,, = x and Var,, < y] < exp <_2(yic:v)> . (32)

Lemma 13. Let (M,,)n>0 be a martingale such that My = 0 and |M,, — M,,_1| < ¢ for some ¢ > 0 and any n = 1. Let
Var, = >1_, E[(My — My_1)?|Fi_1] for n = 0, where Fj, = o(My, Ms, ..., My). Then for any positive integer n, and
any €,p > 0, we have that

2
P [|Mn| > 2\/5\/Varn 1og(%) + 2\/6 log(%) + QClog(;)] <2 <log2(n€c) + 1) P. (33)

Proof. For any fixed n, we apply Lemma 12 with y = 2% and 2 = +(2 ylog(%) + QClog(%)). For each
i=0,1,2,...,logy (" ) we get that

) 1
P [|Mn| > 2v/2 Zlflelog( )+ 2clog( ) Var, < ]

) 1
=P [|Mn| > 2, /21610g( )+ 2clog( ) Var, < ]

< 2p. (34)

Then via a union bound, we have that

1 1 1
P [|Mn > 2v/24 [Var, log(f) + 2\/elog() + QClog(p)]

<)
< Z [M| > 24/24 /2= 1610g( )+2clog( )2l e < Var, < 2° ]

/ 1
[ elog( I; + 2010g ), Var,, < ] (35)

nc?

logs ( €

)
1 1 1
< Z P [Mn| > 2\/(2 - 1)610g(];) + 2\/elog(p) + ZClog(E),Varn < ie] +2p

2
<1og2(”"’ )+ 1) p. (36)

€
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C. Missing Proofs in Section 5

C.1. Proof of Lemma 3

Proof. Recall that [; is the time when the i-th visit in the j-th type-I stage of (s, a) occurs and b¥) = min{2,/ fff, ﬁ}
for j > 2. By Azuma’s inequality, with probability 1 — 2p, it holds that

130 et 459 5 @
Ji=1
1 "
g 2 (Wf (S[i+1) - PS,aV}i) < b(J)7 (38)
J =1

which implies that P[E7 (s,a)] = 1 — 2p.

Also recall that I; is the time when the i-th visit in the j-th type-II stage of (s, a) occurs and /) = min{2, /2>t =} for

> 1. By Azuma’s inequality, for any 1 < j < .J and (s, a), with probability 1 — 2p, it holds that
1 * 3(9) *
Z - Z V*(sp,01) + 0 = Py oV (39)
=1
1
= Z —PyaVi)| <8V, (40)
e =1

which implies that P[E7 (s, a)] > 1 — 2p. Finally, recall

N B92ap) ) BEY(s.a)) (1)

s,a,1<j<J s,a,1<5'<J

Then P[E1] > 1— (X ,.01525(1 ~ PEED(5,0)])) = (Lo1y02s(1 = PIEG) (s,0)])) > 1= 28A(] + J)p. The
proof is completed. O

C.2. Proof of Proposition 4

Proof of Proposition 4. By the update rule, Q;+1(s,a) < Q:(s,a) forany ¢ > 1 and (s,a). We will prove Q(s,a) =
Q*(s,a) forany t > 1 and (s, a) by induction conditioned on E;.

Fort =1, Q(s,a) = 125 = Q*(s,a) for any (s, a). For t > 2, assume Qu (s,a) > Q*(s,a) for 1 <t' < tandall (s,a)

pairs. With a slight abuse of notations, we use Z§j ) (s, a) to denote the time step of the i-th visit in the j-th type-I stage of
(s,a). If there exists (j, s, a) such that the j-th type-I update of (s, a) happens at the (¢ — 1)-th step, by (37) we have that

Q+(s,a) = min{r(s, a) Z 9 (s,a lf-”(s,a)+1) +b9), Qu1(s,a)}

> min{r(s,a) Z VE( z(“( L)t 09, Qi1 (s, a)}
] i=1

= Inil’l{’l"(S, a) + 'YP@,aV 7Qt—1(3a a)}

> Q% (s, a).

In a similar way, if there exists (7, s, a) such that the j-th type-II update of (s, a) happens at the (¢ — 1)-th step, by (39), it
holds that Q¢(s,a) = Q*(s,a)). Otherwise, Q¢(s,a) = Q¢—1(s,a) = Q*(s, a) for any (s, a). The proof is completed.

O
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C.3. Proof of Lemma 5

We split 7 into H separate subsets by define V, = {t € T : ¢ mod H = k} fork =0,1,2,..., H — 1. We will prove
Lemma 5 by showing that for each k, it holds that

IP’[ 3 B > 12KH? + 4SAH?BIn(Ny), Y. i < 3KH? ] (42)

teVy t=>1

If (42) holds for each k, then we have

IP’[ N 8 = 12KH? + 4SAH*BIn(Ny), . B < 3KH ]

teT t=1
H-1
< 2P| X B 12KHY + 4SAHBIn(No), Y B < BKH™|
k=0 teVi t=>1
< Hp. (43)
Let
U =13t e{t,t+1,...,t + H— 1} and (s,a) such that Qu 41 (s,a) # Qu(s,a)].
We define

€
8H) + VP ari PV (siparsn) = Vs 871)) '

H—
Bt = 3H2Ut 1— Ut Z <2C11P bt 5t+z7at+z)
For fixed k € {0,1,2,..., H — 1}, we let

Sk BtH+kH[tH+ ke 7_]
P = 3H? '

Noting that 3} € [0, 1] is measurable with respect to Ff' := F; 41y 4_1 and E [Bﬂ]—}k,l] > fF = Dt PHAReT]
Lemma 11 we obtain that for any K > 1

3

P [Eln, D1 BF = AK. + 16SAHBIn(No), Z < K. +4SAHB 1n(N0)1 <p,

which is equivalent to

n
P[an, M Bill[t € Vi] > 12KH? + 24SAH? BIn(Ny),
t=1

2 [t e V] < 3KH? + GSAH?’Bln(NO)] <p (44)

By definition of Bt, and noting that if U; = 0, Bt(st+i, apyq) = Et+¢(5t+z’, at4i) and Vp (Stairaisi) — ) for

Py (St44,at4i

any 0 < ¢ < H — 1, we have

T

—1

. . o €
By = 3H2Ut + (1 — Ut) ’yz (2Chp(bt<5t+i; atﬂ») + fyPStﬂ atﬂCllp(VBt(stH,aHi) - Vi, 87H))

8H)

i

T

—1

. 3 € .
< 3H2U, + (1-U,) (2chp(bt(5t+i, ar+)s 577) * VPecesians PV, (orvnians) = Vo 8H))

Il
=}

%
H-1

2 -
<3+ 3, (2elipressers e g7) + Prassnn 0V, usvne = Vo))
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Then it follows that

H—-1
Z Bt Z Z <2Chp bt+l(8t+17at+l) 8H) P&f+1,at+1011p(v (5t+z atyi) Vi, 8H)>

teVi teVy i=0
+3H? ) U,
teVy

< Z (2(311})(61&(5157 at),

t=1

= > B + 6SAH*BIn(Ny). (46)

t=1

—v. 3
)+ ParaClip(Vy, (s,.00) = Vis 537) ) + 6SAH* Bln(No) (45)

Here Inequality (45) holds because for each update, there is at most one element ¢ € 7, such that U; = 1 due to this update.
By (44) and (46), we have that

[Z B = 12CH?, + 24SAH® BIn(Ny), Z B; < 3CH?

teVy t=>1

P [ > B = 12CH? + 24SAH*BIn(No), Y. By < 3CH?. + 65AH3Bln(NO)1

teVy t=1

<p.

The proof is completed.

C.4. Proof of Lemma 6

ProofofLemma 6. Recall that Bt(st,at) = 2, /m(IsiZat)L’ SO clip(Bt(st,at), 557) <2 m(IZth)H[ﬁt < 2562’;5], Noting
that n; > 5 H =, We obtain that

2H3 B H°B.
clip(by(s¢, ar), ) < SAH? + ) 24 [ ——1 [nt < 512 ]
1;1 8H 1;1 ’I’Lt(St, at) 2
AH*B
< sam? 4 182248
€
O

C.5. Proof of Lemma 8
Proof of Lemma 8. We fix (s,a) and consider to bound a(s,a) := 3., all(st,ar) = (s,a)] =

Dis1 Poralin(Vy (sp.a0) — Vi 557) - Il(se,a¢) = (s,a, Ni(st,a¢) < No]. Define T'(j, s,a) to be the set of indices
of samples in the j-th type-I stage with respect to (s, a), i.e., T(j, s, a) == {t = 1|(s¢,ar) = (s,0), NIl E < Ni(s,a) <
i1 €i}. Itis then clear that for any t € T(j, 5,a), p,(s,a) = p(j — 1,5,a) and p,(s,a) = p(j + 1, 5, a). (The definitions
of p, p, and p, are at the beginning of Section 5.)

For j > 2, by the definition of a; and the fact V; is non-increasing in ¢, we obtain that

« . €
Z atH[(stv at) = (37 a)] < 6j-Ps,a (Chp(vp(j—l,s,a) - Vp(j+1,s,a)7 87H)) )

teT'(j,s,a)

and therefore

HB
. 3 . €
a)<H Z €; + Z ¢;Ps.q (chp(Vp(j_Lsya) —Vo(i4+1.5,0)> 8—H)> . 47)
] HB+1<j<jwo(s,a)
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Here also recall that 5, (s, a) is defined at the beginning of Section 5, and jo, (s, a) is defined to be max;>1 j;(s,a) < J.

‘We next define
j(s,a,8",€) == max{j < joo(s,a)|V,(js,a)(s") = V(') > €}
and

fors’e Sand ¢ > 0. Lete; = % fori =0,1,2,..., k where k = [logz(ﬁ)]. By (47), we have that

HB
a(s,a) < H Z & + Z Z €iPsa(s") (Vo(i—1.5,0)(8") = Vi(js1,s.a)(8))
i=1

s’ HB+1<j<j(s,a,s’,8LH)+1

k
<O(BH?&1)+ )] > &j41Psa(s)0(s,a,5', j)

s’ 1=1max{j(s,a,s’,€;),HB}<j<j(s,a,s’,€;—1)

< O(BH?) + )

s’ i=

Py a(s') > 0(s,a,s',5)  (48)

J(s,a,s",€;)<j<j(s,a,s’,€;—1)

HB

k 5.
2 ZlSij(s,a,s’,ei,l) €;j
1

k ~ Vi .
— O(BH?%) + 21 %P&a(s/)w(s, a,s,9)

-
Il

k
4
2. ~ ’ /
< O(BH*¢y) + B Z 7(s,a,8,€i-1)Ps o (s )€, (49)
where

9(8, a, S/a .7) = Vp(j,s,a) (S/) - Vp(j+2,s,a) (S/)’
d)(S,aaslvi) = Z 0($7a75/7j) < 2¢;.
J(s,a,8",€:)<j<j(s,a,s’,€i—1)
Here Inequality (48) is by the fact &1 < 725 25:1 é; for j > H B and Inequality (49) is by the definition of j(s, a, s, €;).
In the next subsection, we will prove the following lemma.

Lemma 14. For any € > 0, with probability 1 — (1 + SA(J + J))p it holds that

Z 7(s,a,8,€)Ps o(s') <

s,a,s’

€2

AHP In(4H
%) (SH()L + SAHB ln(N0)> .

Now, by (49) and Lemma 14 we have that

Z = Za(s,a)

t=1 s,a

k
4
< Z <BH2é1 + B Z 7(s,a, s, ei_l)P&a(s’)ei)

s,a s 1

SO0

€i—1

1
4 & (SAHSm(2E),
3 - oo TN e /7 )
< O(SABH®)+ 0 < 5 ;:1 ( + SAHBIn(Ny) | € (50)

'S

HB c R p—

SAHS In(44
< O(SABH?) +o< 1 n(=>)e SAln(N0)>

€

5 4H
<O<SAH In(42),

+ SABH?® + SAH 1n(N0)> :
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The proof is completed.

O
C.6. Proof of Lemma 14
Recall that by Lemma 7, we have that Conditioned on the successful event E; defined in (41), for any €; € [e, ] it holds
that
- = SAH®In(42),
Z [Vi(se) = V*(s¢)) Z [Q:i(st,at) — Q%(s1,a1)) = €1] <O (62(5) (51)
=1 =1 1
With the help of Lemma 7, we prove Lemma 14 as follows.
Proof of Lemma 14. We start with defining
7(s,a,s €)= Z I[(st,ae) = (s,a),Vi(s') = V*(s') > €]
t>1
Recalling that 7(s,a, s', ¢) = Z(_Sla ) &, we have
j(s,a,s’€) 9 j(s,a,s’€)—1 9
7(s,a,s'€) = & <H+(1+—=) & <H+ (1+ =)7(s,a,8,¢).
i=1 H i=1 H
So it suffices to prove that
SAH® In(44
Z 7(s,a,8,€)Psq(s') <O (;l(f)L + SAHBIn(Ny) | . (52)
, €
To prove (52), we define A, to be the vector such that )\t(s) =1 [Vt(s) — V*(s) > €]. Note that
Z 7(s,a,s¢€) Z Py, a Mt
s,a,s’ t=1
and due to the infrequent updates, we have that
D7 Oelsian) = Mg (ser1)) < DS T[Vi(sern) # Viga(si41)] < 2SAHBIn(No).
t=1 t=1
For C a large enough constant, we obtain that
SAH®In(*£
P [ Z 7(s,a,8,€)Ps q(s") = 40# + 8SAHBIn(Ny)
s,a,s’
SAH® In(44
_P [2 Py > 40# + 8SAH BIn(Np)
t>1 €
SAH® In(42 SAH® In(*H
P [Z Ps, 0, At = 40# + 8SAHBIn(Ny), Z Ae(8t41) < C# 2SAH B 1In(Ny)
t>1 € t>1 €
SAH® In(42),
+ P lz )\t(st+1) > C# +2SAHB 1D(N0)1
t=>1
SAH® In(42),
<p+P Z)\t(st) 202(6)1 (53)
€
t=>1
<p+P[E] (54)
<p+ SA(J + J)p, (55)
where Inequality (53) is by Lemma 11 with My = Mg (sg+1) and Fi, = o(s1, a1, -..., Sk, Gk, Sk+1) for k = 1, Inequality

(54) is by Lemma 7 and Inequality (55) is by Proposition 4. The proof is completed. O
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C.7. Proof of Lemma 7

The proof of Lemma 7 uses similar techniques as presented in in Appendix.B of (Dong et al., 2019) and Appendix.B.2 of
(Zhang et al., 2020). However, it requires more twists since the ) function is only updated by at most SA(J + J) times for
each state-action pair.

We first introduce a few simplified notations. Define 6 := Q(s¢, ar) — Q¥ (s¢, ar). Clearly 6° > ( +) — V*(s¢) and

Yot I[6" = 2] = 3,01 I[Vi(s:) — V*(s;) = ] for any 2 > 0. Throughout this subsection, we use 7', b’ and I! as short
hands of 7, (s, ar), by (st, ar) and Iy ; (¢, a;) respectively.

Conditioned on E; defined in (41), we note that (37) and (39) hold for any 7 > 1 and j’ > 1 respectively. We will use these
inequalities without additional explanation.
Let 71 := {t = 1|N¢(s¢,a:) = No}. We then have the following lemma.
Lemma 15. Conditioned on successful event F defined in (41), it holds that for any t € Ty (if T1 is not empty)
Qi(se,at) — Q™ (st,a1) <

€

2H'

Proof. Foreachi = 1,2,...,S, if there are at least 7 states with total visit number greater or equal to Ny, we let s(*) be the i-
th such state (sorted in the order of time to reach Ny) and let T; be the corresponding time (i.e., nr, (s(i)) = Ny and s, = s
). Otherwise we let s(*) be a random state in S\{s(l), w807 and set T; = oo.

It suffices prove that Vr, (s(i)) -V (s(i)) < 55 for s( %) with finite T;. We prove this by applying induction on i to prove
the stronger statement that Vi, (s(¥)) — V*(s( )) <

SHS
Base case (i = 1): Note that for any ¢ ¢ 77, we have following inequality by the update rule (3) and event F,

5t = Qi(st,ar) — Q*(shat)

At
Hnt=0] (bt+
L—n

Mm

*
Slerl PSt,atV >

i=1

<“ﬁ;m+ew+gi( - V(s >»

=1
t

—
%
I
=}
Bt
31

I[n* = - 7t
< ﬁ +20" + (‘/i§+1(5i§+1) - Q*(SZ§+1aai§+1) + 91i+1)

1

34‘4
0

—
A
I
=}
[Tt
3

(5[§+1 +0i§’+1), (56)
1

34‘\4

Iat = _
- o
L=y

2
7t
where we define 'i t1 := it (st 1) — Vieyga (se41) -

It is obvious that t ¢ T; if ¢ < T7. Then for any non-negative weights {w; }:>1, we have that

I[at = _
Mot < Y] M +2 3 wdt + Y w6+ 6Y), (57)
t<T) t<Ty -7 t<T) t<Ty
where
1 & .
wgzyzﬁZ]{[tﬂgﬂ]. (58)
u<Ty i=1

If we choose a sequence of non-negative weights {w;}¢>1 such that sup, 5, wy < C and 3}, 5. w; < W for two positive
constant C' and W, then for all ¢ > 1, we have that
1 1

wj <51+ 5)0 < (1- 22)C, (59)
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and

1 1
!
dwp <yl + )W < (11— 5)W. (60)
5 H 2H

Lemma 16. Let {w;}:>1 be a sequence of non-negative weights such that 0 < wy < C for any t ¢ Ty and Ztele wy < W,
then it holds that

=t __
Z wel[a? = 0] < CSAH < CSAH®, 1)
t¢Th -7 1—=7
2 ) wb' < 40( )\/SAH?’WCL 60V SAH3WC., (62)
t¢Th
Z w0t < S4C < SCH. (63)
t¢T1

Proof. The first inequality holds because ., I[n' = 0] < SAH, and the third inequality holds because
=1 I[se = s]6" < 1/(1 — 7). For the second inequality, we note that b* < 2/H?¢/i*, it then follows that

Z wb' < 2VH2, Z wen/ 1/t

t¢T1 ¢
=2VH Z Z st,at = )] WA/ ]./T_Lt
s,a t¢T1

Letw(s,a) = D}, wil [(st,ar) = (s, a)]. We fix (s, a) and consider to maximize

Z I[(s¢,at) = (s,a)] wer/1/nt.

t¢T1
Define T(j,s,a) := {t = 1|(ss,ar) = (s,a), f 1lej < Ni(s,a) < ZZI 1 €;}. Note that for each j > 2,
Dtg Tt (Gs,a) W < (1 + +)Cé;_1. By rearrangement inequality we have that,

Z]I[(st,at wir/1/nt = Z Z wy |4/1/€;1

t¢T1 J=2 \t¢T1,teT(j,s,a)
% v | 3 e < ot

j=1
1
< 10(1 + E) HCw(s,a).
By Cauchy-Schwartz inequality, we obtain that
Z web! < \/HBCLE\/U) (s,a) <20(1 + f)vSAH‘gWC’L
t¢T1
The proof is completed.
O
By Lemma 16 we derive that
D widt < Y wid + 2SACH? + 60V SAH3WC. (64)

t<Ty t<T



Model-Free RL: from Clipped Pseudo-Regret to Sample Complexity

By iteratively unrolling (64) for 2H In(2E. °s ) times and setting the initial weights by w, = I [s; = 5(1)] so that C' = 1 and

W = Ny, we have

. H2S 9 €er, 1 [5: = 5]
3 H[st — s ]5 <o )<25AH + 60+/SAH3N, L) e . (65)
t<Ty
If Vi (s1) = V*(sM) > £ then I [sy = s(V] 6 > 5 due to the fact that V; is non-increasing in ¢, which
implies that
N 4H?
ng < om (M5 25412 + 607/ SAHI NG, (66)
€
2
which contradicts to the definition of Ny (Ny = ¢; W) . As aresult, we have that Vo, (s()) < V*(s() +

_€
2HS*

Induction step: Now suppose that Vr, (s()) — V*(s()) < 2’;155 holds for all 1 < 4 < k for some k£ > 1. We will prove that

Vi, (sHD) — vV (51 < (§+Tls)6 assuming that T}, 1 # 00.

Note that if t < Ty, 1 and T € Tq, ¢ < 2’;;5. It then follows that for non-negative weights {w;};>1 such that
sup,r,,, wr < C'and Zt<Tk+1 wy < W,

Yowsts Y wts Y, o

t<Tgki1 t<Tpi1,t¢T1 t<Tgy1,t€T1
I[at =0 _ k
< (wtl[”] + 2wtbt> Y wi(st 46+ ;”;I;, 67)
t<Tht1,t¢Th -7 t<Ths1 t<Ths1,teTh

k
<2SACH? + 60\/SAHW, + Y wjst+ Y 2 (68)

2HS

t<Tk41 t<Tyi1,t€T1
2 st (W —Wi)ke

S 2SACH? + 60V SAHW + ), wid! + (69)

t<Tk+1

where Wi =3, _p enweandwy, =X, 5 | en me moI [t = I + 1] . Here, Inequality (68) is by Lemma 16.
1

Because w] < (1 — 55 )C, V¢t > 1 and Dit<Tiirtem; Wi < (1 — 577)Wh, by iteratively applying (69) for 2H1n(3H 5)
times, we have that
H2S Wke We
5t <2Hn (2SAH2 60+/SAH® N, ) . 70
DL w (=) + )t oms T ams 70

t<Th41

If Vi, , (sE+1) — v (sD)) > B choosing w, = 1[5, = s, < Tjy1] so that C = 1and W = Ny in (70),
we obtain that

No(k + 1)e H?S 9 3 Nok‘e Noe
Sg - <2HI n(t )<2SAH + 60y/SAH NoL) 215 + 1

which again contradicts to the definition of No. Therefore we have proved that Vr,, , (s*+1D) — V*(s(h+1) < % O

Proof of Lemma 7. Let e1 € [e, 1= ] be fixed. Let {w;}¢>1 be a non-negative sequence such that sup,-; w; < C and
D=1 we < W. Following the derlvatlon of (64) we have that
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Z wtét = Z wtét + Z wt(5t

t=1 t=>1,t¢T, t=1,teTy
W
< Z w6 + 2]1[6 (71
t=>1,t¢T1
t 2 3 Wie
< Y wid" + 2SACH? + 60VSAHSWC1 + iR (72)
t=>1

where {w)};>1 = 72u>1 wgTy T aop [t =1¥+ 1] and Wy = ¥}, 7. w;. Similarly, it holds that w} < (1—557)C, Vt >
Land 33, wp < (1— 77 ) (W — Wh). Here Inequahty (71) holds by Lemma 15 and Inequality (72) holds by Lemma 16.
Again by applying (72) 1terat1vely for 2H ln( ) times, we have that

We We

;wtaf <2H ln(%) <2SACH2 + GOW) o5t (73)

By choosing w; = I[[6* > e;] sothat C' = 1and W = N(e1) := 3, I[6" > €] into (73), we obtain that
N (621)61 < 2Hln(%) (25AH2 + 60 SAH3N(61)L) : (74)
which means that N(e1) < O(%). The proof is completed. O

€1

C.8. Proof of Lemma 9

Proof of Lemma 9. By Lemma 15, conditioned on the successful event F1, for any ¢ such that Ny (s¢, a;) = N, it holds
that Q¢ (s¢,as) — Q*(s¢,a:) < 5% < 4H, which implies that clip(Q¢ (s, at) — Q* (8¢, at), 4H) 0. O

D. Achieving Asymptotically Near-Optimal Sample Complexity

As mentioned in Section 4, in the UCB-MULTISTAGE- ADVANTAGE algorithm, we set B to be a much larger value (indeed,
B = H?), an employ the reference-advantage decomposition variance reduction technique (Zhang et al., 2020), and
re-design the exploration bonus b to incorporate the Bernstein-type variance estimation. To prove Theorem 1 (the sample
complexity bound for UCB-MULTISTAGE-ADVANTAGE), in the analysis we split the error incurred due to the exploration
bonus into two parts: the bandit loss b} (s, a;) (defined in (79)) and the rest part that is due to the estimation variance of
the real bandit loss. While the second part can be dealt with the variance reduction technique (Lemma 22), the bandit loss
contributes the main O(SAH?1/e?) term in the sample complexity (Lemma 21).

The rest of this section is organized as follows. In Appendix D.1, we present the details of the UCB-MULTISTAGE-
ADVANTAGE algorithm. In Appendix D.2, we prove Theorem 1, while the proofs of all technical lemmas are deferred to
Appendix D.3.

D.1. The UCB-MULTISTAGE-ADVANTAGE Algorithm

The UCB-MULTISTAGE-ADVANTAGE algorithm (Algorithm 2) has almost the same updating structure as UCB-
MULTISTAGE. More specifically, the stopping condition and update triggers of UCB-MULTISTAGE-ADVANTAGE are the
same as that of UCB-MULTISTAGE. The main difference between these two algorithms is 1) that UCB-MULTISTAGE-
ADVANTAGE utilized a more delicate exploration bonus with the help of a reference value function in the type-I updates; 2)
we set B = H? in UCB-MULTISTAGE-ADVANTAGE. Recall £ = {37_ ¢l <j < Jyand £ = {37_ &l <j < J}.

The Statistics. Besides the statistics maintained in UCB-MULTISTAGE, we let 1" and ¢ be the accumulators of the
reference value function and square of the reference value function respectively. Different from UCB-MULTISTAGE, in
UCB-MULTISTAGE-ADVANTAGE we use [t and ¢ denote respectively the accumulator of the advantage function and
square of the advantage function in the current type-I stage.
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Algorithm 2 UCB-MULTISTAGE-ADVANTAGE
Initialize: V(s,a) € S x A: Q(s,a), Q" (s,a) « ﬁ, N(s,a),N(s,a), N(s,a),i(s,a), i(s,a) < 0;
fort=1,2,3,... do
Observe s;;
Take action a; = arg max, Q(st, a) and observe $;41;
\\ Maintain the statistics
(s,a,s") < (s¢,a, $t4+1);
n:=N(s,a) < 1; fi:= N(s,a) < 1; @:= N(s,a) < 1;
i = fi(s,a) < V(s') = Vel(s); el o= pref(s,a) & Vref( s = fs,a) < V(s);
= o) (V) ~ V() 08T 1o (s, ) & (V{4
\\ Update triggered by a type-I stage

if n € £ then
> . 6'/7L—(ﬂ/’fl)2 O'rCf/TL—(/,LrCf/n)Q HL3/4 HL3/4 1 i
bemm{Q\/i(\/ - L+\/ pm L>+7(n3/4 + ﬁ3/4)+4(7+7)71 v} (75)
Q(s,a) < min{r(s,a) + v (/i + ™ /n +b),Q(s,a)} (76)
N(s,a) < 0;  fi(s,a) < 0;  V(s) < maxQ(s,a);
end if
\\ Update triggered by a type-II stage
if n € £ then
b« min{2+y/H2/n,1/(1 —
Q(s,a) < mln{T(s a) + 'y( /ﬁ + B),Q(s,a)}; 77
N(s.a) < 0 f(s,a) « 0 V(s) « maxQ(s,a);
end if
if Y., N(s,a’) = Nj then V™ (s) < V(s); {Learn the reference value function}
end for

D.2. Proof of Theorem 1

We start from showing that the () function is optimistic and non-increasing.

Proposition 17. With probability (1 — SA (4J(2logy(NoH) + 1) + J) p), it holds that Qi(s,a) > Q*(s,a) and
Qir1(s,a) < Q¢(s,a) foranyt = 1and (s,a) €S x A.

In the proof of Proposition 17 in Appendix D.3.1, we introduce the desired event E5 by (89). Moreover, we use E5 to
denote the complement event of Fs. As will be shown later in (92), we have

P[Eo] = (1 — SA (4J(2logy(NoH) + 1) + J) p),
and thus
P[E2] < SA(4J(21ogy(NoH) + 1) + J) p.
The analysis will be done assuming the successful event E5 throughout the rest of this section.

Since the type-II stages in UCB-MULTISTAGE-ADVANTAGE are exactly the same as that in UCB-MULTISTAGE, using the
the same way as in the proof of Lemma 7, we can prove the following lemma (and the proof is omitted).

Lemma 18. Conditioned on Es, for any €; € [e, ﬁ] it holds that

.- - SAH® In(*Z
2 [Vi(se) = V*(s1) = 1] < 2 T[Q¢(st,at) — Q% (st,a) = e1] <O (6211(6)L> .
t=1 t=1 1

Recall that 71 = {¢|N¢(st, at) > Np}. Similar as Lemma 15, we have that (the proof is omitted)
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Lemma 19. Conditioned on successful event Es , it holds that for any t € Ty (if Ty is not empty)

Qe(s,ar) — Q™ (s4,a4) <

€

2H

Define )\, to be the vector such that A(s) = I[Y, Ni(s,a) < Ni] where Ny := c10SAH®BIn(#£ ), for some large
enough constant ¢1o. By Lemma 18, \;(s) = 0 implies that V;*f(s) = VREF(s),

We then show that the Bellman error of the ()-function is properly bounded.

Lemma 20. Define l;(s, a) to be the time the i-th visit of (s, a) occurs and Ny (s, a) to be the visit count of (s, a) before the
current stage of (s, a). Conditioned on Es, it holds that

Qi(s,a) = 7(s,a) = PsaVi < Poa(V, (5,0) = Vi) + Py oi(s, a) (78)
foranyt = 1and any (s,a) € S x A, where

_ 1 1 ]\_/t(s,a)
Msa) = —— [ ——— A (s
+(s,a) 1= | N(s.a) ; Li(s,a)

The proof of Lemma 20 is given in Section D.3.2. We now define the bandit loss

V(Ps,q, V*)e 1
nt($7a) 1 -7

b (s, a) := min{2v/2 }. (79)
By (78), with the definition that w;(s, a) := w¢(s, a) - I[N¢(s,a) < Ny] we can show that

Vi(s) = V7 (s)

< i(s,a) (2@(5, 0) + Paahe(5,0) + 7Paa(Vyy (s.0) — Vt)>

s,a

+Zwt s, [N(s,@) = Nol - (Qu(s,@) = Q*(s.)) + £

—2Zwt8a (s,a) —&-QZwtsa)(bt(s a) — bf(s,a)) +'72wtsa)Psa(Vp(ga) i)

s,a

+ Z We(s,a Ps@)\t(s, a)

s,a

# Lo, lINi(s,0) > Nol - (@uls.0) =~ @ (s,) + §
€
QZwt s,a)bf (s,a) + 2§wt s,a)clip(by(s,a) — b (s,a),lG—H)
~ . €
+7§wt s,a)Psyachp(VBt(s’a) Vi, —— 16H +Zwt s, a) éachp()\t(s a), 16H)
Y wi(s, a)[Ni(s,0) = No) - clip(Qu(s, 0) — Q¥ (s, a), —) + (80)
v ’ ’ ’ 4H 8
7
—QZwtsa (s,0) + By + 5 (81)

where we re-define 3; as follows.

6t = Zwt(sva) (QClip(i)t(Saa) - bt ( ) ) + ’YPS aChp(V ( a) — V;fv )

16H S 16H

L €
+Ps oclip(Ae(s, a), ﬁ»

3e

+ Y wi(s, a)I[N(s,a) = Nyl - clip(Q:(s, a) — Q*(s, a), )

s,a
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Plugging in the definition of w;, we get that

B = Y wis, @)I[Ny(s,a) < No] (2clip(bu(s. @) — b (s, 0),

s,a

].GH) + ’be aChp(VL (s,a) — ‘/ta

+ Pyaclip((s,0), =)
3€

+ Y wils a)l[Ni(s,a) > No] - clip(Qu(s,0) — Q*(s,0), 7).

s,a
We also re-define the following notations,

€

o := I[N¢(s¢,a;) < NoPs, a,ChP(VL (s1:00) = V> ﬁ)’
vg == I[Ny (s, a1) < No|Ps qclip(Ae(s, a), 16LH)7
By := 1[Ny (s¢, ar) < No] - (QClip(l;t(st7at) — b (s¢,a4), 16H) + P, atchp(Vp (se,ae) — Vi, 16H)
+ P, qclip(Ai(s, a), 16H))
+ I[Ni(s¢,a) = Nol - clip(Q¢ (81, ar) — Q (¢, ar), fTE[)
Therefore, we have that
B = I[Ni(s1 a1) < No - 2elip(bu(st, ar) = bf (31, ar), 1) + e + vy
+ I[Ne(se, ar) = NoJ - clip(Qe(se, ar) — Q* (s¢, ar), fT:I>

To handle the first term in RHS of (80), we prove that
Lemma 21. Define A = [1og2(25§2H ! )]. With probability (1 — 2H Ap), it holds that

M1 [Z wi(s,a)I[Ny(s,a) < Nolb¥(s,a) > —

t=>1 s,a 16

2

€ €

373 42
<O<SAH A%y N SAH*BA ln(No)).

(82)

We remark that our proof of Lemma 21 is quite similar to the method of knowness in (Lattimore & Hutter, 2012), in the
sense that both methods rely on an argument based on the partition of the states. However, our way of partitioning seems to
be simpler as we divide the states into different subsets only according to their numbers. The detailed proof is presented in

Appendix D.3.3.

For the second term, in Appendix D.3.4, we prove the pseudo-regret bounds as below.
Lemma 22. If we choose B = H?®, with probability 1 — SAJ(2P[E] + 4p) it holds that

. €
Z clip(by (s, ag) — bf (s¢,at), —==)
= 16H
SAH2, N 53/2A3/2H17/4L SAH59/12L 55/4A5/4H31, 5 (270
<O< . >+O( YD i/ i +SAHL>.

Following the same arguments as the proof of Lemma 8, for the third term we show the following lemma (the proof of

which is omitted).
Lemma 23. With probability 1 — (P rg] ) it holds that

SAH® In(2£
Z ay < (d?()b + SABH?® + SAHln(NO)> .
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Finally, in Appendix D.3.5, we show the following lemma.
Lemma 24. With probability 1 — (P [E>] + p), it holds that

S <0 <H2S(N1 + 1)> |

i>1 €

Similarly to the proof of Lemma 19, we also have the following lemma.
Lemma 25. With probability 1 — (P Eg] + p), for any t it holds that

. 3e
I[N¢(s¢,a¢) = No| - clip(Qy(s¢, ar) — Q* (s¢, az), E) =0.
By Lemmas 22, 23, 24 and 25, we obtain that
Lemma 26. With probability 1 — (SAJ(2P[Es] + 4p) + 3P [E2] + 3p), it holds that
~ SAH?In(42 ~ [(S2A2H1O
Zﬁt<0<n(f)L +O<1/2L) (83)
€ €
t=1
Following the same arguments in Section 5.4, we obtain that with probability
1 — (SAJ(2P[E>] + 4p) + 3P [E2] + 34p)
it holds that
SAH?In(42), <, 82A2H10
il > ¢ <o EARC o SA T (84)
8 € €3/2

t=1

By Proposition 17,(81) and (84), we conclude that with probability 1 — (SA.J(2P[E>] + 4p) + 3P [E2] + 2HAp + 3p), it
holds that

DII[VH(s1) = V™ (s0) > €]

t>1
<ZH Zwt(s a)by (s a)>E +ZH[5t>E]
R 8 4
t>1 s,a t=>1
3A2 1 (4H 7A2 /G2 A2710
<0 SAH?A In(=5)e Lo SAH"A*1n(Ny) L0 SA‘H L
€2 € €3/2

The proof is finished by replacing p with o -5+ 10;2’(NOH)+4HA.

D.3. Missing Proofs in Appendix D.2
D.3.1. PROOF OF PROPOSITION 17

Proposition 17 (restated). With probability (1 — SA (4J(2logy(NoH) + 1) + J) p), it holds that Q(s,a) > Q*(s,a)
and Qi+1(s,a) < Qi(s,a) forany t = 1 and (s,a) € S x A . The rest of this subsection is devoted to the proof of
Proposition 17.

Let (s, a, §) be fixed. Let u™f , i, 0™f, & and b be the values of p™f, ji, 0™f, 5 and b in (76) in the j-th type-I update.
Define /; to be the time when the i-th visit in the j-th type-I stage of (s, a) occurs and ; to be the time the i-th visit of (s, a)
occurs respectively. Let 7 and n be the shorthands of é; and > 7_, &; respectively.
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Define
P (o,0) = 237 (1) - PV
i=1
Xéj)(s,a) = %i Wz Sii+1) Ps,aWZi)-
i=1
We consider the events:
Ev’g)(s, a) := |xgj)(s, a)| < Qﬁ\/aref/n _n(ﬁref/n)zb + 75;1/4 + %
and
B9 (s,a) = 4 k9 (s, )] < 23y | 22 }L@W 7];31/4 % 7

where W; = V; — Ve, If both Efj ) (s,a) and Eéj )(s, a) occurs, then we have that

T(s,a)+;+%+b
n 7
l;
r(s,a) + P Ly veer ) 4 b, | £ Vi, = Vi) |+ (s, 0) + x5 b
= s sa | l; sa | o i I X S, a X S, a) +0
=1 =1
i
1 & } ‘ )
> ri(s,0) + Poa | = D0 Vi |+ (5.0) + x5 (s.0) +8 (85)
i=1
18
2 ) PS a - VV. ) 86
rh(s,a) + Ps, n; 7 (86)

where Inequality (85) holds by the fact V;*f is non-increasing in ¢ and Inequality (86) follows by the definition of b.

On the other hand, for the j'-th type-II update, we consider the following same events as in the proof of Proposition 4,

EW(s,a) { EV (57,41) + 0V > Ps,av*}. (87)
6] =1

Assuming E') (s, a) holds, we then have

g’

(s7,40) + b9

Cb

> (s a)+WPaaV*+7< : _Z(VZ,,,(sl,.H)—v*(sliH))). (8%)

Let

By = (ms)a’jEv'gj)(s,a)) N (ms’aJ‘Evéj)(s’a)) N (ms’a,j/E_'(j/)(s,a)). (89)

Assuming F5 holds, by the update rule (76) and (77) and noting that V; is non-increasing , for any ¢ > 2 and (s, a), it holds
either Q¢(s,a) = Q¢—1(s,a) or

Qu(s,a) =154 +YPs o VF + Z vy (Ve — V*)

t'<t
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for some non-negative S-dimensional vectors vy, v, . .., v;—1. Noting that Q1 (s,a) = ﬁ > Q*(s,a) for any (s, a), the
conclusion follows easily by induction.

Therefore, it suffices to bound P [ Es].
Lemma 27. For any (s,a,j), P [Egj)(s, a)] > 1—2(logy(NoH) + 1)p.

Proof. Define V(z,y) = xy? — (zy)? for two vectors with the same dimension. Noticing that s;, ;1 is independent of Vljef
conditioned on F;, 1, by Lemma 13 with e = H, we have that with probability (1 — 2log,(n.H )p), it holds that

3

f f
Z (Vi (s1,41) = PraVi)

o1 V(Peoa Vi) V2HL | 2H
<m\/@u Poas Vi) | VOHL | 28

3\'—'

‘X1

n n
7}7 V(P. 7Vref AH
< 2\@\/(22_1 (nZ’a L TL (90)

By definition of ¢ and p**, we have that

iv PS(“V'lref i ref (Ps,avzef)g)

i=1 i=1

I
=

2
1 n
(Ve (ste)? — (Z vl:ef<sli+1>> +Xa X+ X
1

-
I

ref)2

(@ + X3 + X4 + X5,

where

1:1
n 2
X4 1= % <Z ‘/lfef(sl +1)> _ l (Z P, a‘/lref)
=1 =1
1 C Ve N re
X5 = E (;1 f) ; s, aV f

By Azuma’s inequality, we have that
P [|X3| > H2\/2m] <p

and

3

P [|X4| > 2H?y 2”’/] <P l Z Sl +1) Ps,avlfef) | > 2H?y 2m1 <p
On the other hand, by Cauchy-Schwartz inequality, we have 5 < 0. It then follow that

< 1
Z Psaa‘/lref s ref ( ref) +5H2\/7] (91)
— n
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Combining (90) and (91), we have that

< (a . Tli V(P. ’Vref
]P’[Eij)(s,a)] >1p[| ])(S,a)|>2\/§\/(21—1 ( ;,a L ))[’+4HL
n

n
2 1
- P ZV(PS»M‘/Eef) >gref 7( ref) +5H2\/;‘|
n
i=1
>1—2(logy(nH) + 1)p
> 1—2(logy(NoH) + 1)p

O

Following similar arguments as above, we can prove that P [Eéj) (s, a)] > 1 — 2(logy(NoH) + 1)pforany 1 < j < J.

At last, by Azuma’s inequality, P [E(j/)(& a)] > 1 — p for any j/ and (s,a). Via a union bound over 1 < j < J and
1 < j' < J, we obtain that

P[E5] > 1 —4SAJ(logy(NoH) + 1)p — SAJp. (92)
The proof is completed.

D.3.2. PROOF OF LEMMA 20

Lemma 20 (restated). Define /;(s, a) to be the time the i-th visit of (s, a) occurs and N, (s, a) to be the visit count of (s, a)
before the current stage of (s, a). Conditioned on Fs, it holds that

1 1 ¢
Qt(saa) - T(S;a) - Ps,av;f < Ps7a(VBt(57a) - V;S) + ﬁPS,CL (n;Ah) .

forany ¢ > 1 and any (s,a) € S x A.

Let (s, a,j) be fixed. We use the same notations as that of Section D.3.1. For any ¢ in the j + 1-th type-I stage, by the
arguments to derive (86), we have that

ref

Qi(s,a) =1(s,a) + % +

<r(s,a) +PM< vaf>

|«

+

SEIS

I;
PRUAE A
1=1

S| =

<7r(s,a) + PoaVi+ Psa(Vy (s,0) = Vi) + Pg ( Z Vel — VREF)
i=1

<7(s,a) + PoaVi + Paa(V, (s,0) - Vt)+Psa< ZN> 93)

The proof is completed.
D.3.3. PROOF OF LEMMA 21

Lemma 21 (restated). Define A = [1og2(25§H )]. With probability (1 — 2HAp), it holds that

M1 [Z we (s, a)I[Ne(s, a) < NoJb¥ (s, a) > g

t=1

3A3 4 2
<0 <SAH A% SAH'BA ln(No))'

€2 €

s,a
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The rest of this subsection is devoted to the proof of Lemma 21.

Define Sy := {(s,a)|ni(s,a) < ¢}, St i= {(s,0)[27 0 < ny(s,a) < 2%} foru=1,2,...,A = [log2(25g[4 )] and

S; = {(s,a)|n(s,a) > f—;} . Furthermore, we define

Bri= Y wils,a)bi(s.a)

(s,a)€S¢,u

and

— Zﬁt*u = Zwt(s, a)bf (s.a).

By the definition of bf (s, a), we obtain that for 1 < u < A,

6;1 = Z Wt (8, a)bf (Sa (1)

(5,a)€S¢,u
V(Ps,q, V*
<2V Z wy(s,a) V(Lo V*)
ne(s,a)
(s,a)€St,u
«/ 1 wils,a)y/V(Paa, V¥)
(s,a)€S¢,u
<2\ (s,a) - D wi(s,a)V(Pog, V¥), (94)
(s, a)ES, w (s,a)€S¢ 0

and for 0 < u < A,

1
ﬁt*,ugi Z wi (s, a).

v (5,a)€S¢,u

Define wyy = 3,5 4yes, , We(s,a) and vy = 3, wi(s, a)V(Pysq, V*). Note that

Zwt $,a)(Ps,q( (V*)? (PsﬂV*)Q)

—Zwtsa )P0 (V*)? wasa *(s,a) —r(s,a))?

imsamv* sta Q*(s,a) — (s, a))?

Zwtsa (Pya(V*)? — (Q*(s, ) >+%
= il ) (PraV)? = (V) +§wt (V) ~ (@(s,0)) + T

< s ) PV = (V46 Zwtsa (5) ~ Q*(s,) + o
@j EmsaW) Q(»+%% (95)
= (137) (V*(st>—vm<st>>+% 06)

o7

N
ot
I
. ]
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Here Inequality (95) holds by the fact that

H—

Dlwi(s,a)(Pag — 1)(V*)? = > (I[a = m(s 2 T (VPr,)'1s) - (Psa — 15)(VF)?

and Inequality (96) is due to the bound on the following telescoping sum,
VE(s) =V (s1) = Z Z 1, (vPr,)'Ls) - (V*(5) = Q*(s,0))
ZwtsaV*) Q*(s,a)).

16, we obtain that , if 5} > g, there exists « such that
u—1_2 1—
B > Tex» Which implies that w; ,, > max{ ToeTT | IR 6(16A’Y) }.

Combining (97) with the fact that 3, 5, wt(s a)bf (s,a) <

u—1 2
We will bound the number of steps in which there exists u satisfying wy ,, > max{ 10; yTi 2H2 AT £ 116 A7 } by following

lemma.
Lemma 28. Forany k€ {1,2,...,H} and u € {1,2,..., A}, with probability 1 — p,

Z I - 1 R - SABH*A?In(Ny) N SAH?A?, 98)
L | PR 10240 T HEAZ | S 21,2 2 )
Moreover, for any u = 0, with probability 1 — p,
1- HA
DI [wtmk,u > 6(16A7)] <0 ((SAHQBIH(NO) + SAH + 2u+25AL)> : (99)
€

t=0

Proof. Define
Ut,u =1[3(s,a),i€{1,2,...,H — 1}, such that Sy1; o # Sty OF Qi+i(s,a) # Qi(s,a)],

and

H—
UA)( ) 1_Utu Z St+17at+z ESt+zu]+HUtu

Note that w711 is measurable with respect to .Ftk = ]—'(t+1)H+k_1 and E [@tHJrk |.7:,§_1] > w4k, We then have that by
Lemma 14,

]P[ N wisrir > 8SAH?BIn(No) + 8SAH + 225 A,

t=0

S birrer < 2SAH?BIn(No) + 2SAH + 2“SAL] <p. (100)

=0
On the other hand, we have that
Dtk < H Y Ui+ ), 1(s1,a0) € St
t=0 t=0 t>1

< 2SAH?BIn(No) + 2SAH + Y T[(s1,a1) € St (101)

t=1

< 2SAH?B1In(Ny) + 2SAH + 2“S A, (102)
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where Inequality (101) is because S; ,, changes at most 25 A times in ¢, and Inequality (102) is by the fact that 2“1, <
n¢(s,a) < 2% implies that 2% < Ny(s,a) < 2“1, It then follows that

P [Z wip ik > SSAH?B1In(Ny) + 8SAH + 2“+2SAL] <p,

t=0

which means

1 oule 16SABH*A2In(Ny)  8SAH?A

= 2u—1,e2 €2
and
1-— 16HA
P [Z I [wtmk,u > 6(16A7)] > (8SAH?BIn(Ny) + 8SAH + 2u+2SA[,)] <p.
€
>0
The proof is completed. O
For w such that 2% < w oru =0,wepluguand k = 1,2,..., H into (99) and obtain that with probability 1 — Hp,
1-— SAH*BA In(N,
P [wm > 6(7)] <0 ( n( 0>> . (103)
= 16A €

BH?1n(Np)
L

For u such that 2% > ,wepluiguand k = 1,2,..., H into (98) and obtain that with probability 1 — Hp,

1 gule SAH3A2,
Hw>—— = | <o (25220 104
t; [wt" ~ 10240 H2A2] O( e > (104)

Via a union bound over u, we have that with probability 1 — 2H Ap, it holds that

1 2u—1 2 1— 1—
M1 [5;‘ > f] < I [au,wm > max{ e 7)} and wy o > -7

= 8 &1 10240 H2A2’ 8A SA
SAH3A3 SAH*BA21In(N,
so( — ( °)>. (105)
€ €
D.3.4. PROOF OF LEMMA 22
Lemma 22 (restated). With probability 1 — SAJ(2P[Es] + 4p), it holds that
- €
lip(b —bF P — 106
;Clp( t(Staat) t(St,at)716H) ( )
2 ~ 3/2 A3/2 1717/4 59/12 5/4 A5/4 173
<O(SAHL>+0<S AlH v SAH12,  G4A HL+S2A2H9L>.
12 c1/3 c1/4

The rest of this subsection is devoted to the proof of Lemma 22.

Let s, a, j be fixed. We follow the notations in Appendix D.3.1. For ¢ in the (j + 1)-th type-I stage of (s, a), recalling the

definition
50 — (11/1)2 ref _ ref 2
bu(s1s01) — min{2v2 \/U/n e \/o Jn— (2
n

n

. HB34  H 3/ 5 H, H. 1
T\ e e ) T\ T ) T
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we have that

.y €
clip(b(st, ar) — bf (st, ar), ﬁ)
O—ref/n _ (Nref/n)2 V(P V*)
< 4clip(2v/2 — = — 2 4clip(2
clip(2v/2 \/ - L - L 64H)+ clip(2v/2
@
. HB34 H 3/ € H, H. €
+4chp(7< 3 + —3 ),64H)+4c11p( (n + ) 64H) (107)
©) @
and the trivial bound
L € 1
chp(bt(st,at)—bz“(st,at),—wH) <7 (108)

Here, (107) is because clip(a + b, 2¢) < 2clip(a, €) + 2clip(b, €) for any non-negative a, b, €.

Let V;*f be the value of V™*f immediately before the beginning of the ¢-th step and VREF := lim;_,, V**! (by the update
rule of Algorithm 2, this limit exists). Recall that \; is defined as the vector such that \;(s) = L[>}, N¢(s,a) < N1]. By
Lemma 18 with €; = w := ﬁ (assuming € < ﬁ), we have that

PVt > 1,V (s;) — V¥(s¢) < H\i(s¢) +w]| = P[Es]. (109)

We will deal with the four terms in RHS of (107) separately.

ref

The @) term To handle this term, we introduce a lemma to bound %Ef — (Hn )2 = V(P ,, V*).
Lemma 29. With probability 1 — (P[E3] + 4p), it holds that

ref ref

gn - (Hn )2 —V(Pso, V¥) < 9\@H3\/; 1 (2H?SA(J + J) + 10H?>SN;) + 4Hw.

Proof. Note that

1
— (F=)? = V(P ,,V*) = E(X6+X7+X8+X9)a (110)

where

((VZEf(SlHr )) — Py a(Vref) ) )

n 2
(Z Ps,a‘/?;ef> - = <2 ‘/2 Sl +1 )
i=1

2
1
(Ps a‘/lref) <Z Ps awref) ,

=1

=<

[}

i
gl

-
Il
—

<

-

i
SR

=

[oe]

i
1=

1

-
3

X9 = V(Ps,av Vl:ef) - TLV(PS’,I, V*)'

i=1

According to Azuma’s inequality, with probability (1 — 2p) it holds that

Ix6| < H*V2nu, (111)
x7| <2 Z Vit (s1,11) — Po o Vi) | < 2H?V 201 (112)
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On the other hand, by direct computation, we have that

2
n . 1 n .
Xs = Z(Ps,avlfff - (Z Ps,aVlff>

i=1
< D (PaaVieh)? - <Z P, aVREF) (113)
1=1 =1
Z ((Pg a‘/lref) (P)s,avREF)Q)
=1
n
<2H? ) Poal, (114)
=1
=2H2 (Z)\ll(sliJrl)_'_Z(Psa lsl Jrl))\l)
i=1 i=1
= 2H2 Z()\lz (Sli+1) - )‘li+1(sli+1)) + 2H2 Z )‘li+1(sli+1) + 2H2 Z(PS,CL - 15li+1>)‘li
=1 i=1 i=1
< 2H*SA(J +J) +2H*SN; + 2H? Z wa — Loy, 1) (115)
1=1

where Inequality (113) is by the fact that V! > VREF for any ¢ > 1, Inequality (114) is by the definition of )\; and
Inequality (115) holds because \; # A;1; implies an update occurs at the ¢-th step and Y, A¢(s¢) < SNp. Therefore, by
Azuma’s inequality it holds that

P [XB > 9H2SA(J + J) + 2H2SN, + 2H3\/2m] <P leQ M (Poa — L )N, > 2H3V20 | <p. (116)
i=1

At last, the term ¢ could be bounded by

= 2 V(P Vi) = V(P V)

(Vref V* )

N
3\%'
'Mﬁ

1

-
Il

-

Il
—

H

n
(VEs11) = Vi) + Vi (s10) = V5 (0100)) + 4H 3 (Pa = Lo )G = V)

[ =1

<AHZS +4H Y (Vi (s1,01) = V¥ (s1,40)) + 4H Y (Poa = L) (VI = V), (117)

i=1 =1

where Inequality (117) is by the fact that the number of updates of V™ is at most S. Similarly, we have that

P [Xg > AH%S + 4H?SN; + 4Hnw + 4H2\/2m]

n n
P (Vi (1) = VE(si41)) > ) (H A1 (s, +1)+w)]
o1 im1

+P [Z(Ps,a — 1, (VT = V*) > HV2m
=1

< P[E2] +p, (118)

where (118) holds by (109).
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Combining (110), (111), (112), (116) and (118), with probability 1 — (P[E2] + 5p) it holds that

J) + 2H2SNy + 2H3\2nu + 4H (S + SNy) + 4H?\/2n )+4Hw

oref 'urCf
— — (= -V Ps N3 V*
n (= )2 = V( )
<= (3H2\/ L+ 2H2SA(T +
J)+ 10H?SN;) + 4Huw.
0

< 9\/§H3\[ L omrsai+

By Lemma 29, with probability 1 — (P [E5] + 4p) it holds that
%

ot /n — (prt/n)? V(Psa,V*)
L= —=
n n
203,32 (2H2SA(J + J) + 10H2SN 4H
< 9v2H3, +( SA(J +J)+ 10H2S 1)L+ we (119)
n3/2 n? n
He L ey Hl:;{jL + ¢ H\/(HZSA(j:j)JrHZSNl)L with sufficient large constants ¢4 and cs, it
‘ (120)

V(Puu V¥ ) _
64H"

As aresult, forn > Ny := c3

holds that
2\/5 \/O-ref/n _ (Href/n)
n
2
. (121)

The @ term Direct computation gives that
s/~ (/1) & 1% et 2_1y
n h ~ (‘/l Sl +1 ‘/[ie (Sl +1)) < 7~,«L2 ZZZ:l
Also note that
% ref * ref % 2
> ((v[,., (1,00 =V 00)) = (o)~ Ve or,00) )
i=1
Z (Vref Si,41) Vl{‘fl(shﬂ)) 2H?(SA(J + J)). (122)
It then follows that
[6/i— (3/R)?  H2(2SN, + 2SA(J +J))  2w?
P . > — + —
n n n
<P (Vl{ef(s[iﬂ) V*(s +1)) > H?(2SN; +2SA(J + J)) + 2w n}
[i=1
[ 7 2
<P (Vlrif1(sl+1) V*(s; +1)) > 2H?SN; + Qth]
[ i=1
n . n 9
<P Z (Vz CAY (81,41 ) > Z N1 (87,41) + @) ]
| i=1 i=1
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where the last inequality is due to (109). Therefore, we have that

- — + = | <P[E,). (123)

\/(r/h — (/P \/ H2(2SN, + 2SA(J + J)) 2 _

2773 / .
Note that 7t > s775. Forn > N3 = ¢g® 132 By o, VH 41‘3 SNt with large enough constants cg and c7, we have that the

following inequality holds with probability at least 1 — P[F],

=, < ‘ (124)
n

11/3 .
= /33 t with large enough constant cg, we have

HB34 |3/ €
7( R + 37 ) < G (125)

The @) term Forn > N, := cg L

3 .
The @ term Forn > Nj := 09@ with large enough constant cg, we have

H, H. €
— + — . 12
5(n+ﬁ><64H (126)

Combining (107) with the bounds (119), (120), (123), (124), (125) and (126), using the trivial bound clip(Bt(st, ay) —
bi (st,at), 1a57) < 1/(1 — ) for early stages, and summing over all possible s, a, j with a union bound, we obtain that with
probability 1 — SAJ(2P[E,] + 4p),

3 clip (b (e, ar) — b (se, a), MLH) < O(My + My + Ms + My), (127)
t>1
where (noting that 7 > n/(2H B) in (123), (125) and (126))
N2 < 7 T
2H3,3/2 2H2SA 10H2SN 4H
My = Z o+ Z 9[3/; (2H?S (J+J)2+ 0H2SNi) 4w ’ (128)
n n n
s,a n=max{|¢],1}
N3 7 T
H*B2(2SN; + 2SA(J +J 2H Bw?
Mo =Y H+ ] ( — Ch))n — . (129)
s,a n=max{|¢],1}
Ny 3/4 7/4R3/4,3/4
H H'=B>*y
Ms=>|Hi+ > <n3/4 +——n ) : (130)
s,a n=max{|¢],1}
Ns
= v H?’Bu
= H — . 131
My=> [H+ > < —+— ) (131)

s,a n=max{|¢],1}
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Straightforward calculation shows that

M <SA-O (HL + NYAE32 B4 (=2 \/HQSAJ + H2SN; + «/NQHM>

<0 SAH5/4L ~ SAH17/12L (53/2A3/2H7/4 + 53/2A5/4H7/2 + SAH15/8)L
= + ( €2/3 €l/2
SAH7/3L (55/4A5/4H5/2 + 55/4A9/8H3)L
€1/3 + el/4

4 S2AZH3, + 52A3/2H7/2L>7 (132)

My < SA-O <HL + ln(N )\/HQBQ(HQSNl + H2SAJ) + NgHBw2L>

AH? _ /§3/2 A5/4 Fr17/4
<0 (S ”) + 0(51—/2‘ +S2AVRHO L+ SPATHL), (133)
€ €
AH59/12
Mz < SA-O (HL + Nj/4H7/4B3/4L3/4) <0 <51/ + SAHL) (134)
€
N 2p 5
My <SA-O(Hi+In(— )H <O (SAH™.). (135)
Finally, together with (127), we conclude that
. €
Z clip(be(se, ar) — by (8¢, at), —=)
=} 16H
SAH2, N 53/2A3/2H17/4L SAH59/12L S5/4A5/4H3L 9 19170
<O< . >+O< az + BB Y JrSAHL). (136)
D.3.5. PROOF OF LEMMA 24
Lemma 22 (restated). With probability 1 — (P [E3| + p), it holds that
16Ny H?
Z vy < 641og 670)N1.
t=>1 €
By definition, we have that
SNy . :
Uy = Pst,at,sChp P ~ 7 N )\ZT( 't,at)(s) Yy T AT
t>1 t>1 s L—v \ Ne(s,a) i ° 16H
1 Ni(s,a) c
<H P, a4, scli —_ A (ss.a , . 137
;; naes@IP | ) ; e (8) | (137)

Let T'(s, a, s') be the visit count of (s, a) before the smallest time ¢ such that \;(s’) = 0. Then we have that

N¢(s,a)

j 2 Al [m @) < (1+ )T(s,0 sf>] ; 7;5())

Noting that Ny(s,a) < Ny(s,a) < (1 + 2 )Ny(s, a), we obtain that

2T (s,a,s') €
Ni(s,a) *8H?

+(s,a
1 -
cliv | | 5 2 Nitsran(3) | sz | ST Nals @) < 4T(s,a,5') | + elin ).

"8H?
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Combining this with (137), with probability 1 — p it holds that

Z’Ut QHZZP&@“S/H [Nt(5t7at) <4 (st,at, ] +HZZP§“W S’Chp 2T(8t7at7s') € )

) QT2
=1 s t>1 > 151 Niy(sy,ar) ~8H

_ - 1 A / 2
<4H Y PoooT(s,a,8) +4H Y Py oo T(5, 0, 5') log( 20T VA,
€

s,a,s’ s,a,s’
16 NoH?
< 810g(70 Z P.ooT(s,a,s")
16 NoH?
= 8lo g(io 2 Z PStaat’Sl)\t( )
s t=1
1 NoH?
< 32log 16NoH” )OO Ae(s141) (138)
t=1
16Ny H?
< 6410g(+)N1. (139)

The second last inequality holds with probability 1 — p by Lemma 11, and the last inequality is by the facts Zt>1 Ae(se) <
SNyand 3o (Ae(se41 — At1(se41)) < S. The proof is completed.



