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Abstract
In this paper we consider the problem of learn-
ing an ε-optimal policy for a discounted Markov
Decision Process (MDP). Given an MDP with S
states, A actions, the discount factor γ P p0, 1q,
and an approximation threshold ε ą 0, we pro-
vide a model-free algorithm to learn an ε-optimal
policy with sample complexity Õp SA lnp1{pq

ε2p1´γq5.5 q
1

and success probability p1´pq. For small enough
ε, we show an improved algorithm with sample
complexity ÕpSA lnp1{pq

ε2p1´γq3 q. While the first bound
improves upon all known model-free algorithms
and model-based ones with tight dependence on
S, our second algorithm beats all known sample
complexity bounds and matches the information
theoretic lower bound up to logarithmic factors.

1. Introduction
Reinforcement learning (RL) (Burnetas & Katehakis, 1997)
studies the problem of how to make sequential decisions to
learn and act in unknown environments (which is usually
modeled by a Markov Decision Process (MDP)) and max-
imize the collected rewards. There are mainly two types
of algorithms to approach the RL problems: model-based
algorithms and model-free algorithms. Model-based RL al-
gorithms keep explicit description of the learned model and
make decisions based on this model. In contrast, model-free
algorithms only maintain a group of value functions instead
of the complete model of the system dynamics. Due to their
space- and time-efficiency, model-free RL algorithms have
been getting popular in a wide range of practical tasks (e.g.,
DQN (Mnih et al., 2015), TRPO (Schulman et al., 2015),
and A3C (Mnih et al., 2016)).
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1In this work, the notation Õp¨q hides poly-logarithmic factors
of S,A, 1{p1´ γq, and 1{ε.

In RL theory, model-free algorithms are explicitly defined
to be the ones whose space complexity is always sublinear
relative to the space required to store the MDP parameters
(Jin et al., 2018). For tabular MDPs (i.e., MDPs with finite
number of states and actions, usually denoted by S and
A respectively), this requires that the space complexity to
be opS2Aq. Motivated by the empirical effectiveness of
model-free algorithms, the intriguing question of whether
model-free algorithms can be rigorously proved to perform
as well as the model-based ones has attracted much attention
and been studied in the settings such as regret minimization
for episodic MDPs (Azar et al., 2017; Jin et al., 2018; Zhang
et al., 2020)).

In this work, we study the PROBABLY-APPROXIMATELY-
CORRECT-RL (PAC-RL) problem, i.e., to designing an
algorithm for learning an approximately optimal policy. We
will focus on designing the model-free algorithms, and un-
der the model of discounted tabular MDPs with a discount
factor γ. The RL algorithm runs for infinitely many time
steps. At each time step t, the RL agent learns a policy πt
based on the information collected before time t, observes
the current state st, makes an action at “ πtpstq, receives
the reward rt and transits to the next state st`1 according
to the underlying environments. The goal of the agent is to
learn the policy πt at each time t so as to maximize the γ-
discounted accumulative reward V πtpstq. More concretely,
we wish to minimize the sample complexity for the agent to
learn an ε-optimal policy, which is defined to be the number
of time steps that V πtpstq ă V ˚pstq ´ ε, where V ˚ is the
optimal discounted accumulative reward that starts with st,
and the formal definitions of both V π and V ˚ can be found
in Section 2.

The PAC-RL addresses the important problem about how
many trials are required to learn a good policy. We also note
that in the PAC-RL definition, the exploration at each time
step has to align with the learned policy (i.e., at “ πtpstq).
This is stronger than the usual PAC learning definition in
other online learning settings such as multi-armed bandits
(see, e.g., (Even-Dar et al., 2006)) and PAC-RL with a
simulator (see Section 1.2), where the exploration actions
can be arbitrary and may incur a large regret compared to
the optimum.
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Quite a few algorithms have been proposed over the past
nearly two decades for the PAC-RL problem. For model-
based algorithms, MoRmax (Szita & Szepesvari, 2010)
achieves the ÕpSA lnp1{pq

ε2p1´γq6 q sample complexity, and UCRL-

γ (Lattimore & Hutter, 2012) achieves ÕpS
2A lnp1{pq
ε2p1´γq3 q. It is

also worthwhile to mention that R-max (Brafman & Ten-
nenholtz, 2003) was designed for learning the more general
stochastic games and achieves the ÕpS

2A lnp1{pq
ε3p1´γq6 q sample

complexity in our setting (as analyzed in (Kakade, 2003)).
Unfortunately, none of these algorithms matches the in-
formation theoretical lower bound Ωp SA

ε2p1´γq3 q proved by
(Lattimore & Hutter, 2012). On the model-free side, known
bounds are even less optimal – the delayed Q-learning al-
gorithm proposed by (Strehl et al., 2006) achieves the sam-
ple complexity of ÕpSA lnp1{pq

ε4p1´γq8 q, and recent work (Dong

et al., 2019) made an improvement to ÕpSA lnp1{pq
ε2p1´γq7 q via a

more carefully designed Q-learning variant. Besides the
results above, (Pazis et al., 2016) provided Õ

´

S2A
ε2p1´γq4

¯

sample complexity. However, their algorithm consumes
Õp SA

ε2p1´γq4 q space cost and Õ
´

SA2

ε2p1´γq4

¯

computational
cost each step, which is far beyond the cost of both model-
based and model-free algorithms when ε is small.

1.1. Our Results

We design a model-free algorithm that achieves asymptoti-
cally optimal sample complexity, as follows.

Theorem 1. By the model-free algorithm UCB-
MULTISTAGE-ADVANTAGE, for any discounted MDP
with S states, A actions, and the discount factor γ,
any approximation threshold ε P p0, p1´γq

14

S2A2 q and fail-
ure probability parameter p, with probability p1 ´ pq,
the sample complexity to learn an ε-optimal policy
with UCB-MULTISTAGE-ADVANTAGE is bounded by
ÕpSA lnp1{pq

ε2p1´γq3 q.

In the theorem statement, polypS,A, 1{p1´ γqq stands for
a universal polynomial that is independent of the MDP. Our
UCB-MULTISTAGE-ADVANTAGE algorithm is model-free,
which uses only OpSAq space , and its time complexity
per time step is Op1q. In contrast, the model-based algo-
rithms have to consume ΩpS2Aq space. For asymptotically
small ε, the sample complexity of UCB-MULTISTAGE-
ADVANTAGE matches the information theoretic lower bound
of Ωp SA

ε2p1´γq3 q up to poly-logarithmic terms, and improves
upon all known algorithms in literature, even including the
model-based ones. In Appendix A, we present a tabular
view of the comparison between our algorithms and the
previous works.

To prove Theorem 1, we make two main technical contri-
butions. The first one is a novel relation between sample

complexity and the so-called clipped pseudo-regret, which
can also be viewed as the clipped Bellman error of the
learned value function and policy at each time step. This
relation enables us to reduce the sample complexity analysis
to bounding the clipped pseudo-regret. Our second tech-
nique is a multi-stage update rule, where the visits to each
state-action pair are partitioned according to two types of
stages. An update to the Q-function is triggered only when
a stage of either type has concluded. The lengths of the two
types of stages are set by different choices of parameters
so that we can reduce the clipped pseudo-regret while still
maintaining a decent rate to learn the value function. Finally,
we also spend much technical effort to incorporate the vari-
ance reduction technique for RL via reference-advantage
decomposition introduced in the recent work (Zhang et al.,
2020).

A more detailed overview of our techniques is available in
Section 4. Since the proof of Theorem 1 is rather involved,
we will first provide a proof of the following weaker state-
ment, and defer the full proof of Theorem 1 to Appendix D.

Theorem 2. By the model-free algorithm UCB-
MULTISTAGE, for any approximation threshold
ε P p0, 1

1´γ s and any failure probability parameter
p, with probability p1 ´ pq, the sample complexity to
learn an ε-policy with UCB-MULTISTAGE is bounded by
Õp SA lnp1{pq

ε2p1´γq5.5 q.

We highlight that the sample complexity bound in Theo-
rem 2 holds for every possible ε P p0, 1

1´γ s. Although the
dependency on γ becomes p1´γq´5.5, UCB-MULTISTAGE
still beats all known model-free and model-based algorithms
with tight dependence on S. The proof of Theorem 2
does not rely on the variance reduction technique based
on reference-advantage decomposition (Zhang et al., 2020),
but is sufficient to illustrate both of our main technical con-
tributions.

1.2. Additional Related Works

The PAC-RL problem has also been extensively studied
under the setting of finite-horizon episodic MDPs (Dann
& Brunskill, 2015; Dann et al., 2017; 2019), where the
sample complexity is defined as the number of episodes
in which the policy is not ε-optimal. Assuming H is the
length of an episode, the optimal sample complexity bound
is ÕpSAH

2 lnp1{pq
ε2 q, proved by (Dann et al., 2019). Note that

the sample complexity bounds for finite-horizon episodic
MDP do not imply sample complexity bounds for infinite-
horizon discounted MDP because one ε-optimal episode
may contain non-ε-optimal steps. Also we note that existing
algorithms for the finite-horizon case are model-based. It
is still an open problem whether model-free algorithm can
achieve near-optimal sample complexity bound for the finite-
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horizon case.

Much effort has also been made to study the PAC learning
problem for discounted infinite-horizon MDPs, with the
access to a generative model (a.k.a., a simulator). In this
problem, the agent can query the simulator to draw a sample
s1 „ P p¨|s, aq for any state-action pair ps, aq, and the goal
is to output an ε-optimal policy (with probability p1´ pq)
at the end of the algorithm. This problem has been studied
in (Even-Dar & Mansour, 2003; Azar et al., 2011; Ghesh-
laghi et al., 2012; Sidford et al., 2018b;a), and (Sidford
et al., 2018a) achieves the almost tight sample complexity
ÕpSA lnp1{pq

ε2p1´γq3 q.

2. Preliminaries
A discounted Markov Decision Process is given by the five-
tuple M “ xS,A, P, r, γy, where S ˆA is the state-action
space, P is the transition probability matrix, r is the de-
terministic reward function2 and γ P p0, 1q is the discount
factor.

The RL agent interacts with the environment for infinite
number of times. At the t-th time step, the agent learns
a policy πt based on the samples collected before time
t, observes st, executes at “ πtpstq, receives the reward
rpst, atq, and then transits to st`1 according to P p¨|st, atq.

Given a deterministic3 stationary policy π : S Ñ A, the
value function and Q function are defined as

V πpsq “ E

«

8
ÿ

t“1

γt´1rpst, πpstqq
ˇ

ˇ

ˇ
s1 “ s, at “ πpstqq

ff

Qπps, aq “ rps, aq ` γP p¨|s, aqJV π “ rps, aq ` γPs,aV
π,

where we use xy to denote xJy for x and y of the same
dimension and use Ps,a to denote P p¨|s, aq for simplicity.

The optimal value function is given by V ˚psq “

supπ V
πpsq and the optimal Q-function is defined to be

Q˚ps, aq “ rps, aq ` γPs,aV
˚ for any ps, aq P S ˆA.

We present below the formal definitions for sample com-
plexity and PAC-RL .

Definition 1 (ε-sample complexity). Given an algorithm
G and ε P p0, 1

1´γ s, the ε-sample complexity for G is
ř

tě1 I rV ˚pstq ´ V πtpstq ą εs.

Definition 2 (pε, pq-PAC-RL). An algorithm G is said to
be pε, pq-PAC-RL (Probably Approximately Correct in RL)
if for any ε P p0, 1

1´γ s, p ą 0, with probability 1 ´ p, the

2It is easy to generalize our results to stochastic reward func-
tions.

3In this work, we mainly consider deterministic policies since
the optimal value function can be achieved by a deterministic
policy.

sample complexity of G is bounded by some polynomial in
pS,A, 1

ε ,
1

1´γ , lnp
1
p qq.

When ε and p are clear in the context, we simply write pε, pq-
PAC-RL and ε-sample complexity as PAC-RL and sample
complexity respectively. The goal is to propose an PAC-RL
algorithm to minimize the sample complexity.

3. The UCB-MULTISTAGE Algorithm
In this section, we introduce the UCB-MULTISTAGE
algorithm. The algorithm takes S,A, γ, ε, sets H “

maxt lnp8{pp1´γqεqq
lnp1{γq , 1

1´γ u and B “
?
H . Throughout the

paper, we set ι “ lnp2{pq. The algorithm is described in
Algorithm 1. For each state-action pair ps, aq, the samples
are partitioned into consecutive stages. When a stage is
filled, we update Qps, aq and V psq according to the sam-
ples in the stage via the usual value iteration method. The
most interesting aspect about our method is that two types
of stages, namely the type-I and type-II stages, are intro-
duced. More concretely, the length of the j-th type-I stage
is roughly ěj « Hp1` 1{Hqj{B and the length of the j-th
type-II stage is roughly ēj « Hp1` 1{Hqj .

We note that the recent work (Zhang et al., 2020) designed
a (single-)stage-based model-free RL algorithm for regret
minimization. Our type-II stage is similar to their work, and
its goal is to make sure that the value function is learned
at a decent rate. In contrast, our type-I stage is new: it is
shorter than the type-II stage, so that triggers more frequent
updates and helps to reduce the difference between the value
functions learned in neighboring type-I stages. The hyper-
parameterB is used to adjust the frequency of type-I updates
(i.e., updates triggered by type-I stage). The two types of
stages work together to reduce the clipped pseudo-regret,
and therefore achieve low sample complexity.

The precise definition of the stages. Let d1 “ H ,
dj`1 “ tp1 ` 1

H qdju for all j ě 1. The sizes of the j-
th type-I and type-II stage are given by ěj “ drj{Bs and
ēj “ dj respectively.

Let N0 “ c1 ¨
S3AH5 lnp4H2S{εqι

ε2 for some large enough
constant c1. We stop updating Qps, aq if the number of
visits to ps, aq is greater than N0, since the value functions
will be sufficiently learned by that time.

Therefore, the time steps when an update is triggered by
the type-I and type-II stages are respectively given by
Ľ “ t

řj
i“1 ěi|1 ď j ď J̌u and L̄ “ t

řj
i“1 ēi|1 ď

j ď J̄u, where J̌ “ maxtj|
řj´1
i“1 ěi ď N0u and J̄ “

maxtj|
řj´1
i“1 ēi ď N0u . Without loss of generality, we

assume that
řJ̌
i“1 ěi “ N0.
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The statistics. We maintain the following statistics during
the algorithm: for each ps, aq, we use Nps, aq, Ňps, aq, and
N̄ps, aq to respectively denote the total visit number, the
visit number in the current type-I stage and the visit number
in the current type-II stage of ps, aq. We also maintain
µ̌ps, aq and µ̄ps, aq, which are respectively the accumulators
for state values V ps1q (where s1 is the next state observed
after ps, aq) during the current type-I and type-II stages.

We also remark that throughout the paper we will use ‘ ˇ’
to denote the quantities related to the type-I stage, and use
‘¯’ to denote the quantities related to the type-II stage.

Algorithm 1 UCB-MULTISTAGE

Initialize: @ps, aq P S ˆA: Qps, aq Ð 1
1´γ ,

Nps, aq, Ňps, aq, N̄ps, aq, µ̌ps, aq, µ̄ps, aq Ð 0;
for t “ 1, 2, 3, . . . do

Observe st;
Take action at “ arg maxaQpst, aq and observe st`1;
\\ Maintain the statistics
ps, a, s1q Ð pst, at, st`1q;
n :“ Nps, aq Ð Nps, aq ` 1;
ň :“ Ňps, aq Ð Ňps, aq ` 1;
µ̌ :“ µ̌ps, aq Ð µ̌ps, aq ` V ps1q;
n̄ :“ N̄ps, aq Ð N̄ps, aq ` 1;
µ̄ :“ µ̄ps, aq Ð µ̄ps, aq ` V ps1q;
\\ Update triggered by a type-I stage
if n P Ľ then

b̌Ð mint2
a

H2ι{ň, 1{p1´ γqu; (1)

Qps, aq Ð mintrps, aq ` γ
`

µ̌{ň
˘

` b̌, Qps, aqu;
(2)

Ňps, aq Ð 0;

µ̌ps, aq Ð 0;

V psq Ð max
a

Qps, aq;

end if
\\ Update triggered by a type-II stage
if n P L̄ then

b̄Ð mint2
a

H2ι{n̄, 1{p1´ γqu;

Qps, aq Ð mintrps, aq ` γ
`

µ̄{n̄
˘

` b̄, Qps, aqu;
(3)

N̄ps, aq Ð 0;

µ̄ps, aq Ð 0;

V psq Ð max
a

Qps, aq;

end if
end for

4. Technical Overview
Both of the algorithms introduced in this paper are variants
ofQ-learning, where the optimistic value function V and the
Q-function are maintained. For each time t, we use Vt and
Qt to denote the corresponding functions at the beginning
of the time step. The learned policy πt will always be the
greedy policy based on Qt, i.e., πtpsq “ arg maxaQtps, aq
for all s P S. Below we explain the main techniques used
in UCB-MULTISTAGE as well as UCB-MULTISTAGE-
ADVANTAGE.

Reducing Sample Complexity to Bounding the Clipped
Pseudo-Regret. For any time t, define the pseudo-regret
vector φt to be the vector such that for any s P S,

φtpsq “ Vtpsq ´ prps, πtpsqq ` γPs,πtpsqVtq.

We now outline our first technical idea that the sample com-
plexity can be bounded by the total clipped pseudo-regret,
approximately in the form of (5) (up to a ε´1 factor and an
additive error term).

Note that φt can also be viewed as the Bellman error vector
of the value function Vt and the policy πt. Let Pπt be the
transition matrix such that Pπtpsq “ Ps,πtpsq for any s P S.
By Bellman equation we have that

Vt ´ V
πt

“ γPπtpVt ´ V
πtq ` φt

“ pγPπq
2pVt ´ V

πtq ` γPπtφt ` φt

“ . . .

“

8
ÿ

i“0

pγPπtq
iφt.

Define clippx, yq “ xI rx ě ys for x, y P R and

clippx, yq “ rclippx1, yq, . . . , clippxn, yqs
J

for x “ rx1, . . . , xns
J P Rn.

Therefore, if Vtpstq ´ V πtpstq ą ε, then for some constant
M ą 1,

1Jst

8
ÿ

i“0

pγPπtq
iclippφt,

εp1´ γq

M
q

ě 1Jst

8
ÿ

i“0

pγPπtq
i

ˆ

φt ´
εp1´ γq

M

˙

“ 1Jst

8
ÿ

i“0

pγPπtq
iφt ´

1

1´ γ
¨
εp1´ γq

M

“ Vtpstq ´ V
πtpstq ´

ε

M

ą
pM ´ 1qε

M
,
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where 1st is the unit vector with the only non-zero entry at
st and the first inequality is by the fact clippx, yq ě x´ y
for x, y ě 0. For any H “ Θplnppp1 ´ γqεq´1q{p1 ´ γqq,
it then follows that

I rVtpstq ´ V πtpstq ą εs ε

ď O

˜

1Jst

H´1
ÿ

i“0

pγPπtq
iclippφt, εp1´ γq{Mq

¸

. (4)

We now sum up (4) over all time steps t. If we can carefully
design the algorithm so that πt, Vt (and therefore φt) do
not change frequently, we have πt “ πt`i and φt “ φt`i
for small enough i and most t, and therefore we can upper
bound

ř

tě1 I rVtpstq ´ V πtpstq ą εs ε by the order of

ÿ

tě1

1Jst

H´1
ÿ

i“0

pγPπt`iq
iclippφt`i, εp1´ γq{Mq

ď
ÿ

tě1

1Jst

H´1
ÿ

i“0

pPπt`iq
iclippφt`i, εp1´ γq{Mq

« OpHq ¨
ÿ

tě1

clippφtpstq, εp1´ γq{Mq, (5)

where the approximation (5) also uses the assumption
that πt “ πt`i and φt “ φt`i hold for most t and
i. In Lemma 5, we formalize this intuition and show
that if we set M “ 8Hp1 ´ γq, the sample complexity
ř

tě1 I rVtpstq ´ V πtpstq ą εs can be upper bounded by
OpH{εq ¨

ř

tě1 clippφtpstq, εp1´ γq{Mq (plus an additive
error), and therefore we only need to upper bound the total
clipped pseudo-regret.

The Multi-Stage Update Rule. As stated before, the de-
sign of type-I stage is our main technical contribution. To
better explain the intuition and motivate the type-I stage, let
us consider a fixed state-action pair ps, aq. Suppose at time
step pt´1q, ps, aq is visited and the visit number reaches the
end of a type-I stage, then the following update is triggered:

Qtps, aq Ð mintrps, aq ` b̌`
γ

ň

ň
ÿ

i“1

Vľipsľi`1q, Qt´1ps, aqu,

where ň is the number of samples in this stage, ľi is time
of the i-th sample in the stage, and b̌ denotes the explo-
ration bonus. Thanks to the update rule, Vt and Qt are
non-increasing in t. By concentration inequalities and the

proper design of b̌, we get

Qtps, aq

ď rps, aq ` 2b̌` Ps,ap
γ

ň

ň
ÿ

i“1

Vľiq

ď rps, aq ` 2b̌` γPs,aVt ` γPs,a

˜

1

ň

ň
ÿ

i“1

Vľi ´ Vt

¸

(6)

ď rps, aq ` 2b̌` γPs,aVt ` γPs,apVt ´ Vtq, (7)

where t “ mini ľi is the start time of the stage and t is the
start time of the next stage. Let a “ πtpsq. By the definition
of φtpsq and optimism of Vt, when Qtps, aq ´Q˚ps, aq ă
εp1´ γq{M , we have that

clippφtpsq, εp1´ γq{Mq

ď clippQtps, aq ´Q
˚ps, aq, εp1´ γq{Mq “ 0 (8)

In the case Qtps, aq ´ Q˚ps, aq ě εp1 ´ γq{M , with an
averaging argument we have that

clippφtpsq, εp1´ γq{Mq

ď clipp2b̌` γPs,apVt ´ Vtq, εp1´ γq{Mq

ď 2clipp2b̌, εp1´ γq{p2Mqq

`Opγq ¨ Ps,aclippVt ´ Vt, εp1´ γq{p2Mqq. (9)

On the benefit of type-II stages, Ntps, aq ě N0 implies
Qtps, aq´Q

˚ps, aq ă εp1´ γq{M . So it suffices to bound

IrNtps, aq ă N0sPs,aclippVt ´ Vt, εp1´ γq{p2Mqq

` IrNtps, aq ă N0sclipp2b̌, εp1´ γq{Mq (10)

.

We now discuss how to deal with the two terms and how the
parameter B affects the bounds.

Bounding the first term of (10). We first focus on the sec-
ond term (IrNtpst, atq ă N0sPs,aclippVt ´ Vt, εp1 ´
γq{p2Mqq) in (10). For each j, let tj “ tjps, aq be the
start time of the j-th stage of ps, aq. The total contribution
of the second term in (10) is bounded by the order of
ÿ

s,a

ÿ

j

ějPs,aclip
`

pVtj´1ps,aq ´ Vtj`1ps,aqq, εp1´ γq{p2Mq
˘

.

(11)

Thanks to the updates triggered by the type-II stages, Vt
converges to V ˚ at a rate that is independent of B. Increas-
ing B will shorten the length of the type-I stages, making
Vtj´1ps,aq closer to Vtj`1ps,aq, and reduce the magnitude of
(11). In Lemma 8, we formalize this intuition and show
that when M “ 8Hp1 ´ γq, (11) can be upper bounded
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by ÕpSAH5 lnp1{pq{pεBqq. Therefore, choosing a large
enough B will eliminate the H factors in the numerator.

Bounding the second term of (10). On the other hand, how-
ever, a larger B means smaller number of samples in the
type-I stages, leads to a bigger estimation variance, and
therefore forces us to choose a greater exploration bonus
b̌. We have to choose B “ Θp

?
Hq to achieve the optimal

balance between the two terms in (10).

To utilize the full power of our multi-stage update rule,
we would like to set B “ ΘpH3q. However, the second
term in (10) becomes much bigger. In the next subsection,
we discuss how to deal with this problem via the variance
reduction method, which leads to the asymptotically near-
optimal bound in Theorem 1.

Variance Reduction via Reference-Advantage De-
composition. This technique is only used in UCB-
MULTISTAGE-ADVANTAGE and the proof of Theorem 1,
which is deferred to Appendix D due to space constraints.
We explain the technique as follows.

As discussed above, when B is set large, we suffer bigger
estimation variance, as fewer samples are allowed in the
type-I stages. In model-free regret minimization tasks, sim-
ilar problem arises where the algorithm (e.g., (Jin et al.,
2018)) can only use the recent tiny fraction of the samples
and incurs sub-optimal dependency on the episode length.
Recent work (Zhang et al., 2020) resolves this problem via
the reference-advantage decomposition technique.

The high-level idea is that, assuming we have a δ-accurate
estimation of V ˚, namely the reference value function V ref ,
such that }V ref ´ V ˚}8 ď δ, we only need to use the
samples to estimate the difference V ref´V ˚, which is called
the advantage. Therefore, the estimation error (incurred in
places such as (6)) will be much smaller when δ is small.
Choosing δ “ 1{

?
B, and together with the Bernstein-type

exploration bonus (see, e.g., (Azar et al., 2017; Jin et al.,
2018)), we are able to bound the total contribution of the
first term in (9) 4 by ÕpSA{pεp1 ´ γq2q, which (together
with the H factor in (5)) aligns with the p1 ´ γq´3 factor
in the bound of Theorem 1. The discussion till now is
based on the access of the reference value function V ref .
In reality, however, we need to learn the reference value
function on the fly. This will incur an additive warm-up
cost that polynomially depends on 1{δ. However, since δ is
independent of ε, the extra cost is only a lower-order term.

4More precisely, we refer to the total contribution related to
the exploration bonus, which is actually in a different form from
the first term in (9). This is because b̌ has to be re-designed using
the Bernstein-type exploration bonus technique and evolves to a
more complex expression. Please refer to Appendix D for more
explanation.

5. Analysis of Sample Complexity
In this section, we prove Theorem 2 for UCB-
MULTISTAGE. We start with a few notations: we use
Ntps, aq, Ňtps, aq,N̄tps, aq, Qtps, aq, Vtpsq to denote re-
spectively the values of Nps, aq, Ňps, aq, N̄ps, aq, Qps, aq,
V psq before the t-th time step. Let ňtps, aq, µ̌tps, aq
and b̌tps, aq be the values of ňps, aq, µ̌ps, aq and b̌ps, aq
(respectively) in the latest type-I update of Qps, aq be-
fore the t-th time step. In other words, ňtps, aq is
the length of the type-I stage immediately before the
current type-I stage with respect to ps, aq; b̌tps, aq “
mint2

a

H2ι{ňtps, aq, 1{p1´ γqu; and

µ̌tps, aq “

ňtps,aq
ÿ

i“1

Vľt,ips,aqpsľt,ips.aq`1q, (12)

where ľt,ips, aq is the time step of the i-th visit among the
ňtps, aq visits mentioned above. When t belongs to the first
type-I stage of ps, aq, we define ňtps, aq “ 0, µ̌tps, aq “ 0,
and b̌tps, aq “ 1{p1´ γq.

Given ps, aq and a time step t such that pst, atq “ ps, aq,
we use jtps, aq to denote the index of the type-I which (the
beginning of) the t-th time step belongs to with respect to
ps, aq. For 1 ď j ď J̌ , we use ρpj, s, aq to denote the start
time of the j-th type-I with respect to ps, aq. Besides, we de-
fine ρpJ̌ ` 1, s, aq to be the time t such that Ntps, aq “ N0.
We also define ρ

t
ps, aq :“ ρpjtps, aq´ 1, s, aq if jtps, aq ě

2 and 0 otherwise, and ρtps, aq :“ ρpjtps, aq ` 1, s, aq.

5.1. The Good Event

Let ps, aq and j be fixed. With a slight abuse of notation, we
define ľi to be the time when the i-th visit in the j-th type-I
stage of ps, aq occurs. Define b̌pjq “ mint2

b

H2ι
ěj
, 1

1´γ u

for j ě 2. Define Ěpjqps, aq be the event where the inequal-
ities below hold

1

ěj

ěj
ÿ

i“1

V ˚psľi`1q ` b̌
pjq ě Ps,aV

˚;

ˇ

ˇ

ˇ

ˇ

ˇ

1

ěj

ěj
ÿ

i“1

`

Vľipsľi`1q ´ Ps,aVľi
˘

ˇ

ˇ

ˇ

ˇ

ˇ

ď b̌pjq.

Similarly, let l̄i be the time when the i-th visit in the j-th
type-II stage of ps, aq occurs and b̄pjq “ mint2

b

H2ι
ēj
, 1

1´γ u

for j ě 1. Define Ējps, aq be the event where

1

ēj

ēj
ÿ

i“1

V ˚psl̄i`1q ` b̄
pjq ě Ps,aV

˚;

ˇ

ˇ

ˇ

ˇ

ˇ

1

ēj

ēj
ÿ

i“1

`

Vl̄ipsl̄i`1q ´ Ps,aVl̄i
˘

ˇ

ˇ

ˇ

ˇ

ˇ

ď b̄pjq.
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hold.

The total good event E1 is then given by

E1 “

¨

˝

č

s,a,1ďjďJ̌

Ěpjqps, aq

˛

‚

č

¨

˝

č

s,a,1ďj1ďJ̄

Ēpj
1
qps, aq

˛

‚.

(13)

We claim that E1 happens with large probability.

Lemma 3. PrE1s ě p1´ SAHpJ̌ ` J̄qpq.

The following statement shows that tQtu is a sequence of
non-increasing optimistic estimates of Q˚.

Proposition 4. Conditioned on the event E1, it holds that
Qtps, aq ě Q˚ps, aq and Qt`1ps, aq ď Qtps, aq for all
t ě 1 and ps, aq.

The proofs of Lemma 3, Proposition 4 and all the lemmas
in the remaining part of this section can be found in Ap-
pendix C. Throughout the rest of this section, the analysis
will be done assuming the successful event E1.

5.2. Using Clipped Pseudo-Regret to Bound Sample
Complexity

By the update rule (2), for any t ě 1 and s, letting a “
πtpsq, we have that

Vtpsq ´ V
πtpsq

ď b̌tps, aq `
γ

ňtps, aq

ňtps,aq
ÿ

u“1

Vľt,ups,aqpsľt,ups,aq`1q

´ γPs,aV
πt

ď 2b̌tps, aq ` γPs,a

¨

˝

1

ňtps, aq

ňtps,aq
ÿ

u“1

Vľt,ups,aq ´ V
πt

˛

‚

(14)

ď 2b̌tps, aq ` γPs,apVρ
t
ps,aq ´ V

πtq (15)

“ 2b̌tps, aq ` γPs,apVρ
t
ps,aq ´ Vtq ` γPs,apVt ´ V

πtq.

(16)

where Inequality (14) is due to the concentration inequality,
which is part of the successful event E1 defined in (41), and
Inequality (15) holds because ρ

t
ps, aq ď ľt,ups, aq for any

1 ď u ď ňtps, aq and the fact Vt is non-increasing in t
(Proposition 4).

On the other hand, we also have

Vtpsq ´ V
πtpsq

“ Qtps, aq ´Q
˚ps, aq `Q˚ps, aq ´Qπtps, aq

“ Qtps, aq ´Q
˚ps, aq ` γPs,apV

˚ ´ V πtq

ď Qtps, aq ´Q
˚ps, aq ` γPs,apVt ´ V

πtq. (17)

Combining (16) and (17), we have that

Vtpsq ´ V
πtpsq

ď min
 

2b̌tps, aq ` γPs,apVρ
t
ps,aq ´ Vtq,

Qtps, aq ´Q
˚ps, aq

(

` γPs,apVt ´ V
πtq.

(18)

Therefore, we have that

φtpsq “ Vtpsq ´ prps, aq ` γPs,aVtq

“ Vtpsq ´ V
πtpsq ´ γPs,apVt ´ V

πtq

ď min
 

2b̌tps, aq ` γPs,apVρ
t
ps,aq ´ Vtq,

Qtps, aq ´Q
˚ps, aq

(

. (19)

Define κt by setting κtpsq as the RHS of (19). Recall that
Pπt is the matrix such that Pπtpsq “ Ps,πtpsq for any s P S.
By Bellman equation we have that

V ˚pstq ´ V
πtpstq ď Vt ´ V

πt

“

8
ÿ

i“0

pγPπtq
iφt

ď

H´1
ÿ

i“0

pγPπtq
iφt `

ε

8
(20)

ď
ÿ

s,a

pγPπtq
iκt `

ε

8
.

By definition of κtpsq, and noting that x ď clippx, yq ` y
for any x, y ą 0, we further have that

V ˚pstq ´ V
πtpstq

ď
ÿ

s,a

wtps, aq
´

min
 

2b̌tps, aq ` γPs,apVρ
t
ps,aq ´ Vtq,

Qtps, aq ´Q
˚ps, aq

(

¯

`
ε

8
(21)

ď
ÿ

s,a

wtps, aq
´

min
 

clippQtps, aq ´Q
˚ps, aq,

3ε

4H
q,

2clippb̌tps, aq,
ε

8H
q ` γPs,aclippVρ

t
ps,aq ´ Vt,

ε

8H
q,
(

¯

`
ÿ

s,a

wtps, aqmaxt
3ε

4H
,
ε

4H
` γPs,a1 ¨

ε

8H
u `

ε

8

ď
ÿ

s,a

wtps, aq
´

min
 

clippQtps, aq ´Q
˚ps, aq,

3ε

4H
q,

2clippb̌tps, aq,
ε

8H
q ` γPs,aclippVρ

t
ps,aq ´ Vt,

ε

8H
q,
(

¯

`
7ε

8
(22)

where wtps, aq “ Irπtpsq “ as ¨
řH´1
i“0 1JstpγPπtq

i1s is the
expected discounted visit number of ps, aq in the next H
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steps following πt; and Inequality (22) is due to an averag-
ing argument and the fact that

ř

s,a wtps, aq ď H .

Let

βt :“
ÿ

s,a

wtps, aqmin
!

clippQtps, aq ´Q
˚ps, aq,

3ε

4H
q,

`

2clippb̌tps, aq,
ε

8H
q ` γPs,aclippVρ

t
ps,aq ´ Vt,

ε

8H
q
˘

)

.

(23)

Define T “ tt ě 1|βt ą
1
8εu. By (22) we have that the

sample complexity of UCB-MULTISTAGE is bounded by
ÿ

tě1

I rV ˚pstq ´ V πtpstq ą εs ď
ÿ

tě1

I
„

βt ą
1

8
ε



“ |T |.

To bound |T |, we consider bounding
ř

tPT βt instead, since
ř

tPT βt ě
|T |ε

8 and therefore |T | ď p8{εq ¨
ř

tPT βt. Let

β̃t :“ min
!

clippQtpst, atq ´Q
˚pst, atq,

3ε

4H
q

2clippb̌tpst, atq,
ε

8H
q ` γPst,atclippVρ

t
pst,atq ´ Vt,

ε

8H
q

)

,

(24)

If πt does not change very frequently, we have the approxi-
mation that βt «

řH´1
i“0 β̃t`i. More formally, we prove the

following statement (see Appendix C.3 for the proof).
Lemma 5. For any K ě 1, it holds that

P
”

ÿ

tPT
βt ě 12KH3ι` 24SAH4B lnpN0q,

ÿ

tě1

β̃t ă 3KH2ι
ı

ď Hp.

By Lemma 5 and the discussion above, if we are able to
bound

ř

tě1 β̃t ď X (for X ě 3H2ι), then with high
probability, the sample complexity of UCB-MULTISTAGE
is bounded by roughly OpH{εq ¨X .

5.3. Bounding the Clipped Pseudo-Regret

We now turn to bound
ř

tě1 β̃t. By (24),for t such that
Ntpst, atq ă N0, we have that

β̃t ď
´

2clippb̌tpst, atq,
ε

8H
q

` γPst,atclippVρ
t
pst,atq ´ Vt,

ε

8H
q

¯

,

(25)

and for Ntps, aq ě N0, we have

β̃t ďclippQtpst, atq ´Q
˚pst, atq,

3ε

4H
q. (26)

The first term in (25) is exploration bonus for the type-I
stage. For this term, we have the following lemma (see
Appendix C.4 for proof).

Lemma 6.
ÿ

tě1

clippb̌tpst, atq,
ε

8H
q ď O

ˆ

SABι

εp1´ γq4

˙

.

The exploration bonus is increasing in B because more
frequent updates implies fewer available samples in a single
update due to the limitation in model-free RL.

For the second term in (25), let αt “ IrNtpst, atq ă
N0sPst,atclippVρ

t
pst,atq ´ Vt,

ε
8H q for short. On benefit

of type-II updates, we can ensure a decent convergence rate
for Qt (see Appendix C.7 for proof).

Lemma 7. Conditioned on the successful event of E1 de-
fined in (41), for any ε1 P rε, 1

1´γ s it holds that

8
ÿ

t“1

I rVtpstq ´ V ˚pstqq ě ε1s

ď

8
ÿ

t“1

I rQtpst, atq ´Q˚pst, atqq ě ε1s

ď O

˜

SAH5 lnp 4H
ε qι

ε21

¸

. (27)

By the basic convergence rate provided by Lemma 7, we
have that (see Appendix C.5 for proof)

Lemma 8. With probability 1´ p1` 2SAHpJ̌ ` J̄qqp, it
holds that

ÿ

tě1

αt ď O

˜

SAH5 lnp 4H
ε qι

εB
` SABH3 ` SAH lnpN0q

¸

.

The term αt reflects the difference of the value functions
between the neighboring updates. As mentioned in Sec-
tion 4, we can reduces this term by increasing B as long as
SAH2 lnp 4Hε qι

εB is larger SABH3. We highlight that Lemma 7
is necessary to derive Lemma 8 even when B is large. This
is due to the nature of model-free RL algorithms: more fre-
quent updates would incur large variances (and thus greater
exploration bonuses) due to fewer available samples be-
tween updates. As a result, without type-II updates, simply
increasingB would not guarantee a decent convergence rate.
In contrast, the type-II updates use more available samples,
incurring a smaller exploration bonus, and thus guarantees
a decent convergence rate.

Moreover, by Lemma 7, we have the lemma below to bound
the term in (26) (see Appendix C.8 for proof).

Lemma 9. With probability 1´p1` 2SAHpJ̌ ` J̄qqp, for
any t ě 1 such that Ntpst, atq ě N0, it holds that

clip

ˆ

Qtpst, atq ´Q
˚pst, atq,

3ε

4H

˙

“ 0.
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Combining Lemma 6, Lemma 8 and Lemma 9, and by the
definition of β̃t, we have that

Lemma 10. With probability 1 ´ p2 ` 6SAHpJ̌ ` J̄qqp,
ř

tě1 β̃t is bounded by

O

˜

SABH4ι

ε
`
SAH5 lnp 4H

ε qι

εB
` SABH3 lnpN0q

¸

.

5.4. Putting Everything Together

Invoking Lemma 5 with K “ c2
3H2ι

´

SABH4ι
ε `

SAH5 lnp 4Hε qι

εB ` SABH3 lnpN0q

¯

ě 1 for some large
enough universal constant c2, we have that conditioned on
the successful event E1,

P

«

ÿ

tPT
βt ě 12KH3ι` 24SAH4B lnpN0q

ff

ď P

«

ÿ

tPT
βt ě 12KH3ι` 24SAH4B lnpN0q,

ÿ

tě1

β̃t ă 3KH2ι

ff

` P

«

ÿ

tě1

β̃t ě 3KH2ι

ff

(28)

ď p4SAHpJ̌ ` J̄q `H ` 2qp, (29)

where the second term in (28) bounded due to Lemma 10.
Combining Proposition 4 with (29), we obtain that with
probability 1´ p8SApJ̌ ` J̄q ` pH ` 3qqp, it holds that

|T |ε
2
ď

ÿ

tPT
βt

ď O

˜

SABH5ι

ε
`
SAH6 lnp 4H

ε qι

εB
` SAH4B lnpN0q

¸

.

(30)

Noting that B “
?
H , we conclude that the number of

ε-suboptimal steps is bounded by

O

˜

SAH5.5 lnp 4H
ε qι

ε2
`
SAH4.5 lnpN0q

ε

¸

ď O

˜

SAH5.5 lnp 4H
ε qplnpN0q ` ιq

ε2

¸

for any ε P p0, 1
1´γ s. Noting that H “ Õp 1

1´γ q, J̌ “

OpSAH lnpN0qq and J̄ “ OpSAHB lnpN0qq, we finish
the proof of Theorem 2 by replacing p with p

8SApJ̌`J̄q`H`3
.

6. Conclusion
We design a stage-based model-free Q-learning Algorithm
UCB-MULTISTAGE-ADVANTAGE, which achieves a near-
optimal sample complexity of Õ

´

SA lnp1{pq
ε2p1´γq3

¯

for discount-
ted reinforcement leaning problem asymptotically. By ad-
justing the number of stages, we also show a non-asymptotic
sample complexity of Õ

´

SA lnp1{pq
ε2p1´γq5.5

¯

, which outperforms
all previous model-free and model-based algorithms with
tight dependence on S. We introduce a multi-stage update
rule forQ-learning algorithm, which may be useful for other
RL settings such as RL with linear function approximation.
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Appendices
A. Comparison with Previous Works

Table 1. Comparisons of PAC-RL algorithms for discounted MDPs
Algorithm Sample complexity Space complexity

Model-based

R-max (Kakade, 2003) Õ

ˆ

S2A lnp1{pq

ε3p1´ γq6

˙

OpS2AqMoRmax (Szita & Szepesvari, 2010) Õ

ˆ

SA lnp1{pq

ε2p1´ γq6

˙

UCRL-γ (Lattimore & Hutter, 2012) Õ

ˆ

S2A lnp1{pq

ε2p1´ γq3

˙

Model-free

Delayed Q-learning (Strehl et al., 2006) Õ

ˆ

SA lnp1{pq

ε4p1´ γq8

˙

OpSAq

Infinite Q-learning
with UCB (Dong et al., 2019) Õ

ˆ

SA lnp1{pq

ε2p1´ γq7

˙

UCB-MULTISTAGE-ADVANTAGE
(Theorem 1)

Õ

ˆ

SA lnp1{pq

ε2p1´ γq3

˙

(for ε ă p1´γq14

S2A2 )

UCB-MULTISTAGE (Theorem 2) Õ

ˆ

SA lnp1{pq

ε2p1´ γq5.5

˙

MEDIAN-PAC(Pazis et al., 2016) Õ

ˆ

SA lnp1{pq

ε2p1´ γq4

˙

Õ
´

SAH4

ε2

¯

Lower bound Ω

ˆ

SA

ε2p1´ γq3

˙

(Lattimore & Hutter, 2012)

B. Technical Lemmas
Lemma 11. Let M1,M2, ...,Mk, ... be a series of random variables which range in r0, 1s and tFkukě0 be a filtration such
that Mk is measurable with respect to Fk for k ě 1. Define µk :“ E rMk|Fk´1s.

For any p P p0, 1q and c ě 1, it holds that

P

«

Dn,
n
ÿ

k“1

µk ě 4cι,
n
ÿ

k“1

Mk ď cι

ff

ď p.

Proof. Let λ ă 0 be fixed. Let M be a random variable taking values in r0, 1s with mean µ. By convexity of eλx in x, we
have that E

“

eλM
‰

ď µeλ ` p1´ µq “ 1` µpeλ ´ 1q ď eµpe
λ
´1q. Then we obtain that for any k ě 1

E
”

eλMk´pe
λ
´1qµk |Fk´1

ı

ď 1,

which means tYk :“ eλ
řk
i“1Mi´pe

λ
´1q

řk
i“1 µiukě0 is a super-martingale with respect to tFkukě0. Let τ be the least n

with
řn
k“1 µk ě 4cι. It is easy to verify that |Ymintτ,nu| ď ep1´e

λ
qp4cι`1q for any n. By the optional stopping theorem, we
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have that E rYτ s ď 1. Then

P

«

Dn,
n
ÿ

k“1

µk ě 4cι,
n
ÿ

k“1

Mk ď cι

ff

ď P

«

τ
ÿ

k“1

Mk ď cι

ff

ď
1

ep1´eλq4cι`λcι
. (31)

By setting λ “ ´ 1
2 , we obtain that 1

ep1´eλq4cι`λcι
ď 1

ecι “ p
p
2 q
c ď p. The proof is completed.

Lemma 12 (Freedman’s Inequality, Theorem 1.6 of (Freedman et al., 1975)). Let pMnqně0 be a martingale such thatM0 “

0 and |Mn ´Mn´1| ď c. Let Varn “
řn
k“1 ErpMk ´Mk´1q

2|Fk´1s for n ě 0, where Fk “ σpM0,M1,M2, . . . ,Mkq.
Then, for any positive x and for any positive y,

P rDn : Mn ě x and Varn ď ys ď exp

ˆ

´
x2

2py ` cxq

˙

. (32)

Lemma 13. Let pMnqně0 be a martingale such that M0 “ 0 and |Mn ´Mn´1| ď c for some c ą 0 and any n ě 1. Let
Varn “

řn
k“1 ErpMk ´Mk´1q

2|Fk´1s for n ě 0, where Fk “ σpM1,M2, ...,Mkq. Then for any positive integer n, and
any ε, p ą 0, we have that

P
„

|Mn| ě 2
?

2

c

Varn logp
1

p
q ` 2

c

ε logp
1

p
q ` 2c logp

1

p
q



ď 2

ˆ

log2p
nc2

ε
q ` 1

˙

p. (33)

Proof. For any fixed n, we apply Lemma 12 with y “ 2iε and x “ ˘p2
b

y logp 1
p q ` 2c logp 1

p qq. For each

i “ 0, 1, 2, . . . , log2p
nc2

ε q, we get that

P
„

|Mn| ě 2
?

2

c

2i´1ε logp
1

p
q ` 2c logp

1

p
q,Varn ď 2iε



“ P
„

|Mn| ě 2

c

2iε logp
1

p
q ` 2c logp

1

p
q,Varn ď 2iε



ď 2p. (34)

Then via a union bound, we have that

P
„

|Mn| ě 2
?

2

c

Varn logp
1

p
q ` 2

c

ε logp
1

p
q ` 2c logp

1

p
q



ď

log2p
nc2

ε q
ÿ

i“1

P
„

|Mn| ě 2
?

2

c

2i´1ε logp
1

p
q ` 2c logp

1

p
q, 2i´1ε ď Varn ď 2iε



` P
„

|Mn| ě 2

c

ε logp
1

p
q ` 2c logp

1

p
q,Varn ď ε



(35)

ď

log2p
nc2

ε q
ÿ

i“1

P
„

|Mn| ě 2

c

pi´ 1qε logp
1

p
q ` 2

c

ε logp
1

p
q ` 2c logp

1

p
q,Varn ď iε



` 2p

ď 2

ˆ

log2p
nc2

ε
q ` 1

˙

p. (36)
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C. Missing Proofs in Section 5
C.1. Proof of Lemma 3

Proof. Recall that ľi is the time when the i-th visit in the j-th type-I stage of ps, aq occurs and b̌pjq “ mint2
b

H2ι
ěj
, 1

1´γ u

for j ě 2. By Azuma’s inequality, with probability 1´ 2p, it holds that

1

ěj

ěj
ÿ

i“1

V ˚psľi`1q ` b̌
pjq ě Ps,aV

˚; (37)

ˇ

ˇ

ˇ

ˇ

ˇ

1

ěj

ěj
ÿ

i“1

`

Vľipsľi`1q ´ Ps,aVľi
˘

ˇ

ˇ

ˇ

ˇ

ˇ

ď b̌pjq, (38)

which implies that PrĚjps, aqs ě 1´ 2p.

Also recall that l̄i is the time when the i-th visit in the j-th type-II stage of ps, aq occurs and b̄pjq “ mint2
b

H2ι
ēj
, 1

1´γ u for

j ě 1. By Azuma’s inequality, for any 1 ď j ď J̄ and ps, aq, with probability 1´ 2p, it holds that

1

ēj

ēj
ÿ

i“1

V ˚psl̄i`1q ` b̄
pjq ě Ps,aV

˚; (39)

ˇ

ˇ

ˇ

ˇ

ˇ

1

ēj

ēj
ÿ

i“1

`

Vl̄ipsl̄i`1q ´ Ps,aVl̄i
˘

ˇ

ˇ

ˇ

ˇ

ˇ

ď b̄pj
1
q, (40)

which implies that PrĒjps, aqs ě 1´ 2p. Finally, recall

E1 “ p
č

s,a,1ďjďJ̌

Ěpjqps, aqq
č

p
č

s,a,1ďj1ďJ̄

Ēpj
1
qps, aqq. (41)

Then P rE1s ě 1´
´

ř

ps,aq,1ďjďJ̌p1´ PrĚpjqps, aqsq
¯

´

´

ř

ps,aq,1ďj1ďJ̄p1´ PrĒpj1qps, aqsq
¯

ě 1´ 2SApJ̌ ` J̄qp. The
proof is completed.

C.2. Proof of Proposition 4

Proof of Proposition 4. By the update rule, Qt`1ps, aq ď Qtps, aq for any t ě 1 and ps, aq. We will prove Qtps, aq ě
Q˚ps, aq for any t ě 1 and ps, aq by induction conditioned on E1.

For t “ 1, Qtps, aq “ 1
1´γ ě Q˚ps, aq for any ps, aq. For t ě 2, assume Qt1ps, aq ě Q˚ps, aq for 1 ď t1 ă t and all ps, aq

pairs. With a slight abuse of notations, we use ľpjqi ps, aq to denote the time step of the i-th visit in the j-th type-I stage of
ps, aq. If there exists pj, s, aq such that the j-th type-I update of ps, aq happens at the pt´ 1q-th step, by (37) we have that

Qtps, aq “ mintrps, aq `
γ

ěj

ěj
ÿ

i“1

V
ľ
pjq
i ps,aq

ps
ľ
pjq
i ps,aq`1

q ` b̌pjq, Qt´1ps, aqu

ě mintrps, aq `
γ

ěj

ěj
ÿ

i“1

V ˚ps
ľ
pjq
i ps,aq`1

q ` b̌pjq, Qt´1ps, aqu

ě mintrps, aq ` γPs,aV
˚, Qt´1ps, aqu

ě Q˚ps, aq.

In a similar way, if there exists pj, s, aq such that the j-th type-II update of ps, aq happens at the pt´ 1q-th step, by (39), it
holds that Qtps, aq ě Q˚ps, aqq. Otherwise, Qtps, aq “ Qt´1ps, aq ě Q˚ps, aq for any ps, aq. The proof is completed.
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C.3. Proof of Lemma 5

We split T into H separate subsets by define Vk “ tt P T : t mod H “ ku for k “ 0, 1, 2, . . . ,H ´ 1. We will prove
Lemma 5 by showing that for each k, it holds that

P
”

ÿ

tPVk

βt ě 12KH2ι` 24SAH3B lnpN0q,
ÿ

tě1

β̃t ă 3KH2ι
ı

ď p. (42)

If (42) holds for each k, then we have

P
”

ÿ

tPT
βt ě 12KH3ι` 24SAH4B lnpN0q,

ÿ

tě1

β̃t ă 3KH2ι
ı

ď

H´1
ÿ

k“0

P
”

ÿ

tPVk

βt ě 12KH2ι` 24SAH3B lnpN0q,
ÿ

tě1

β̃t ă 3KH2ι
ı

ď Hp. (43)

Let
Ut “ I

“

Dt1 P tt, t` 1, ..., t`H ´ 1u and ps, aq such that Qt1`1ps, aq ‰ Qt1ps, aq
‰

.

We define

β̂t :“ 3H2Ut ` p1´ Utq
H´1
ÿ

i“0

γi
´

2clippb̌tpst`i, at`iq,
ε

8H
q ` γPst`i,at`iclippVρ

t
pst`i,at`iq ´ Vt,

ε

8H
q

¯

.

For fixed k P t0, 1, 2, . . . ,H ´ 1u, we let

β̂kt :“
β̂tH`kI rtH ` k P T s

3H2
.

Noting that β̂kt P r0, 1s is measurable with respect to Fkt :“ Fpt`1qH`k´1 and E
”

β̂kt |Fkt´1

ı

ě βkt :“
βtH`kIrtH`kPT s

3H2 , by
Lemma 11 we obtain that for any K ě 1,

P

«

Dn,
n
ÿ

t“1

βkt ě 4Kι` 16SAHB lnpN0q,
n
ÿ

t“1

β̂kt ď Kι` 4SAHB lnpN0q

ff

ď p,

which is equivalent to

P
”

Dn,
n
ÿ

t“1

βtI rt P Vks ě 12KH2ι` 24SAH3B lnpN0q,

n
ÿ

t“1

β̂tI rt P Vks ď 3KH2ι` 6SAH3B lnpN0q

ı

ď p. (44)

By definition of β̂t, and noting that if Ut “ 0, b̌tpst`i, at`iq “ b̌t`ipst`i, at`iq and Vρ
t
pst`i,at`iq “ Vρ

t`i
pst`i,at`iq for

any 0 ď i ď H ´ 1, we have

β̂t “ 3H2Ut ` p1´ Utq
H´1
ÿ

i“0

γi
´

2clippb̌tpst`i, at`iq,
ε

8H
q ` γPst`i,at`iclippVρ

t
pst`i,at`iq ´ Vt,

ε

8H
q

¯

ď 3H2Ut ` p1´ Utq
H´1
ÿ

i“0

´

2clippb̌tpst`i, at`iq,
ε

8H
q ` γPst`i,at`iclippVρ

t
pst`i,at`iq ´ Vt,

ε

8H
q

¯

ď 3H2Ut `
H´1
ÿ

i“0

´

2clippb̌t`ipst`i, at`iq,
ε

8H
q ` γPst`i,at`iclippVρ

t`i
pst`i,at`iq ´ Vt,

ε

8H
q

¯

.
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Then it follows that

ÿ

tPVk

β̂t ď
ÿ

tPVk

H´1
ÿ

i“0

´

2clippb̌t`ipst`i, at`iq,
ε

8H
q ` Pst`i,at`iclippVρ

t`i
pst`i,at`iq ´ Vt,

ε

8H
q

¯

` 3H2
ÿ

tPVk

Ut

ď
ÿ

tě1

´

2clippb̌tpst, atq,
ε

8H
q ` Pst,atclippVρ

t
pst,atq ´ Vt,

ε

8H
q

¯

` 6SAH3B lnpN0q (45)

“
ÿ

tě1

β̃t ` 6SAH3B lnpN0q. (46)

Here Inequality (45) holds because for each update, there is at most one element t P T 1, such that Ut “ 1 due to this update.

By (44) and (46), we have that

P

«

ÿ

tPVk

βt ě 12CH2ι` 24SAH3B lnpN0q,
ÿ

tě1

β̃t ă 3CH2ι

ff

ď P

«

ÿ

tPVk

βt ě 12CH2ι` 24SAH3B lnpN0q,
ÿ

tě1

β̂t ă 3CH2ι` 6SAH3B lnpN0q

ff

ď p.

The proof is completed.

C.4. Proof of Lemma 6

Proof of Lemma 6. Recall that b̌tpst, atq “ 2
b

H2

ňtpst,atq
ι, so clippb̌tpst, atq,

ε
8H q ď 2

b

H2ι
ňtpst,atq

Irňt ă 256H
4ι
ε2 s. Noting

that ňt ě nt
2HB , we obtain that

ÿ

tě1

clippb̌tpst, atq,
ε

8H
q ď SAH2 `

ÿ

tě1

2

d

2H3Bι

ntpst, atq
I
„

nt ă 512
H5Bι

ε2



ď SAH2 ` 182
SAH4Bι

ε
.

C.5. Proof of Lemma 8

Proof of Lemma 8. We fix ps, aq and consider to bound αps, aq :“
ř

tě1 αtIrpst, atq “ ps, aqs “
ř

tě1 Pst,atclippVρ
t
pst,atq ´ Vt,

ε
8H q ¨ Irpst, atq “ ps, a,Ntpst, atq ă N0s. Define T pj, s, aq to be the set of indices

of samples in the j-th type-I stage with respect to ps, aq, i.e., T pj, s, aq :“ tt ě 1|pst, atq “ ps, aq,
řj´1
i“1 ěi ď Ntps, aq ă

řj
i“1 ěiu. It is then clear that for any t P T pj, s, aq, ρ

t
ps, aq “ ρpj ´ 1, s, aq and ρtps, aq “ ρpj ` 1, s, aq. (The definitions

of ρ, ρ
t

and ρt are at the beginning of Section 5.)

For j ě 2, by the definition of αt and the fact Vt is non-increasing in t, we obtain that
ÿ

tPT pj,s,aq

αtIrpst, atq “ ps, aqs ď ějPs,a

´

clippVρpj´1,s,aq ´ Vρpj`1,s,aq,
ε

8H
q

¯

,

and therefore

αps, aq ď H
HB
ÿ

i“1

ěi `
ÿ

HB`1ďjďj8ps,aq

ějPs,a

´

clippVρpj´1,s,aq ´ Vρpj`1,s,aq,
ε

8H
q

¯

. (47)
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Here also recall that jtps, aq is defined at the beginning of Section 5, and j8ps, aq is defined to be maxtě1 jtps, aq ď J̌ .

We next define
jps, a, s1, ε1q :“ maxtj ď j8ps, aq|Vρpj,s,aqps

1q ´ V ˚ps1q ą ε1u

and

τ̃ps, a, s1, ε1q :“

jps,a,s1,ε1q
ÿ

i“1

ěi

for s1 P S and ε1 ą 0. Let εi “ 2iε
H for i “ 0, 1, 2, . . . , k where k “ rlog2p

H
p1´γqε qs. By (47), we have that

αps, aq ď H
HB
ÿ

i“1

ěi `
ÿ

s1

ÿ

HB`1ďjăjps,a,s1, ε8H q`1

ějPs,aps
1q
`

Vρpj´1,s,aqps
1q ´ Vρpj`1,s,aqps

1q
˘

ď OpBH2ě1q `
ÿ

s1

k
ÿ

i“1

ÿ

maxtjps,a,s1,εiq,HBuăjďjps,a,s1,εi´1q

ěj`1Ps,aps
1qθps, a, s1, jq

ď OpBH2ě1q `
ÿ

s1

k
ÿ

i“1

2
ř

1ďjďjps,a,s1,εi´1q
ěj

HB
Ps,aps

1q
ÿ

jps,a,s1,εiqăjďjps,a,s1,εi´1q

θps, a, s1, jq (48)

“ OpBH2ě1q `

k
ÿ

i“1

2τ̃ps, a, s1, εi´1q

HB
Ps,aps

1qψps, a, s1, iq

ď OpBH2ě1q `
4

HB

k
ÿ

i“1

τ̃ps, a, s1, εi´1qPs,aps
1qεi, (49)

where

θps, a, s1, jq :“ Vρpj,s,aqps
1q ´ Vρpj`2,s,aqps

1q,

ψps, a, s1, iq :“
ÿ

jps,a,s1,εiqăjďjps,a,s1,εi´1q

θps, a, s1, jq ď 2εi.

Here Inequality (48) is by the fact ěj`1 ď
2
HB

řj
i“1 ěi for j ě HB and Inequality (49) is by the definition of jps, a, s1, εiq.

In the next subsection, we will prove the following lemma.

Lemma 14. For any ε ą 0, with probability 1´ p1` SApJ̌ ` J̄qqp it holds that

ÿ

s,a,s1

τ̃ps, a, s1, εqPs,aps
1q ď O

˜

SAH5 lnp 4H
ε qι

ε2
` SAHB lnpN0q

¸

.

Now, by (49) and Lemma 14 we have that
ÿ

tě1

αt “
ÿ

s,a

αps, aq

ď
ÿ

s,a

˜

BH2ě1 `
4

HB

ÿ

s1

k
ÿ

i“1

τ̃ps, a, s1, εi´1qPs,aps
1qεi

¸

ď OpSABH3q `O

˜

4

HB

k
ÿ

i“1

˜

SAH5 lnp 4H
ε qι

ε2i´1

` SAHB lnpN0q

¸

εi

¸

(50)

ď OpSABH3q `O

˜

1

HB
¨
SAH6 lnp 4H

ε qι

ε
`
SA lnpN0q

1´ γ

¸

ď O

˜

SAH5 lnp 4H
ε qι

εB
` SABH3 ` SAH lnpN0q

¸

.
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The proof is completed.

C.6. Proof of Lemma 14

Recall that by Lemma 7, we have that Conditioned on the successful event E1 defined in (41), for any ε1 P rε, 1
1´γ s it holds

that
8
ÿ

t“1

I rVtpstq ´ V ˚pstqq ě ε1s ď
8
ÿ

t“1

I rQtpst, atq ´Q˚pst, atqq ě ε1s ď O

˜

SAH5 lnp 4H
ε qι

ε21

¸

(51)

With the help of Lemma 7, we prove Lemma 14 as follows.

Proof of Lemma 14. We start with defining

τps, a, s1, εq :“
ÿ

tě1

I
“

pst, atq “ ps, aq, Vtps
1q ´ V ˚ps1q ą ε

‰

.

Recalling that τ̃ps, a, s1, εq “
řjps,a,s1,εq
i“1 ěi, we have

τ̃ps, a, s1, εq “

jps,a,s1,εq
ÿ

i“1

ěi ď H ` p1`
2

H
q

jps,a,s1,εq´1
ÿ

i“1

ěi ď H ` p1`
2

H
qτps, a, s1, εq.

So it suffices to prove that

ÿ

s,a,s1

τps, a, s1, εqPs,aps
1q ď O

˜

SAH5 lnp 4H
ε qι

ε2
` SAHB lnpN0q

¸

. (52)

To prove (52), we define λt to be the vector such that λtpsq “ I rVtpsq ´ V ˚psq ą εs. Note that
ÿ

s,a,s1

τps, a, s1, εqPs,aps
1q “

ÿ

tě1

Pst,atλt

and due to the infrequent updates, we have that
ÿ

tě1

pλtpst`1q ´ λt`1pst`1qq ď
ÿ

tě1

I rVtpst`1q ‰ Vt`1pst`1qs ď 2SAHB lnpN0q.

For C a large enough constant, we obtain that

P

«

ÿ

s,a,s1

τps, a, s1, εqPs,aps
1q ě 4C

SAH5 lnp 4H
ε qι

ε2
` 8SAHB lnpN0q

ff

“ P

«

ÿ

tě1

Pst,atλt ě 4C
SAH5 lnp 4H

ε qι

ε2
` 8SAHB lnpN0q

ff

ď P

«

ÿ

tě1

Pst,atλt ě 4C
SAH5 lnp 4H

ε qι

ε2
` 8SAHB lnpN0q,

ÿ

tě1

λtpst`1q ď C
SAH5 lnp 4H

ε qι

ε2
` 2SAHB lnpN0q

ff

` P

«

ÿ

tě1

λtpst`1q ą C
SAH5 lnp 4H

ε qι

ε2
` 2SAHB lnpN0q

ff

ď p` P

«

ÿ

tě1

λtpstq ě C
SAH5 lnp 4H

ε qι

ε2

ff

(53)

ď p` P rE1s (54)

ď p` SApJ̌ ` J̄qp, (55)

where Inequality (53) is by Lemma 11 with Mk “ λkpsk`1q and Fk “ σps1, a1, ...., sk, ak, sk`1q for k ě 1, Inequality
(54) is by Lemma 7 and Inequality (55) is by Proposition 4. The proof is completed.
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C.7. Proof of Lemma 7

The proof of Lemma 7 uses similar techniques as presented in in Appendix.B of (Dong et al., 2019) and Appendix.B.2 of
(Zhang et al., 2020). However, it requires more twists since the Q function is only updated by at most SApJ̌ ` J̄q times for
each state-action pair.

We first introduce a few simplified notations. Define δt :“ Qtpst, atq ´ Q˚pst, atq. Clearly δt ě Vtpstq ´ V ˚pstq and
ř

tě1 Irδt ě xs ě
ř

tě1 IrVtpstq ´ V ˚pstq ě xs for any x ě 0. Throughout this subsection, we use n̄t, b̄t and l̄ti as short
hands of n̄tpst, atq, b̄tpst, atq and l̄t,ipst, atq respectively.

Conditioned on E1 defined in (41), we note that (37) and (39) hold for any j ě 1 and j1 ě 1 respectively. We will use these
inequalities without additional explanation.

Let T1 :“ tt ě 1|Ntpst, atq ě N0u. We then have the following lemma.

Lemma 15. Conditioned on successful event E1 defined in (41), it holds that for any t P T1 (if T1 is not empty)

Qtpst, atq ´Q
˚pst, atq ď

ε

2H
.

Proof. For each i “ 1, 2, . . . , S, if there are at least i states with total visit number greater or equal toN0, we let spiq be the i-
th such state (sorted in the order of time to reachN0) and let Ti be the corresponding time (i.e., nTips

piqq “ N0 and sTi “ spiq

). Otherwise we let spiq be a random state in Sztsp1q, ..., spi´1qu and set Ti “ 8.

It suffices prove that VTips
piqq ´ V ˚pspiqq ď ε

2H for spiq with finite Ti. We prove this by applying induction on i to prove
the stronger statement that VTips

piqq ´ V ˚pspiqq ď εi
2HS .

Base case (i “ 1q: Note that for any t R T1, we have following inequality by the update rule (3) and event E1,

δt “ Qtpst, atq ´Q
˚pst, atq

ď
I rn̄t “ 0s

1´ γ
`

˜

b̄t `
γ

n̄t

n̄t
ÿ

i“1

Vl̄ti psl̄ti`1q ´ Pst,atV
˚

¸

ď
I rn̄t “ 0s

1´ γ
`

˜

2b̄t `
γ

n̄t

n̄t
ÿ

i“1

´

Vl̄ti psl̄ti`1q ´ V
˚psl̄ti`1q

¯

¸

ď
I rn̄t “ 0s

1´ γ
` 2b̄t `

γ

n̄t

n̄t
ÿ

i“1

´

Vl̄ti`1psl̄ti`1q ´Q
˚psl̄ti`1, al̄ti`1q ` θ

l̄ti`1
¯

“
I rn̄t “ 0s

1´ γ
` 2b̄t `

γ

n̄t

n̄t
ÿ

i“1

pδl̄
t
i`1 ` θl̄

t
i`1q, (56)

where we define θl̄
t
i`1 :“ Vl̄ti psl̄ti`1q ´ Vl̄ti`1psl̄ti`1q .

It is obvious that t R T1 if t ă T1. Then for any non-negative weights twtutě1, we have that

ÿ

tăT1

wtδ
t ď

ÿ

tăT1

wtIrn̄t “ 0s

1´ γ
` 2

ÿ

tăT1

wtb̄
t `

ÿ

tăT1

w1tpδ
t ` θtq, (57)

where

w1t “ γ
ÿ

uăT1

1

n̄u

n̄t
ÿ

i“1

I
“

t “ l̄ui ` 1
‰

. (58)

If we choose a sequence of non-negative weights twtutě1 such that suptăT1
wt ď C and

ř

tăT1
wt ďW for two positive

constant C and W , then for all t ě 1, we have that

w1t ď γp1`
1

H
qC ď p1´

1

2H
qC, (59)
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and

ÿ

tăT1

w1t ď γp1`
1

H
qW ď p1´

1

2H
qW. (60)

Lemma 16. Let twtutě1 be a sequence of non-negative weights such that 0 ď wt ď C for any t R T1 and
ř

tRT1
wt ďW ,

then it holds that

ÿ

tRT1

wtIrn̄t “ 0s

1´ γ
ď
CSAH

1´ γ
ď CSAH2, (61)

2
ÿ

tRT1

wtb̄
t ď 40p1`

1

H
q
?
SAH3WCι ď 60

?
SAH3WCι, (62)

ÿ

tRT1

wtθ
t ď

SAC

1´ γ
ď SCH. (63)

Proof. The first inequality holds because
ř

tě1 Irn̄t “ 0s ď SAH , and the third inequality holds because
ř

tě1 I rst “ ss θt ď 1{p1´ γq. For the second inequality, we note that b̄t ď 2
a

H2ι{n̄t, it then follows that

ÿ

tRT1

wtb̄
t ď 2

?
H2ι

ÿ

tRT1

wt
a

1{n̄t

“ 2
?
H2ι

ÿ

s,a

ÿ

tRT1

I rpst, atq “ ps, aqswt
a

1{n̄t.

Let w̃ps, aq “
ř

tRT1
wtI rpst, atq “ ps, aqs. We fix w̃ps, aq and consider to maximize

ÿ

tRT1

I rpst, atq “ ps, aqswt
a

1{n̄t.

Define T̄ pj, s, aq :“ tt ě 1|pst, atq “ ps, aq,
řj´1
i“1 ēj ď Ntps, aq ă

řj
i“1 ēju. Note that for each j ě 2,

ř

tRT1,tPT̄ pj,s,aq
wt ď p1`

1
H qCēj´1. By rearrangement inequality we have that,

ÿ

tRT1

I rpst, atq “ ps, aqswt
a

1{n̄t “
ÿ

jě2

¨

˝

ÿ

tRT1,tPT̄ pj,s,aq

wt

˛

‚

b

1{ēj´1

ď Cp1`
1

H
q
ÿ

jě1

?
ejI

«

j´1
ÿ

i“1

Cei ď w̃ps, aq

ff

ď 10p1`
1

H
q
a

HCw̃ps, aq.

By Cauchy-Schwartz inequality, we obtain that

ÿ

tRT1

wtb̄
t ď 20p1`

1

H
q
?
H3Cι

ÿ

s,a

a

w̃ps, aq ď 20p1`
1

H
q
?
SAH3WCι.

The proof is completed.

By Lemma 16 we derive that
ÿ

tăT1

wtδ
t ď

ÿ

tăT1

w1tδ
t ` 2SACH2 ` 60

?
SAH3WCι. (64)
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By iteratively unrolling (64) for 2H lnp 4H2S
ε q times and setting the initial weights by wt “ I

“

st “ sp1q
‰

so that C “ 1 and
W “ N0, we have

ÿ

tăT1

I
”

st “ sp1q
ı

δt ď 2H lnp
4H2S

ε
q

´

2SAH2 ` 60
a

SAH3N0ι
¯

`
ε
ř

tăT1
I
“

st “ sp1q
‰

4HS
. (65)

If VT1
psp1qq´V ˚psp1qq ą ε

2HS , then I
“

st “ sp1q
‰

δt ą ε
2HS for t ă T1 due to the fact that Vt is non-increasing in t, which

implies that

εN0

4HS
ď 2H lnp

4H2S

ε
qp2SAH2 ` 60

a

SAH3N0ιq, (66)

which contradicts to the definition of N0 (N0 “ c1
SAH5S2 lnp 4H

2S
ε qι

ε2 ) . As a result, we have that VT1
psp1qq ď V ˚psp1qq `

ε
2HS .

Induction step: Now suppose that VTips
piqq ´ V ˚pspiqq ď kε

2HS holds for all 1 ď i ď k for some k ě 1. We will prove that

VTk`1
pspk`1qq ´ V ˚pspk`1qq ď

pk`1qε
2HS assuming that Tk`1 ‰ 8.

Note that if t ă Tk`1 and T P T1, δt ď kε
2HS . It then follows that for non-negative weights twtutě1 such that

suptăTk`1
wt ď C and

ř

tăTk`1
wt ďW ,

ÿ

tăTk`1

wtδ
t ď

ÿ

tăTk`1,tRT1

wtδ
t `

ÿ

tăTk`1,tPT1

wtkε

2HS

ď
ÿ

tăTk`1,tRT1

ˆ

wtI rn̄t “ 0s

1´ γ
` 2wtb̄

t

˙

`
ÿ

tăTk`1

w1tpδ
t ` θtq `

ÿ

tăTk`1,tPT1

wtkε

2HS
(67)

ď 2SACH2 ` 60
a

SAH3W1 `
ÿ

tăTk`1

w1tδ
t `

ÿ

tăTk`1,tPT1

wtkε

2HS
(68)

ď 2SACH2 ` 60
a

SAH3W1 `
ÿ

tăTk`1

w1tδ
t `

pW ´W1qkε

2HS
, (69)

where W1 “
ř

tăTk`1,tRT1
wt and w1t “ γ

ř

uăTk`1,uRT1

1
n̄u

řn̄t

i“1 I
“

t “ l̄ui ` 1
‰

. Here, Inequality (68) is by Lemma 16.

Because w1t ď p1 ´
1

2H qC,@t ě 1 and
ř

tăTk`1,tRT1
w1t ď p1 ´

1
2H qW1, by iteratively applying (69) for 2H lnp 3H2S

ε q

times, we have that

ÿ

tăTk`1

wtδ
t ď 2H lnp

4H2S

ε
q

´

2SAH2 ` 60
a

SAH3N0ι
¯

`
Wkε

2HS
`

Wε

4HS
. (70)

If VTk`1
pspk`1qq ´ V ˚pspk`1qq ą

pk`1qε
2HS , choosing wt “ I

“

st “ spk`1q, t ă Tk`1

‰

so that C “ 1 and W “ N0 in (70),
we obtain that

N0pk ` 1qε

2HS
ď 2H lnp

4H2S

ε
q

´

2SAH2 ` 60
a

SAH3N0ι
¯

`
N0kε

2HS
`

N0ε

4HS
,

which again contradicts to the definition of N0. Therefore we have proved that VTk`1
pspk`1qq ´ V ˚pspk`1qq ď

pk`1qε
2HS .

Proof of Lemma 7. Let ε1 P rε, 1
1´γ s be fixed. Let twtutě1 be a non-negative sequence such that suptě1 wt ď C and

ř

tě1 wt ďW . Following the derivation of (64) we have that
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ÿ

tě1

wtδ
t “

ÿ

tě1,tRT1

wtδ
t `

ÿ

tě1,tPT1

wtδ
t

ď
ÿ

tě1,tRT1

wtδ
t `

W1ε

2H
(71)

ď
ÿ

tě1

w1tδ
t ` 2SACH2 ` 60

?
SAH3WCι`

W1ε

2H
. (72)

where tw1tutě1 “ γ
ř

uě1,uRT1

1
n̄u

řn̄t

i“1 I
“

t “ l̄ui ` 1
‰

andW1 “
ř

tPT1
wt. Similarly, it holds that w1t ď p1´

1
2H qC,@t ě

1 and
ř

tě1 w
1
t ď p1´

1
2H qpW ´W1q. Here Inequality (71) holds by Lemma 15 and Inequality (72) holds by Lemma 16.

Again by applying (72) iteratively for 2H lnp 4H
ε q times, we have that

ÿ

tě1

wtδ
t ď 2H lnp

4H

ε
q

´

2SACH2 ` 60
?
SAH3WCι

¯

`
Wε

2H
`
Wε

4
. (73)

By choosing wt “ I rδt ą ε1s so that C “ 1 and W “ Npε1q :“
ř

tě1 I rδt ą ε1s into (73), we obtain that

Npε1qε1
2

ď 2H lnp
4H

ε
q

´

2SAH2 ` 60
a

SAH3Npε1qι
¯

, (74)

which means that Npε1q ď Op
SAH5 lnp 4Hε qι

ε21
q. The proof is completed.

C.8. Proof of Lemma 9

Proof of Lemma 9. By Lemma 15, conditioned on the successful event E1, for any t such that Ntpst, atq ě N0, it holds
that Qtpst, atq ´Q˚pst, atq ď ε

2H ă 3ε
4H , which implies that clippQtpst, atq ´Q

˚pst, atq,
3ε
4H q “ 0.

D. Achieving Asymptotically Near-Optimal Sample Complexity
As mentioned in Section 4, in the UCB-MULTISTAGE-ADVANTAGE algorithm, we set B to be a much larger value (indeed,
B “ H3), an employ the reference-advantage decomposition variance reduction technique (Zhang et al., 2020), and
re-design the exploration bonus b̌ to incorporate the Bernstein-type variance estimation. To prove Theorem 1 (the sample
complexity bound for UCB-MULTISTAGE-ADVANTAGE), in the analysis we split the error incurred due to the exploration
bonus into two parts: the bandit loss b˚t pst, atq (defined in (79)) and the rest part that is due to the estimation variance of
the real bandit loss. While the second part can be dealt with the variance reduction technique (Lemma 22), the bandit loss
contributes the main ÕpSAH3ι{ε2q term in the sample complexity (Lemma 21).

The rest of this section is organized as follows. In Appendix D.1, we present the details of the UCB-MULTISTAGE-
ADVANTAGE algorithm. In Appendix D.2, we prove Theorem 1, while the proofs of all technical lemmas are deferred to
Appendix D.3.

D.1. The UCB-MULTISTAGE-ADVANTAGE Algorithm

The UCB-MULTISTAGE-ADVANTAGE algorithm (Algorithm 2) has almost the same updating structure as UCB-
MULTISTAGE. More specifically, the stopping condition and update triggers of UCB-MULTISTAGE-ADVANTAGE are the
same as that of UCB-MULTISTAGE. The main difference between these two algorithms is 1) that UCB-MULTISTAGE-
ADVANTAGE utilized a more delicate exploration bonus with the help of a reference value function in the type-I updates; 2)
we set B “ H3 in UCB-MULTISTAGE-ADVANTAGE. Recall Ľ “ t

řj
i“1 ěi|1 ď j ď J̌u and L̄ “ t

řj
i“1 ēi|1 ď j ď J̄u.

The Statistics. Besides the statistics maintained in UCB-MULTISTAGE, we let µref and σref be the accumulators of the
reference value function and square of the reference value function respectively. Different from UCB-MULTISTAGE, in
UCB-MULTISTAGE-ADVANTAGE we use µ̌ and σ̌ denote respectively the accumulator of the advantage function and
square of the advantage function in the current type-I stage.
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Algorithm 2 UCB-MULTISTAGE-ADVANTAGE

Initialize: @ps, aq P S ˆA: Qps, aq, Qrefps, aq Ð 1
1´γ , Nps, aq, Ňps, aq, N̄ps, aq, µ̌ps, aq, µ̄ps, aq Ð 0;

for t “ 1, 2, 3, . . . do
Observe st;
Take action at “ arg maxaQpst, aq and observe st`1;
\\ Maintain the statistics
ps, a, s1q Ð pst, at, st`1q;
n :“ Nps, aq

`
Ð 1; ň :“ Ňps, aq

`
Ð 1; n̄ :“ N̄ps, aq

`
Ð 1;

µ̌ :“ µ̌ps, aq
`
Ð V ps1q ´ V refps1q; µref :“ µrefps, aq

`
Ð V refps1q; µ̄ :“ µ̄ps, aq

`
Ð V ps1q;

σ̌ :“ σ̌ps, aq
`
Ð pV ps1q ´ V refps1qq2; σref :“ σrefps, aq

`
Ð pV refps1qq2;

\\ Update triggered by a type-I stage
if n P Ľ then

b̌Ð mint2
?

2

ˆ

b

σ̌{ň´pµ̌{ňq2

ň ι`

b

σref{n´pµref{nq2

n ι

˙

` 7
´

Hι3{4

n3{4 `
Hι3{4

ň3{4

¯

` 4
`

Hι
n `

Hι
ň

˘

, 1
1´γ u; (75)

Qps, aq Ð mintrps, aq ` γ
`

µ̌{ň` µref{n` b̌
˘

, Qps, aqu (76)

Ňps, aq Ð 0; µ̌ps, aq Ð 0; V psq Ð max
a

Qps, aq;

end if
\\ Update triggered by a type-II stage
if n P L̄ then

b̄Ð mint2
a

H2ι{n̄, 1{p1´ γqu;

Qps, aq Ð mintrps, aq ` γ
`

µ̄{n̄` b̄
˘

, Qps, aqu; (77)
N̄ps, aq Ð 0; µ̄ps, aq Ð 0; V psq Ð max

a
Qps, aq;

end if
if
ř

a1 Nps, a
1q “ N1 then V refpsq Ð V psq; {Learn the reference value function}

end for

D.2. Proof of Theorem 1

We start from showing that the Q function is optimistic and non-increasing.

Proposition 17. With probability
`

1´ SA
`

4J̌p2 log2pN0Hq ` 1q ` J̄
˘

p
˘

, it holds that Qtps, aq ě Q˚ps, aq and
Qt`1ps, aq ď Qtps, aq for any t ě 1 and ps, aq P S ˆA .

In the proof of Proposition 17 in Appendix D.3.1, we introduce the desired event E2 by (89). Moreover, we use E2 to
denote the complement event of E2. As will be shown later in (92), we have

P rE2s ě
`

1´ SA
`

4J̌p2 log2pN0Hq ` 1q ` J̄
˘

p
˘

,

and thus
P
“

E2

‰

ď SA
`

4J̌p2 log2pN0Hq ` 1q ` J̄
˘

p.

The analysis will be done assuming the successful event E2 throughout the rest of this section.

Since the type-II stages in UCB-MULTISTAGE-ADVANTAGE are exactly the same as that in UCB-MULTISTAGE, using the
the same way as in the proof of Lemma 7, we can prove the following lemma (and the proof is omitted).

Lemma 18. Conditioned on E2, for any ε1 P rε, 1
1´γ s, it holds that

8
ÿ

t“1

I rVtpstq ´ V ˚pstq ě ε1s ď
8
ÿ

t“1

I rQtpst, atq ´Q˚pst, atq ě ε1s ď O

˜

SAH5 lnp 4H
ε qι

ε21

¸

.

Recall that T1 “ tt|Ntpst, atq ą N0u. Similar as Lemma 15, we have that (the proof is omitted)
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Lemma 19. Conditioned on successful event E2 , it holds that for any t P T1 (if T1 is not empty)

Qtpst, atq ´Q
˚pst, atq ď

ε

2H
.

Define λt to be the vector such that λtpsq “ I r
ř

aNtps, aq ă N1s where N1 :“ c10SAH
5B lnp 4H

ε qι for some large
enough constant c10. By Lemma 18, λtpsq “ 0 implies that V ref

t psq “ V REFpsq.

We then show that the Bellman error of the Q-function is properly bounded.
Lemma 20. Define lips, aq to be the time the i-th visit of ps, aq occurs and N̄tps, aq to be the visit count of ps, aq before the
current stage of ps, aq. Conditioned on E2, it holds that

Qtps, aq ´ rps, aq ´ Ps,aVt ď Ps,apVρ
t
ps, aq ´ Vtq ` Ps,aλ̃tps, aq (78)

for any t ě 1 and any ps, aq P S ˆA, where

λ̃tps, aq :“
1

1´ γ

¨

˝

1

N̄tps, aq

N̄tps,aq
ÿ

i“1

λlips,aq

˛

‚.

The proof of Lemma 20 is given in Section D.3.2. We now define the bandit loss

b˚t ps, aq :“ mint2
?

2

d

VpPs,a, V ˚qι
ntps, aq

,
1

1´ γ
u. (79)

By (78), with the definition that w̃tps, aq :“ wtps, aq ¨ IrNtps, aq ă N0s we can show that

Vtpsq ´ V
πtpsq

ď
ÿ

s,a

w̃tps, aq
´

2b̌tps, aq ` Ps,aλ̃tps, aq ` γPs,apVρ
t
ps,aq ´ Vtq

¯

`
ÿ

s,a

wtps, aqIrNtps, aq ě N0s ¨ pQtps, aq ´Q
˚ps, aqq `

ε

8

“ 2
ÿ

s,a

w̃tps, aqb
˚
t ps, aq ` 2

ÿ

s,a

w̃tps, aqpb̌tps, aq ´ b
˚
t ps, aqq ` γ

ÿ

s,a

w̃tps, aqPs,apVρ
t
ps,aq ´ Vtq

`
ÿ

s,a

w̃tps, aqPs,aλ̃tps, aq

`
ÿ

s,a

wtps, aqIrNtps, aq ě N0s ¨ pQtps, aq ´Q
˚ps, aqq `

ε

8

ď 2
ÿ

s,a

w̃tps, aqb
˚
t ps, aq ` 2

ÿ

s,a

w̃tps, aqclippb̌tps, aq ´ b
˚
t ps, aq,

ε

16H
q

` γ
ÿ

s,a

w̃tps, aqPs,aclippVρ
t
ps,aq ´ Vt,

ε

16H
q `

ÿ

s,a

w̃tps, aqPs,aclippλ̃tps, aq,
ε

16H
q

`
ÿ

s,a

wtps, aqIrNtps, aq ě N0s ¨ clippQtps, aq ´Q
˚ps, aq,

3ε

4H
q `

7ε

8
(80)

“ 2
ÿ

s,a

w̃tps, aqb
˚
t ps, aq ` βt `

7ε

8
. (81)

where we re-define βt as follows.

βt :“
ÿ

s,a

w̃tps, aq
´

2clippb̌tps, aq ´ b
˚
t ps, aq,

ε

16H
q ` γPs,aclippVρ

t
ps,aq ´ Vt,

ε

16H
q

`Ps,aclippλ̃tps, aq,
ε

16H
q

¯

`
ÿ

s,a

wtps, aqIrNtps, aq ě N0s ¨ clippQtps, aq ´Q
˚ps, aq,

3ε

4H
q.
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Plugging in the definition of w̃t, we get that

(82)

βt “
ÿ

s,a

wtps, aqIrNtps, aq ă N0s

´

2clippb̌tps, aq ´ b
˚
t ps, aq,

ε

16H
q ` γPs,aclippVρ

t
ps,aq ´ Vt,

ε

16H
q

` Ps,aclippλ̃tps, aq,
ε

16H
q

¯

`
ÿ

s,a

wtps, aqIrNtps, aq ě N0s ¨ clippQtps, aq ´Q
˚ps, aq,

3ε

4H
q.

We also re-define the following notations,

αt :“ IrNtpst, atq ă N0sPst,atclippVρ
t
pst,atq ´ Vt,

ε

16H
q,

υt :“ IrNtpst, atq ă N0sPs,aclippλ̃tps, aq,
ε

16H
q,

β̃t :“ IrNtpst, atq ă N0s ¨

´

2clippb̌tpst, atq ´ b
˚
t pst, atq,

ε

16H
q ` Pst,atclippVρ

t
pst,atq ´ Vt,

ε

16H
q

` Ps,aclippλ̃tps, aq,
ε

16H
q

¯

` IrNtpst, atq ě N0s ¨ clippQtpst, atq ´Q
˚pst, atq,

3ε

4H
q.

Therefore, we have that

β̃t “ IrNtpst, atq ă N0s ¨ 2clippb̌tpst, atq ´ b
˚
t pst, atq,

ε

16H
q ` αt ` υt

` IrNtpst, atq ě N0s ¨ clippQtpst, atq ´Q
˚pst, atq,

3ε

4H
q.

To handle the first term in RHS of (80), we prove that

Lemma 21. Define Λ “
Q

log2p
256H4

ε2 q

U

. With probability p1´ 2HΛpq, it holds that

ÿ

tě1

I

«

ÿ

s,a

wtps, aqIrNtps, aq ă N0sb
˚
t ps, aq ě

ε

16

ff

ď O

ˆ

SAH3Λ3ι

ε2
`
SAH4BΛ2 lnpN0q

ε

˙

.

We remark that our proof of Lemma 21 is quite similar to the method of knowness in (Lattimore & Hutter, 2012), in the
sense that both methods rely on an argument based on the partition of the states. However, our way of partitioning seems to
be simpler as we divide the states into different subsets only according to their numbers. The detailed proof is presented in
Appendix D.3.3.

For the second term, in Appendix D.3.4, we prove the pseudo-regret bounds as below.

Lemma 22. If we choose B “ H3, with probability 1´ SAJ̌p2PrE2s ` 4pq it holds that
ÿ

tě1

clippb̌tpst, atq ´ b
˚
t pst, atq,

ε

16H
q

ď O

ˆ

SAH2ι

ε

˙

` Õ

ˆ

S3{2A3{2H17{4ι

ε1{2
`
SAH59{12ι

ε1{3
`
S5{4A5{4H3ι

ε1{4
` S2A2H9ι

˙

.

Following the same arguments as the proof of Lemma 8, for the third term we show the following lemma (the proof of
which is omitted).

Lemma 23. With probability 1´ pP
“

E2

‰

` pq it holds that

ÿ

tě1

αt ď O

˜

SAH5 lnp 4H
ε qι

εB
` SABH3 ` SAH lnpN0q

¸

.
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Finally, in Appendix D.3.5, we show the following lemma.

Lemma 24. With probability 1´ pP
“

E2

‰

` pq, it holds that

ÿ

tě1

υt ď O

ˆ

H2SpN1 ` 1q

ε

˙

.

Similarly to the proof of Lemma 19, we also have the following lemma.

Lemma 25. With probability 1´ pP
“

E2

‰

` pq, for any t it holds that

IrNtpst, atq ě N0s ¨ clippQtpst, atq ´Q
˚pst, atq,

3ε

4H
q “ 0.

By Lemmas 22, 23, 24 and 25, we obtain that

Lemma 26. With probability 1´
`

SAJ̌p2PrE2s ` 4pq ` 3P
“

E2

‰

` 3p
˘

, it holds that

ÿ

tě1

β̃t ď O

˜

SAH2 lnp 4H
ε qι

ε

¸

` Õ

ˆ

S2A2H10ι

ε1{2

˙

. (83)

Following the same arguments in Section 5.4, we obtain that with probability

1´
`

SAJ̌p2PrE2s ` 4pq ` 3P
“

E2

‰

` 34p
˘

,

it holds that

ÿ

tě1

I
”

βt ą
ε

8

ı

ď Op
SAH2 lnp 4H

ε qι

ε2
q ` Õp

S2A2H10ι

ε3{2
q. (84)

By Proposition 17,(81) and (84), we conclude that with probability 1´
`

SAJ̌p2PrE2s ` 4pq ` 3P
“

E2

‰

` 2HΛp` 3p
˘

, it
holds that

ÿ

tě1

I rV ˚pstq ´ V πtpstq ą εs

ď
ÿ

tě1

I

«

ÿ

s,a

wtps, aqb
˚
t ps, aq ą

ε

8

ff

`
ÿ

tě1

I
”

βt ą
ε

4

ı

ď O

˜

SAH3Λ2 lnp 4H
ε qι

ε2

¸

`O

ˆ

SAH7Λ2 lnpN0q

ε

˙

` Õ

ˆ

S2A2H10ι

ε3{2

˙

.

The proof is finished by replacing p with p
34S2A2J̌2 log2pN0Hq`4HΛ

.

D.3. Missing Proofs in Appendix D.2

D.3.1. PROOF OF PROPOSITION 17

Proposition 17 (restated). With probability
`

1´ SA
`

4J̌p2 log2pN0Hq ` 1q ` J̄
˘

p
˘

, it holds that Qtps, aq ě Q˚ps, aq
and Qt`1ps, aq ď Qtps, aq for any t ě 1 and ps, aq P S ˆ A . The rest of this subsection is devoted to the proof of
Proposition 17.

Let ps, a, jq be fixed. Let µref , µ̌, σref , σ̌ and b̌ be the values of µref , µ̌, σref , σ̌ and b̌ in (76) in the j-th type-I update.
Define ľi to be the time when the i-th visit in the j-th type-I stage of ps, aq occurs and li to be the time the i-th visit of ps, aq
occurs respectively. Let ň and n be the shorthands of ěj and

řj
i“1 ěi respectively.



Model-Free RL: from Clipped Pseudo-Regret to Sample Complexity

Define

χ
pjq
1 ps, aq :“

1

n

n
ÿ

i“1

`

V ref
li psli`1q ´ Ps,aV

ref
li

˘

;

χ
pjq
2 ps, aq :“

1

ň

ň
ÿ

i“1

`

Wľi
psľi`1q ´ Ps,aWľi

˘

.

We consider the events:

Ě
pjq
1 ps, aq :“

$

&

%

|χ
pjq
1 ps, aq| ď 2

?
2

d

σref{n´ pµref{nq2

n
ι`

7Hι3{4

n3{4
`

4Hι

n

,

.

-

and

Ě
pjq
2 ps, aq :“

$

&

%

|χ
pjq
2 ps, aq| ď 2

?
2

d

σ̌{ň´ pµ̌{ňq2

ň
ι`

7Hι3{4

ň3{4
`

4Hι

ň

,

.

-

,

where Wt “ Vt ´ V
ref
t . If both Ěpjq1 ps, aq and Ěpjq2 ps, aq occurs, then we have that

rps, aq `
µref

n
`
µ̌

ň
` b̌

“ rps, aq ` Ps,a

˜

1

n

n
ÿ

i“1

V ref
li

¸

` Ps,a

¨

˝

1

ň

ľi
ÿ

i“1

pVľi ´ V
ref
ľi
q

˛

‚` χ
pjq
1 ps, aq ` χ

pjq
2 ps, aq ` b̌

ě rhps, aq ` Ps,a

¨

˝

1

ň

ľi
ÿ

i“1

Vľi

˛

‚` χ
pjq
1 ps, aq ` χ

pjq
2 ps, aq ` b̌ (85)

ě rhps, aq ` Ps,a

¨

˝

1

ň

ľi
ÿ

i“1

Vľi

˛

‚, (86)

where Inequality (85) holds by the fact V ref
t is non-increasing in t and Inequality (86) follows by the definition of b̌.

On the other hand, for the j1-th type-II update, we consider the following same events as in the proof of Proposition 4,

Ēpj
1
qps, aq “

#

1

ēj1

ēj1
ÿ

i“1

V ˚psl̄i`1q ` b̄
pjq ě Ps,aV

˚

+

. (87)

Assuming Ēpj
1
qps, aq holds, we then have

rps, aq `
γ

ēj1

ēj1
ÿ

i“1

Vl̄ipsl̄i`1q ` b̄
pjq

ě rps, aq ` γPs,aV
˚ ` γ

˜

1

ēj1

ēj1
ÿ

i“1

pVl̄ipsl̄i`1q ´ V
˚psl̄i`1qq

¸

. (88)

Let

E2 “ pXs,a,jĚ
pjq
1 ps, aqq X pXs,a,jĚ

pjq
2 ps, aqq X pXs,a,j1Ē

pj1qps, aqq. (89)

Assuming E2 holds, by the update rule (76) and (77) and noting that Vt is non-increasing , for any t ě 2 and ps, aq, it holds
either Qtps, aq “ Qt´1ps, aq or

Qtps, aq ě rs,a ` γPs,aV
˚ `

ÿ

t1ăt

vt1pVt1 ´ V
˚q
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for some non-negative S-dimensional vectors v1, v2, . . . , vt´1. Noting that Q1ps, aq “
1

1´γ ě Q˚ps, aq for any ps, aq, the
conclusion follows easily by induction.

Therefore, it suffices to bound P rE2s.

Lemma 27. For any ps, a, jq, P
”

Ě
pjq
1 ps, aq

ı

ě 1´ 2plog2pN0Hq ` 1qp.

Proof. Define Vpx, yq “ xy2 ´ pxyq2 for two vectors with the same dimension. Noticing that sli`1 is independent of V ref
li

conditioned on Fli´1, by Lemma 13 with ε “ H , we have that with probability p1´ 2 log2pnHqpq, it holds that

|χ
pjq
1 ps, aq| “

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

`

V ref
li psli`1q ´ Ps,aV

ref
li

˘

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2
?

2

d

p
řn
i“1 VpPs,a, V ref

li
qqι

n2
`

?
2Hι

n
`

2Hι

n

ď 2
?

2

d

p
řn
i“1 VpPs,a, V ref

li
qqι

n2
`

4Hι

n
. (90)

By definition of σref and µref , we have that

n
ÿ

i“1

VpPs,a, V ref
li q “

n
ÿ

i“1

`

Ps,apV
ref
li q

2 ´ pPs,aV
ref
li q

2
˘

“

n
ÿ

i“1

pV ref
li psli`1qq

2 ´
1

n

˜

n
ÿ

i“1

V ref
li psli`1q

¸2

` χ3 ` χ4 ` χ5

“ σref ´
1

n
pµrefq2 ` χ3 ` χ4 ` χ5,

where

χ3 :“
n
ÿ

i“1

`

Ps,apV
ref
li q

2 ´ pV ref
li psli`1qq

2
˘

χ4 :“
1

n

˜

n
ÿ

i“1

V ref
li psli`1q

¸2

´
1

n

˜

n
ÿ

i“1

Ps,aV
ref
li

¸

χ5 “
1

n

˜

n
ÿ

i“1

Ps,aV
ref
li

¸2

´

n
ÿ

i“1

pPs,aV
ref
li q

2.

By Azuma’s inequality, we have that

P
”

|χ3| ą H2
?

2nι
ı

ď p

and

P
”

|χ4| ą 2H2
?

2nι
ı

ď P

«

2H ¨ |
n
ÿ

i“1

`

V ref
li psli`1q ´ Ps,aV

ref
li

˘

| ą 2H2
?

2nι

ff

ď p.

On the other hand, by Cauchy-Schwartz inequality, we have χ5 ď 0. It then follow that

P

«

n
ÿ

i“1

VpPs,a, V ref
li q ą σref ´

1

n
pµrefq2 ` 5H2

?
nι

ff

ď 2p. (91)
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Combining (90) and (91), we have that

P
”

Ě
pjq
1 ps, aq

ı

ě 1´ P

»

–|χ
pjq
1 ps, aq| ą 2

?
2

d

p
řn
i“1 VpPs,a, V ref

li
qqι

n2
`

4Hι

n

fi

fl

´ P

«

n
ÿ

i“1

VpPs,a, V ref
li q ą σref ´

1

n
pµrefq2 ` 5H2

?
nι

ff

ě 1´ 2plog2pnHq ` 1qp

ě 1´ 2plog2pN0Hq ` 1qp.

Following similar arguments as above, we can prove that P
”

Ě
pjq
2 ps, aq

ı

ě 1 ´ 2plog2pN0Hq ` 1qp for any 1 ď j ď J̌ .

At last, by Azuma’s inequality, P
”

Ēpj
1
qps, aq

ı

ě 1 ´ p for any j1 and ps, aq. Via a union bound over 1 ď j ď J̌ and

1 ď j1 ď J̄ , we obtain that

P rE2s ě 1´ 4SAJ̌plog2pN0Hq ` 1qp´ SAJ̄p. (92)

The proof is completed.

D.3.2. PROOF OF LEMMA 20

Lemma 20 (restated). Define lips, aq to be the time the i-th visit of ps, aq occurs and N̄tps, aq to be the visit count of ps, aq
before the current stage of ps, aq. Conditioned on E2, it holds that

Qtps, aq ´ rps, aq ´ Ps,aVt ď Ps,apVρ
t
ps, aq ´ Vtq `

1

1´ γ
Ps,a

˜

1

n

n
ÿ

i“1

λli

¸

.

for any t ě 1 and any ps, aq P S ˆA.

Let ps, a, jq be fixed. We use the same notations as that of Section D.3.1. For any t in the j ` 1-th type-I stage, by the
arguments to derive (86), we have that

Qtps, aq “ rps, aq `
µref

n
`
ǔ

ň
` b̌

ď rps, aq ` Ps,a

˜

1

n

n
ÿ

i“1

V ref
li

¸

` Ps,a

¨

˝

1

ň

ľi
ÿ

i“1

pVľi ´ V
ref
ľi
q

˛

‚

ď rps, aq ` Ps,aVt ` Ps,apVρ
t
ps, aq ´ Vtq ` Ps,a

˜

1

n

n
ÿ

i“1

V ref
li ´ V REF

¸

ď rps, aq ` Ps,aVt ` Ps,apVρ
t
ps, aq ´ Vtq `

1

1´ γ
Ps,a

˜

1

n

n
ÿ

i“1

λli

¸

. (93)

The proof is completed.

D.3.3. PROOF OF LEMMA 21

Lemma 21 (restated). Define Λ “
Q

log2p
256H4

ε2 q

U

. With probability p1´ 2HΛpq, it holds that

ÿ

tě1

I

«

ÿ

s,a

wtps, aqIrNtps, aq ă N0sb
˚
t ps, aq ą

ε

8

ff

ď O

ˆ

SAH3Λ3ι

ε2
`
SAH4BΛ2 lnpN0q

ε

˙

.
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The rest of this subsection is devoted to the proof of Lemma 21.

Define St,0 :“ tps, aq|ntps, aq ă ιu, St,u :“ tps, aq|2u´1ι ď ntps, aq ă 2uιu for u “ 1, 2, . . . ,Λ “ rlog2p
256H4

ε2 qs and
St :“ tps, aq|ntps, aq ą

H4

ε2 u . Furthermore, we define

β˚t,u :“
ÿ

ps,aqPSt,u

wtps, aqb
˚
t ps, aq

and

β˚t :“
ÿ

u

β˚t,u “
ÿ

s,a

wtps, aqb
˚
t ps.aq.

By the definition of b˚t ps, aq, we obtain that for 1 ď u ď Λ,

β˚t,i “
ÿ

ps,aqPSt,u

wtps, aqb
˚
t ps, aq

ď 2
?

2ι
ÿ

ps,aqPSt,u

wtps, aq

d

VpPs,a, V ˚q
ntps, aq

ď 2

c

2

2u´1

ÿ

ps,aqPSt,u

wtps, aq
b

VpPs,a, V ˚q

ď 2

c

2

2u´1
¨

d

ÿ

ps,aqPSt,u

wtps, aq ¨

d

ÿ

ps,aqPSt,u

wtps, aqVpPs,a, V ˚q, (94)

and for 0 ď u ď Λ,

β˚t,u ď
1

1´ γ

ÿ

ps,aqPSt,u

wtps, aq.

Define wt,u :“
ř

ps,aqPSt,u wtps, aq and νt “
ř

s,a wtps, aqVpPs,a, V ˚q. Note that

νt “
ÿ

s,a

wtps, aqpPs,apV
˚q2 ´ pPs,aV

˚q2q

“
ÿ

s,a

wtps, aqPs,apV
˚q2 ´

1

γ2

ÿ

s,a

wtps, aqpQ
˚ps, aq ´ rps, aqq2

ď
ÿ

s,a

wtps, aqPs,apV
˚q2 ´

ÿ

s,a

wtps, aqpQ
˚ps, aq ´ rps, aqq2

ď
ÿ

s,a

wtps, aqpPs,apV
˚q2 ´ pQ˚ps, aqq2q `

2H

1´ γ

“
ÿ

s,a

wtps, aqpPs,apV
˚q2 ´ pV ˚psqq2q `

ÿ

s,a

wtps, aqppV
˚psqq2 ´ pQ˚ps, aqq2qq `

2H

1´ γ

ď
ÿ

s,a

wtps, aqpPs,apV
˚q2 ´ pV ˚psqq2q `

2

1´ γ

ÿ

s,a

wtps, aqpV
˚psq ´Q˚ps, aqq `

2H

1´ γ

ď
1

p1´ γq2
`

2

1´ γ

ÿ

s,a

wtps, aqpV
˚psq ´Q˚ps, aqq `

2H

1´ γ
(95)

ď
1

p1´ γq2
`

2

p1´ γq
pV ˚pstq ´ V

πtpstqq `
2H

1´ γ
(96)

ď 5H2. (97)
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Here Inequality (95) holds by the fact that

ÿ

s,a

wtps, aqpPs,a ´ 1sqpV ˚q2 “
ÿ

s,a

`

I ra “ πtpsqs
H´1
ÿ

i“0

1JstpγPπtq
i1s

˘

¨ pPs,a ´ 1sqpV ˚q2

“
ÿ

s,a

I ra “ πtpsqs
`

1JstpγPπtq
H1s ´ I rs “ sts

˘

pV ˚psqq2

ď
1

p1´ γq2
,

and Inequality (96) is due to the bound on the following telescoping sum,

V ˚pstq ´ V
πtpstq “

ÿ

s,a

`

I ra “ πtpsqs
8
ÿ

i“0

1JstpγPπtq
i1s

˘

¨ pV ˚psq ´Q˚ps, aqq

ě
ÿ

s,a

wtps, aqpV
˚psq ´Q˚ps, aqq.

Combining (97) with the fact that
ř

ps,aqPSt wtps, aqb
˚
t ps, aq ď

ε
16 , we obtain that , if β˚t ą

ε
8 , there exists u such that

β˚t,u ą
ε

16Λ , which implies that wt,u ą maxt 1
10240 ¨

2u´1ε2

H2Λ2 ,
εp1´γq

16Λ u.

We will bound the number of steps in which there exists u satisfying wt,u ą maxt 1
10240 ¨

2u´1ε2

H2Λ2 ,
εp1´γq

16Λ u by following
lemma.
Lemma 28. For any k P t1, 2, . . . ,Hu and u P t1, 2, . . . ,Λu, with probability 1´ p,

ÿ

tě0

I
„

wtH`k,u ą
1

10240
¨

2u´1ε2

H2Λ2



ď O

ˆ

SABH4Λ2 lnpN0q

2u´1ιε2
`
SAH2Λ2ι

ε2

˙

. (98)

Moreover, for any u ě 0, with probability 1´ p,

ÿ

tě0

I
„

wtH`k,u ą
εp1´ γq

16Λ



ď O

ˆ

HΛ

ε
pSAH2B lnpN0q ` SAH ` 2u`2SAιq

˙

. (99)

Proof. Define

Ũt,u “ I rDps, aq, i P t1, 2, . . . ,H ´ 1u, such that St`i,u ‰ St,u or Qt`ips, aq ‰ Qtps, aqs ,

and

ŵtps, aq “ p1´ Ũt,uq
H´1
ÿ

i“0

I rpst`i, at`iq P St`i,us `HŨt,u.

Note that ŵtH`k is measurable with respect to Fkt “ Fpt`1qH`k´1 and E
“

ŵtH`k|F t´1
k

‰

ě wtH`k, we then have that by
Lemma 14,

P
”

ÿ

tě0

wtH`k ą 8SAH2B lnpN0q ` 8SAH ` 2u`2SAι,

ÿ

tě0

ŵtH`k ď 2SAH2B lnpN0q ` 2SAH ` 2uSAι
ı

ď p. (100)

On the other hand, we have that
ÿ

tě0

ŵtH`k ď H
ÿ

tě0

ÛtH`k `
ÿ

tě1

I rpst, atq P St,us

ď 2SAH2B lnpN0q ` 2SAH `
ÿ

tě1

I rpst, atq P St,us (101)

ď 2SAH2B lnpN0q ` 2SAH ` 2uSAι, (102)
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where Inequality (101) is because St,u changes at most 2SA times in t, and Inequality (102) is by the fact that 2u´1ι ď
ntps, aq ă 2uι implies that 2uι ď Ntps, aq ă 2u`1ι. It then follows that

P

«

ÿ

tě0

wtH`k ą 8SAH2B lnpN0q ` 8SAH ` 2u`2SAι

ff

ď p,

which means

P

«

ÿ

tě0

I
„

wtH`k,u ą
1

10240
¨

2u´1ε2

H2Λ2



ą 10240

ˆ

16SABH4Λ2 lnpN0q

2u´1ιε2
`

8SAH2Λ2ι

ε2

˙

ff

ď p

and

P

«

ÿ

tě0

I
„

wtH`k,u ą
εp1´ γq

16Λ



ą
16HΛ

ε
p8SAH2B lnpN0q ` 8SAH ` 2u`2SAιq

ff

ď p.

The proof is completed.

For u such that 2u ď BH2 lnpN0q

ι or u “ 0, we plug u and k “ 1, 2, . . . ,H into (99) and obtain that with probability 1´Hp,

ÿ

tě1

I
„

wt,u ą
εp1´ γq

16Λ



ď O

ˆ

SAH4BΛ lnpN0q

ε

˙

. (103)

For u such that 2u ą BH2 lnpN0q

ι , we plug u and k “ 1, 2, . . . ,H into (98) and obtain that with probability 1´Hp,

ÿ

tě1

I
„

wt,u ą
1

10240
¨

2u´1ε2

H2Λ2



ď O

ˆ

SAH3Λ2ι

ε2

˙

. (104)

Via a union bound over u, we have that with probability 1´ 2HΛp, it holds that

ÿ

tě1

I
”

β˚t ą
ε

8

ı

ď
ÿ

tě1

I
„

Du,wt,u ą maxt
1

10240
¨

2u´1ε2

H2Λ2
,
εp1´ γq

8Λ
u and wt,0 ą

εp1´ γq

8Λ



ď O

ˆ

SAH3Λ3ι

ε2
`
SAH4BΛ2 lnpN0q

ε

˙

. (105)

D.3.4. PROOF OF LEMMA 22

Lemma 22 (restated). With probability 1´ SAJ̌p2PrE2s ` 4pq, it holds that
ÿ

tě1

clippb̌tpst, atq ´ b
˚
t pst, atq,

ε

16H
q (106)

ď O

ˆ

SAH2ι

ε

˙

` Õ

ˆ

S3{2A3{2H17{4ι

ε1{2
`
SAH59{12ι

ε1{3
`
S5{4A5{4H3ι

ε1{4
` S2A2H9ι

˙

.

The rest of this subsection is devoted to the proof of Lemma 22.

Let s, a, j be fixed. We follow the notations in Appendix D.3.1. For t in the pj ` 1q-th type-I stage of ps, aq, recalling the
definition

b̌tpst, atq “ mint2
?

2

¨

˝

d

σ̌{ň´ pµ̌{ňq2

ň
ι`

d

σref{n´ pµref{nq2

n
ι

˛

‚

` 7

ˆ

Hι3{4

n3{4
`
Hι3{4

ň3{4

˙

` 5

ˆ

Hι

n
`
Hι

ň

˙

,
1

1´ γ
u,
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we have that

clippb̌tpst, atq ´ b
˚
t pst, atq,

ε

16H
q

ď 4clipp2
?

2

¨

˝

d

σref{n´ pµref{nq2

n
ι´

c

VpPs,a, V ˚q
n

ι

˛

‚,
ε

64H
q

looooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooon

1©

` 4clipp2
?

2

d

σ̌{ň´ pµ̌{ňq2

ň
ι,

ε

64H
q

looooooooooooooooooooomooooooooooooooooooooon

2©

` 4clipp7

ˆ

Hι3{4

n3{4
`
Hι3{4

ň3{4

˙

,
ε

64H
q

looooooooooooooooooooomooooooooooooooooooooon

3©

` 4clipp5

ˆ

Hι

n
`
Hι

ň

˙

,
ε

64H
q

looooooooooooooooomooooooooooooooooon

4©

, (107)

and the trivial bound

clippb̌tpst, atq ´ b
˚
t pst, atq,

ε

16H
q ď

1

1´ γ
. (108)

Here, (107) is because clippa` b, 2εq ď 2clippa, εq ` 2clippb, εq for any non-negative a, b, ε.

Let V ref
t be the value of V ref immediately before the beginning of the t-th step and V REF :“ limtÑ8 V

ref
t (by the update

rule of Algorithm 2, this limit exists). Recall that λt is defined as the vector such that λtpsq “ I r
ř

aNtps, aq ă N1s. By
Lemma 18 with ε1 “ ω :“ 1?

B
(assuming ε ď 1?

B
), we have that

P
“

@t ě 1, V ref
t pstq ´ V

˚pstq ď Hλtpstq ` ω
‰

ě P rE2s . (109)

We will deal with the four terms in RHS of (107) separately.

The 1© term To handle this term, we introduce a lemma to bound σref

n ´ p
µref

n q
2 ´ VpPs,a, V ˚q.

Lemma 29. With probability 1´ pPrE2s ` 4pq, it holds that

σref

n
´ p

µref

n
q2 ´ VpPs,a, V ˚q ď 9

?
2H3

c

ι

n
`

1

n

`

2H2SApJ̌ ` J̄q ` 10H2SN1

˘

` 4Hω.

Proof. Note that

σref

n
´ p

µref

n
q2 ´ VpPs,a, V ˚q “

1

n
pχ6 ` χ7 ` χ8 ` χ9q, (110)

where

χ6 :“
n
ÿ

i“1

`

pV ref
li psli`1qq

2 ´ Ps,apV
ref
li q

2
˘

,

χ7 :“
1

n

˜

n
ÿ

i“1

Ps,aV
ref
li

¸2

´
1

n

˜

n
ÿ

i“1

V ref
li psli`1q

¸2

χ8 :“
n
ÿ

i“1

pPs,aV
ref
li q

2 ´
1

n

˜

n
ÿ

i“1

Ps,aV
ref
li

¸2

,

χ9 :“
n
ÿ

i“1

VpPs,a, V ref
li q ´ nVpPs,a, V

˚q.

According to Azuma’s inequality, with probability p1´ 2pq it holds that

|χ6| ď H2
?

2nι, (111)

|χ7| ď 2H

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

`

V ref
li psli`1q ´ Ps,aV

ref
li

˘

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2H2
?

2nι. (112)
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On the other hand, by direct computation, we have that

χ8 “

n
ÿ

i“1

pPs,aV
ref
li q

2 ´
1

n

˜

n
ÿ

i“1

Ps,aV
ref
li

¸2

ď

n
ÿ

i“1

pPs,aV
ref
li q

2 ´
1

n

˜

n
ÿ

i“1

Ps,aV
REF

¸2

(113)

“

n
ÿ

i“1

`

pPs,aV
ref
li q

2 ´ pPs,aV
REFq2

˘

ď 2H2
n
ÿ

i“1

Ps,aλli (114)

“ 2H2

˜

n
ÿ

i“1

λlipsli`1q `

n
ÿ

i“1

pPs,a ´ 1sli`1
qλli

¸

“ 2H2
n
ÿ

i“1

pλlipsli`1q ´ λli`1psli`1qq ` 2H2
n
ÿ

i“1

λli`1psli`1q ` 2H2
n
ÿ

i“1

pPs,a ´ 1sli`1
qλli

ď 2H2SApJ̌ ` J̄q ` 2H2SN1 ` 2H2
n
ÿ

i“1

pPs,a ´ 1sli`1
qλli , (115)

where Inequality (113) is by the fact that V ref
t ě V REF for any t ě 1, Inequality (114) is by the definition of λt and

Inequality (115) holds because λt ‰ λt`1 implies an update occurs at the t-th step and
ř

tě1 λtpstq ď SN1. Therefore, by
Azuma’s inequality it holds that

P
”

χ8 ą 2H2SApJ̌ ` J̄q ` 2H2SN1 ` 2H3
?

2nι
ı

ď P

«

2H2
n
ÿ

i“1

pPs,a ´ 1sli`1
qλli ą 2H3

?
2nι

ff

ď p. (116)

At last, the term χ9 could be bounded by

χ9 “

n
ÿ

i“1

VpPs,a, V ref
li q ´ nVpPs,a, V

˚q

ď
4H

n

n
ÿ

i“1

Ps,apV
ref
li ´ V ˚q

“ 4H
n
ÿ

i“1

pV ref
li psli`1q ´ V

ref
li`1psli`1q ` V

ref
li`1psli`1q ´ V

˚psli`1qq ` 4H
n
ÿ

i“1

pPs,a ´ 1sli`1
qpV ref

li ´ V ˚q

ď 4H2S ` 4H
n
ÿ

i“1

pV ref
li`1psli`1q ´ V

˚psli`1qq ` 4H
n
ÿ

i“1

pPs,a ´ 1sli`1
qpV ref

li ´ V ˚q, (117)

where Inequality (117) is by the fact that the number of updates of V ref is at most S. Similarly, we have that

P
”

χ9 ą 4H2S ` 4H2SN1 ` 4Hnω ` 4H2
?

2nι
ı

ď P

«

n
ÿ

i“1

pV ref
li`1psli`1q ´ V

˚psli`1qq ą

n
ÿ

i“1

pHλli`1psli`1q ` ωq

ff

` P

«

n
ÿ

i“1

pPs,a ´ 1sli`1
qpV ref

li ´ V ˚q ą H
?

2nι

ff

ď PrE2s ` p, (118)

where (118) holds by (109).
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Combining (110), (111), (112), (116) and (118), with probability 1´ pPrE2s ` 5pq it holds that

σref

n
´ p

µref

n
q2 ´ VpPs,a, V ˚q

ď
1

n

´

3H2
?

2nι` 2H2SApJ̌ ` J̄q ` 2H2SN1 ` 2H3
?

2nι` 4H pS ` SN1q ` 4H2
?

2nι
¯

` 4Hw

ď 9
?

2H3

c

ι

n
`

1

n

`

2H2SApJ̌ ` J̄q ` 10H2SN1

˘

` 4Hw.

By Lemma 29, with probability 1´ pP
“

E2

‰

` 4pq it holds that

¨

˝

d

σref{n´ pµref{nq2

n
ι´

c

VpPs,a, V ˚q
n

ι

˛

‚

ď

d

9
?

2H3ι3{2

n3{2
`
p2H2SApJ̌ ` J̄q ` 10H2SN1qι

n2
`

4Hωι

n
. (119)

As a result, for n ą N2 :“ c3
H3ωι
ε2 ` c4

H10{3ι
ε4{3

` c5
H
?
pH2SApJ̌`J̄q`H2SN1qι

ε with sufficient large constants c4 and c5, it
holds that

2
?

2

¨

˝

d

σref{n´ pµref{nq2

n
ι´

c

VpPs,a, V ˚q
n

ι

˛

‚ă
ε

64H
. (120)

The 2© term Direct computation gives that

σ̌{ň´ pµ̌{ňq2

ň
ď

σ̌

ň2
“

1

ň2

ň
ÿ

i“1

´

Vľipsľi`1q ´ V
ref
ľi
psľi`1q

¯2

ď
1

ň2

ň
ÿ

i“1

´

V ref
ľi
psľi`1q ´ V

˚psľi`1q

¯2

. (121)

Also note that
ˇ

ˇ

ˇ

ˇ

ˇ

ň
ÿ

i“1

ˆ

´

V ref
ľi
psľi`1q ´ V

˚psľi`1q

¯2

´

´

V ref
ľi`1

psľi`1q ´ V
˚psľi`1q

¯2
˙

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2H ¨

ˇ

ˇ

ˇ

ˇ

ˇ

ň
ÿ

i“1

´

V ref
ľi
psľi`1q ´ V

ref
ľi`1

psľi`1q

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2H2pSApJ̌ ` J̄qq. (122)

It then follows that

P

«

σ̌{ň´ pµ̌{ňq2

ň
ą
H2p2SN1 ` 2SApJ̌ ` J̄qq

ň2
`

2ω2

ň

ff

ď P

«

ň
ÿ

i“1

´

V ref
ľi
psľi`1q ´ V

˚psľi`1q

¯2

ą H2p2SN1 ` 2SApJ̌ ` J̄qq ` 2ω2ň

ff

ď P

«

ň
ÿ

i“1

´

V ref
ľi`1

psľi`1q ´ V
˚psľi`1q

¯2

ą 2H2SN1 ` 2ω2ň

ff

ď P

«

ň
ÿ

i“1

´

V ref
ľi`1

psľi`1q ´ V
˚psľi`1q

¯2

ą

ň
ÿ

i“1

`

Hλľi`1psľi`1q ` ω
˘2

ff

ď PrE2s,



Model-Free RL: from Clipped Pseudo-Regret to Sample Complexity

where the last inequality is due to (109). Therefore, we have that

P

»

–

d

σ̌{ň´ pµ̌{ňq2

ň
ą

d

H2p2SN1 ` 2SApJ̌ ` J̄qq

ň2
`

2ω2

ň

fi

fl ď PrE2s. (123)

Note that ň ě n
2HB . For n ą N3 “ c6

ω2H3Bι
ε2 ` c7

?
H4BSN1ι

ε with large enough constants c6 and c7, we have that the
following inequality holds with probability at least 1´ PrE2s,

2
?

2

d

σ̌{ň´ pµ̌{ňq2

ň
ι ă

ε

64H
. (124)

The 3© term For n ą N4 :“ c8
H11{3Bι
ε4{3

with large enough constant c8, we have

7

ˆ

Hι3{4

n3{4
`
Hι3{4

ň3{4

˙

ă
ε

64H
. (125)

The 4© term For n ą N5 :“ c9
H3Bι
ε with large enough constant c8, we have

5

ˆ

Hι

n
`
Hι

ň

˙

ă
ε

64H
. (126)

Combining (107) with the bounds (119), (120), (123), (124), (125) and (126), using the trivial bound clippb̌tpst, atq ´
b˚t pst, atq,

ε
16H q ď 1{p1´ γq for early stages, and summing over all possible s, a, j with a union bound, we obtain that with

probability 1´ SAJ̌p2PrE2s ` 4pq,

ÿ

tě1

clippb̌tpst, atq ´ b
˚
t pst, atq,

ε

16H
q ď OpM1 `M2 `M3 `M4q, (127)

where (noting that ň ě n{p2HBq in (123), (125) and (126))

M1 “
ÿ

s,a

¨

˝Hι`
N2
ÿ

n“maxttιu,1u

d

9
?

2H3ι3{2

n3{2
`
p2H2SApJ̌ ` J̄q ` 10H2SN1qι

n2
`

4Hωι

n

˛

‚, (128)

M2 “
ÿ

s,a

¨

˝Hι`
N3
ÿ

n“maxttιu,1u

d

H4B2p2SN1 ` 2SApJ̌ ` J̄qq

n2
`

2HBω2

n

˛

‚, (129)

M3 “
ÿ

s,a

¨

˝Hι`
N4
ÿ

n“maxttιu,1u

ˆ

Hι3{4

n3{4
`
H7{4B3{4ι3{4

n3{4

˙

˛

‚, (130)

M4 “
ÿ

s,a

¨

˝Hι`
N5
ÿ

n“maxttιu,1u

ˆ

Hι

n
`
H2Bι

n

˙

˛

‚. (131)
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Straightforward calculation shows that

M1 ď SA ¨O

ˆ

Hι`N
1{4
2 H3{2ι3{4 ` lnp

N2

ι
q

b

H2SAJ̌ `H2SN1 `
a

N2Hωι

˙

ď O

ˆ

SAH5{4ι

ε

˙

` Õ
´SAH17{12ι

ε2{3
`
pS3{2A3{2H7{4 ` S3{2A5{4H7{2 ` SAH15{8qι

ε1{2

`
SAH7{3ι

ε1{3
`
pS5{4A5{4H5{2 ` S5{4A9{8H3qι

ε1{4
` S2A2H3ι` S2A3{2H7{2ι

¯

, (132)

M2 ď SA ¨O

ˆ

Hι` lnp
N3

ι
q

b

H2B2pH2SN1 `H2SAJ̌q `
a

N3HBω2ι

˙

ď O

ˆ

SAH2ι

ε

˙

` Õ
´S3{2A5{4H17{4ι

ε1{2
` S2A3{2H9ι` S2A2H7ι

¯

, (133)

M3 ď SA ¨O
´

Hι`N
1{4
4 H7{4B3{4ι3{4

¯

ď O

ˆ

SAH59{12ι

ε1{3
` SAHι

˙

(134)

M4 ď SA ¨O

ˆ

Hι` lnp
N5

ι
qH2Bι

˙

ď Õ
`

SAH5ι
˘

. (135)

Finally, together with (127), we conclude that

ÿ

tě1

clippb̌tpst, atq ´ b
˚
t pst, atq,

ε

16H
q

ď O

ˆ

SAH2ι

ε

˙

` Õ

ˆ

S3{2A3{2H17{4ι

ε1{2
`
SAH59{12ι

ε1{3
`
S5{4A5{4H3ι

ε1{4
` S2A2H9ι

˙

. (136)

D.3.5. PROOF OF LEMMA 24

Lemma 22 (restated). With probability 1´ pP
“

E2

‰

` pq, it holds that

ÿ

tě1

υt ď 64 logp
16N0H

2

ε
qN1.

By definition, we have that

ÿ

tě1

υt “
ÿ

tě1

ÿ

s

Pst,at,sclip

¨

˝

1

1´ γ

¨

˝

1

N̄tps, aq

N̄tps,aq
ÿ

i“1

λlipst,atqpsq

˛

‚,
ε

16H

˛

‚

ď H
ÿ

s

ÿ

tě1

Pst,at,sclip

¨

˝

¨

˝

1

N̄tps, aq

N̄tps,aq
ÿ

i“1

λlipst,atqpsq

˛

‚,
ε

8H2

˛

‚. (137)

Let T̃ ps, a, s1q be the visit count of ps, aq before the smallest time t such that λtps1q “ 0. Then we have that

1

N̄tps, aq

N̄tps,aq
ÿ

i“1

λlipst,atqpsq ď I
„

N̄tps, aq ď p1`
1

H
qT̃ ps, a, s1q



`
T̃ ps, a, s1q

N̄tps, aq
.

Noting that N̄tps, aq ď Ntps, aq ď p1`
1
H qN̄tps, aq, we obtain that

clip

¨

˝

¨

˝

1

N̄tps, aq

N̄tps,aq
ÿ

i“1

λlipst,atqpsq

˛

‚,
ε

8H2

˛

‚ď I
”

Ntps, aq ď 4T̃ ps, a, s1q
ı

` clipp
2T̃ ps, a, s1q

Ntps, aq
,
ε

8H2
q.
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Combining this with (137), with probability 1´ p it holds that

ÿ

tě1

υt ď H
ÿ

s

ÿ

tě1

Pst,at,s1I
”

Ntpst, atq ď 4T̃ pst, at, s
1q

ı

`H
ÿ

s1

ÿ

tě1

Pst,at,s1clipp
2T̃ pst, at, s

1q

Ntpst, atq
,
ε

8H2
q

ď 4H
ÿ

s,a,s1

Ps,a,s1 T̃ ps, a, s
1q ` 4H

ÿ

s,a,s1

Ps,a,s1 T̃ ps, a, s
1q logp

16T̃ ps, a, s1qH2

ε
q

ď 8 logp
16N0H

2

ε
q
ÿ

s,a,s1

Ps,a,s1 T̃ ps, a, s
1q

“ 8 logp
16N0H

2

ε
q
ÿ

s1

ÿ

tě1

Pst,at,s1λtps
1q

ď 32 logp
16N0H

2

ε
qp
ÿ

tě1

λtpst`1q (138)

ď 64 logp
16N0H

2

ε
qN1. (139)

The second last inequality holds with probability 1´ p by Lemma 11, and the last inequality is by the facts
ř

tě1 λtpstq ď
SN1 and

ř

tě1pλtpst`1 ´ λt`1pst`1qq ď S. The proof is completed.


