
Towards Certifying `∞ Robustness using Neural Networks with `∞-dist Neurons

A. Proof of Theorems
A.1. Proof of Theorem 4.1

To prove Theorem 4.1, we need the following key lemma:

Lemma A.1. For any 1-Lipschitz function f(x) (with re-
spect to `∞ norm) on a bounded domain K ∈ Rn, and any
ε > 0, there exists a finite number of functions fi(x) such
that for all x ∈ K

max
i
fi(x) ≤ f(x) ≤ max

i
fi(x) + ε,

where each fi(x) has the following form

fi(x) = min
1≤j≤n

{xj − w(i)
j , w

(i)
j − xj}+ bi.

Proof of Lemma A.1. Without loss of generality we may
assume K ∈ [0, 1]n. Consider the set S consisting of all
points ε

2 (N1, ..., Nn) where Nj are integers, we can write
S ∩ K = {w(1), ...,w(m)} since it’s a finite set. ∀w(i) ∈
S ∩K, we define the corresponding fi(x) as follows

fi(x) = min
1≤j≤n

{xj − w(i)
j , w

(i)
j − xj}+ f(w(i))

= −‖x−w(i)‖∞ + f(w(i))
(7)

On the one hand, we have f(x)−fi(x) = f(x)−f(w(i))+
‖x−w(i)‖∞ ≥ −‖x−w(i)‖∞+‖x−w(i)‖∞ = 0, there-
fore ∀x ∈ K we have f(x) ≥ fi(x), namely maxi fi(x) ≤
f(x) holds.

On the other hand, ∀x ∈ K there exists its ’neighbour’
w(j) ∈ S ∩ K such that ‖x − w(j)‖∞ ≤ ε

2 , therefore by
using the Lipschitz properties of both f(x) and fj(x), we
have that

f(x) ≤ f(w(j)) +
ε

2
= fj(w

(j)) +
ε

2
≤ fj(x) + ε ≤ max

i
fi(x) + ε

(8)

Combining the two inequalities concludes our proof.

Lemma A.1 “decomposes” any target 1-Lipschitz function
into simple “base functions”, which will serve as building
blocks in proving the main theorem. We are ready to prove
Theorem 4.1:

Proof of Theorem 4.1. By Lemma A.1, there exists a finite
number of functions fi(x) (i = 1, ...,m) such that ∀x ∈ K

max
i
fi(x) ≤ g̃(x) ≤ max

i
fi(x) + ε (9)

where each fi(x) has the form

fi(x) = min
1≤j≤n

{xj − w(i)
j , w

(i)
j − xj}+ g̃(w(i)) (10)

The high-level idea of the proof is very simple: among width
dinput + 2, we allocate dinput neurons each layer to keep
the information of x, one to calculate each fi(x) one after
another and the last neuron calculating the maximum of
fi(x) accumulated.

To simplify the proof, we would first introduce three general
basic maps which can be realized at a single unit, then
illustrate how to represent maxi fi(x) by combing these
basic maps.

Let’s assume for now that any input to any unit in the whole
network has its `∞-norm upper bounded by a large constant
C, we will come back later to determine this value and prove
its validity.

Proposition A.2. ∀j, k, p and constant w, c, the following
base functions are realizable at the kth unit in the lth hidden
layer:

1, the projection map:

u(x(l), θ(l,k)) = x
(l)
j + c (11)

2, the negation map:

u(x(l), θ(l,k)) = −x(l)j + c (12)

3, the maximum map:

u(x(l), θ(l,k)) = max{x(l)j + w, x(l)p }+ c

u(x(l), θ(l,k)) = max{−x(l)j + w, x(l)p }+ c
(13)

Proof of Proposition A.2. 1, the projection map: Setting
u(x(l), θ(l,k)) as follows

u(x(l), θ(l,k)) = ‖(x(l)1 , ..., x
(l)
j +2C, ..., x(l)n)‖∞−2C+ c

2, the negation map: Setting u(x(l), θ(l,k)) as follows

u(x(l), θ(l,k)) = ‖(x(l)1 , ..., x
(l)
j −2C, ..., x(l)n)‖∞−2C+ c

3, the maximum map: Setting u(x(l), θ(l,k)) as follows

u(x(l), θ(l,k))

=‖(x(l)1 , ..., x
(l)
j + w + 2C, ..., x(l)p + 2C, ..., x(l)n)‖∞

− 2C + c

u(x(l), θ(l,k))

=‖(x(l)1 , ..., x
(l)
j − w − 2C, ..., x(l)p + 2C, ..., x(l)n)‖∞

− 2C + c

We finish the proof of Proposition A.2.

Towards Certifying `∞ Robustness using Neural Networks with `∞-dist Neurons

With three basic maps in hand, we are prepared to construct
our network. Using proposition A.2, the first hidden layer
realizes u(x, θ(1,k)) = xk for k = 1, ..., dinput. The rest
two units can be arbitrary, we set both to be x1.

By proposition A.2, throughout the whole network, we can
set u(x(l), θ(l,k)) = xk for all l and k = 1, ..., n. Notice
that fi(x) can be rewritten as

fi(x) = −max{x1 − w(i)
1 ,max{w(i)

1 − x1,
max{..., w(i)

n − xn}...}}+ g̃(w(i))
(14)

Using the maximum map recurrently while keeping other
units unchanged with the projection map, we can uti-
lize the unit u(x(l), θ(l,dinput+1)) to realize one fi(x) at
a time. Again by the use of maximum map, the last unit
u(x(l), θ(l,dinput+2)) will recurrently calculate (initializing
with max{f1(x)} = f1(x))

max
i
fi(x) = max{fm(x),max{...,max{f1(x)}...}}

(15)

using only finite depth, say L, then the network outputs
g(x) = u(x(L), θ(L,1)) = u(x(L−1), θ(L−1,dinput+2)) =
maxi fi(x) as desired. We are only left with deciding a
valid value for C. Because K is bounded and g̃(x) is con-
tinuous, there exists constants C1, C2 such that ∀x ∈ K,
‖x‖∞ ≤ C1 and |g̃(x)| ≤ C2, it’s easy to verify that
C = 2C1 + C2 is valid.

A.2. Proof of Theorem 4.2

We prove the theorem in two steps. One step is to provide a
margin bound to control the gap between standard training
error and standard test error using Rademacher complexity.
Next step is to bound the gap between test error and robust
test error. We will first give a quick revisit on Rademacher
complexity and its properties, then provide two lemmas
corresponding to the two steps for the proof.

Rademacher Complexity Given a sample Xn =
{x1, ...,xn} ∈ Kn, and a real-valued function class F on
K, the Rademacher complexity of F is defined as

Rn(F) = EXn

(
1

n
Eσ

[
sup
f∈F

n∑
i=1

σif(xi)

])

where σi are drawn from the Rademacher distribution inde-
pendently, i.e. P(σi = 1) = P(σi = −1) = 1

2 . It’s worth
noting that for any constant function r, Rn(F) = Rn(F⊕r)
where F⊕ r = {f + r|f ∈ F}.

Rademacher complexity is directly related to generalization
ability, as shown in Lemma A.3:

Lemma A.3. (Theorem 11 in Koltchinskii et al. (2002)) Let
F be a real-valued hypothesis class. For all t > 0,

P
(
∃g ∈ F : E(x,y)∼D

[
Iyg(x)≤0

]
> Φ(g)

)
≤ 2e−2t

2

.

where

Φ(g) = inf
δ∈(0,1]

[
1

n

n∑
i=1

Iyig(xi)≤δ +
48

δ
Rn(F)+

(
log log2(2

δ)

n

) 1
2

+
t√
n
.

Lemma A.3 can be generalized to the following lemma:
Lemma A.4. Let F be a real-valued hypothesis class,
define the r-margin test error βr(g) as: βr(g) =
E(x,y)∼D

[
Iyg(x)≤r

]
, then for any t > 0,

P (∃g ∈ F : βr(g) > Φr(g)) ≤ 2e−2t
2

.

where

Φr(g) = inf
δ∈(0,1]

[
1

n

n∑
i=1

Iyig(xi)≤δ+r +
48

δ
Rn(F)+

(
log log2(2

δ)

n

) 1
2

+
t√
n
.

Proof of Lemma A.4. To further generalize Lemma A.3 to
βr(g) with r > 0, we use the fact that Rademacher com-
plexity remain unchanged if the same constant r is added to
all functions in F. Lemma A.4 is a direct consequence by
replacing mf by mf − r at the end of the proof of Theorem
11 in (Koltchinskii et al., 2002), where it plugs mf into
Theorem 2 in (Koltchinskii et al., 2002).

Also, it’s well known (using Massart’s Lemma) that
Rademacher complexity can be bounded by VC dimension:

Rn(F) ≤

√
2V Cdim(F) log en

V Cdim(F)

n
(16)

We next bound the the gap between test error and robust test
error. We have
Lemma A.5. Assume function g is 1-Lipschitz (with respect
to `∞-norm. The r-robust test error γr(g) is no larger than
the r-margin test error βr(g), i.e., γr(g) ≤ βr(g).

Proof of Lemma A.5. Since g(x) is 1-Lipschitz, then
yg(x) > r implies that inf‖x′−x‖∞≤r yg(x′) > 0, there-
fore

ED
[
Iyg(x)>r

]
≤ ED

[
inf

‖x′−x‖∞≤r
Iyg(x′)>0

]
,

which implies 1− βr ≤ 1− γr.

Towards Certifying `∞ Robustness using Neural Networks with `∞-dist Neurons

Now we are ready to prove Theorem 4.2. Based on Lemma
A.4, Lemma A.5 and Eqn. 16, it suffices to bound the VC
dimension of an `∞-dist net. We will bound the VC dimen-
sion of an `∞-dist net by reducing it to a fully-connected
ReLU network. We first introduce the VC bound for fully-
connected neural networks with ReLU activation borrowed
from (Bartlett et al., 2019):

Lemma A.6. (Theorem 6 in (Bartlett et al., 2019)) Consider
a fully-connected ReLU network architecture F with input
dimension d, width w ≥ d and depth (number of hidden
layers) L, then its VC dimension satisfies:

V Cdim(F) = Õ(L2w2) (17)

The following lemma shows how to calculate `∞-distance
using a fully-connected ReLU network architecture.

Lemma A.7. ∀w ∈ Rd, there exists a fully-connected
ReLU network h with width O(d) and depth O(log d) such
that h(x) = ‖x−w‖∞.

Proof of Lemma A.7. The proof is by construction. Rewrite
‖x−w‖∞ as max{x1−w1, w1−x1, ..., xd−wd, wd−xd}
which is a maximum of 2d items. Notice that max{x, y} =
ReLU(x− y) + ReLU(y)−ReLU(−y), therefore we can
use 3d neurons in the first hidden layer so that the input
to the second hidden layer are max{xi − wi, wi − xi},
in all d items. Repeating this procedure which cuts the
number of items within maximum by half, within O(log d)
hidden layers this network finally outputs ‖x − w‖∞ as
desired.

The VC bound of `∞-dist Net is formalized by the following
lemma:

Lemma A.8. Consider an `∞-dist net architecture F with
input dimension d, width w ≥ d and depth (number of
hidden layers) L, then its VC dimension satisfies:

V Cdim(F) = Õ(L2w4) (18)

Proof of Lemma A.8. By Lemma A.7, each neuron in the
`∞-dist net can be replaced by a fully-connected ReLU sub-
network with width O(w) and depth O(logw). Therefore a
fully-connected ReLU network architecture G with width
O(w2) and depthO(L logw) can realize any function repre-
sented by the `∞-dist net when parameters vary. Remember
that VC dimension is monotone under the ordering of set
inclusion, we conclude that such `∞-dist Net architecture
F has VC dimension no more than that of G which equals
Õ(L2w4) by lemma A.6.

Finally, Theorem 4.2 is a direct consequence by combing
Lemmas A.4, A.5 and A.8.

Remark A.9. Though there exist generalization bounds for
general Lipschitz model class (von Luxburg & Bousquet,
2004), the dependence on n scales as n−1/d which suffers
from the curse of dimensionality (Neyshabur et al., 2017).
Theorem 4.2 is dimension-free instead.

B. Interval Bound Propagation
We now give a brief description of IBP (Mirman et al., 2018;
Gowal et al., 2018), a simple convex relaxation method to
calculate the certified radius for general neural networks.
The basic idea of IBP is to compute the lower bound and
upper bound for each neuron layer by layer when the input
x is perturbed.

Input layer. Let the perturbation set be an `∞ ball with
radius ε. Then for the input layer, calculating the bound is
trivial: when x is perturbed, the value in the i-th dimension
is bounded by the interval [xi − ε, xi + ε].

Bound propagation. Assume the interval bound of layer
l has already been obtained. We denote the lower bound
and upper bound of layer l be x(l) and x(l) respectively. We
mainly deal with two cases:

• x(l) is followed by a linear transformation, either a lin-
ear layer or a convolution layer. Denote x(l+1) =
W(l+1)x(l) + b(l+1) be the linear transformation.
Through some straightforward calculations, we have

x(l+1) = µ(l+1) − r(l+1)

x(l+1) = µ(l+1) + r(l+1)
(19)

where

µ(l+1) =
1

2
W(l+1)(x(l) + x(l))

r(l+1) =
1

2

∣∣∣W(l+1)
∣∣∣ (x(l) − x(l))

(20)

Here | · | is the element-wise absolute value operator.

• x(l) is followed by a monotonic element-wise ac-
tivation function, e.g. ReLU or sigmoid. Denote
x(l+1) = σ(x(l)). Then it is straightforward to see
that x(l+1) = σ(x(l)) and x(l+1) = σ(x(l)).

Using the above recurrence formulas, we can calculate the
interval bound of all layers x(l).

Margin calculation. Finally we need to calculate the mar-
gin vector m, the jth element of which is defined as the
difference between neuron x(L)j and x(L)y where y is the

target class number, i.e. mj = x
(L)
j − x

(L)
y . Note that

my = 0. It directly follows that if all elements of m is

Towards Certifying `∞ Robustness using Neural Networks with `∞-dist Neurons

negative (except for my = 0) for any perturbed input, then
we can guarantee robustness for data x. Therefore we need
to get an upper bound ofm, denoted asm.

One simple way to calculatem is by using interval bound of
the final layer to obtainmj = x

(L)
j −x

(L)
y . However, we can

get a tighter bound if the final layer is a linear transformation,
which is typically the case in applications. To derive a tighter
bound, we first write the definition ofm into a matrix form:

m = x(L) − 1eTy x
(L) = (I− 1eTy)x(L)

where ey is a vector with all-zero elements except for the
yth element being one, 1 is the all-one vector, and I is the
identity matrix. Note that m is a linear transformation of
x(L), therefore we can merge this transformation with final
layer and obtain

m = (I− 1eTy)(W(L)x(L−1) + b(L))

= (W(L) − 1eTyW
(L))x(L−1) + (b(L) − 1eTy b

(L))

= W̃(L)x(L−1) + b̃(L)

(21)
Using the same bounding technique in Eqn. 19,20, we can
calculatem.

Loss Design. Finally, we can optimize a loss function
based on m. We adopt the same loss function in Gowal
et al. (2018); Zhang et al. (2020b) who use the combination
of the natural loss and the worst perturbation loss. The loss
function can be written as

l(g, T) =
1

n

n∑
i=1

κlCE(g(xi), yi) + (1− κ)lCE(mi, yi)

(22)

where lCE denotes the cross-entropy loss,mi is defined in
Eqn. 21 which is calculated using convex relaxation, and κ
controls the balance between standard accuracy and robust
accuracy.

As we can see, the calculation ofm is differentiable with re-
spect to network parameters. Therefore, any gradient-based
optimizer can be used to optimize these parameters. The
whole process of IBP is computationally efficient: it costs
roughly two times for certification compared to normal in-
ference. However, the bound provided by IBP is looser than
other more sophisticated methods based on linear relaxation.

C. Comparing `∞-dist Net with AdderNet
Recently, Chen et al. (2020) presents a novel form of
networks called AdderNet, in which all convolutions are
replaced with merely addition operations (calculating `1-
norm). Though the two networks seem to be similar at first
glance, they are different indeed.

The motivation of the two networks is different. The motiva-
tion for AdderNet is to replace multiplication with additions
to reduce the computational cost by using `1-norm, while
our purpose is to design robust neural networks that resist
adversarial attacks by using `∞-norm.

The detailed implementations of the two networks are totally
different. As shown in (Chen et al., 2020), using standard
Batch Normalization is crucial to train the AdderNets suc-
cessfully. However, `∞-dist Nets cannot adapt the standard
batch normalization due to that it dramatically changes the
Lipschitz constant of the network and hurt the robustness of
the model. Furthermore, In AdderNet, the authors modified
the back-propagation process and used a layer-wise adap-
tive learning rate to overcome optimization difficulties for
training `1-norm neurons. We provide a different training
strategy using mean shift normalization, smoothed approx-
imated gradients, identity-map initialization, and `p-norm
weight decay, specifically for dealing with `∞-norm.

Finally, the difference above leads to trained models with
different properties. By using standard Batch Normaliza-
tion, the AdderNet can be trained easily but is not robust
even with respect to `1-norm perturbation. In fact, even
without Batch Normalization, we still cannot provide robust
guarantee for AdderNet. Remark 3.5 has shown that the
Lipschitz property holds specifically for `∞-dist neurons
rather than other `p-dist neurons.

D. Experimental Details
We use a single NVIDIA RTX-3090 GPU to run all these ex-
periments. Each result of `∞-dist net in Table 1 is reported
using the medien of 8 runs with the same hyper-parameters.
Details of network architectures are provided in Table 5.
Details of hyper-parameters are provided in Table 6. For
`∞-dist Net, we use multi-class hinge loss with a threshold
hyper-parameter t which depends on the robustness level
ε. For `∞-dist Net+MLP, we use IBP loss with two hyper-
parameters κ and εtrain as in Gowal et al. (2018); Zhang et al.
(2020b). We use a linear warmup over εtrain in the first e1
epoch while keeping p = pstart fixed, increase p from pstart
to pend in the next e2 epochs while keeping εtrain fixed, and
fix p =∞ in the last e3 epochs. Different from Gowal et al.
(2018), κ is kept fixed throughout training since we do not
find any training instability with the fixed κ.

For other methods, the results are typically borrowed from
the original paper. For IBP and CROWN-IBP results on
Fashion-MNIST dataset, we use the official github repo
of CROWN-IBP and perform a grid search over hyper-
parameters κ and set εtrain = 1.1εtest = 0.11. We use the
largest model in their papers (denoted as DM-large) and
use the learning rate and epoch schedule the same as in the
MNIST dataset. We select the hyper-parameter κ with the

Towards Certifying `∞ Robustness using Neural Networks with `∞-dist Neurons

best certified accuracy.

In Table 4, the baseline results are run using the correspond-
ing official github repos. For example, we measure the speed
for IBP and CROWN-IBP using the github repo of Zhang
et al. (2020b), and measure the speed for CROWN-IBP with
loss fusion using the github repo of Xu et al. (2020a).

E. Experiments for Identity-map
Initialization

We conduct experiments to see the the problem of Gaus-
sian initialization for training deep models. The results are
shown in Table 7, where we train `∞-dist Nets with differ-
ent number of layers on CIFAR-10 dataset, using the same
hyper-parameters provided in Table 6. It is clear from the ta-
ble that the training accuracy begins to drop when the model
goes deeper. After applying identity-map initialization, the
training accuracy does not drop for deep models.

F. Preliminary Results for Convolutional
`∞-dist Nets

`∞-dist neuron can be easily used in convolutional neural
networks, and the Lipschitz property still holds. We also
conduct experiments using convolutional `∞-dist net on the
CIFAR-10 dataset. We train a a eight-layer convolutional
`∞-dist Net+MLP. The detailed architecture is given in
Table 8. The training configurations and hyper-parameters
are exactly the same as training fully-connected `∞-dist
nets. Results are shown in Table 9. From Table 9, we
can see that convolutional `∞-dist nets still reach good
certified accuracy and outperforms all existing methods on
the CIFAR-10 dataset.

Towards Certifying `∞ Robustness using Neural Networks with `∞-dist Neurons

Table 5. Details of network architectures. Here “Norm” denotes mean shift normalization in Section 5.1.
`∞-dist Net (MNIST) `∞-dist Net+MLP (MNIST) `∞-dist Net (CIFAR-10) `∞-dist Net+MLP (CIFAR-10)

Layer1 `∞-dist(5120)+Norm `∞-dist(5120)+Norm `∞-dist(5120)+Norm `∞-dist(5120)+Norm
Layer2 `∞-dist(5120)+Norm `∞-dist(5120)+Norm `∞-dist(5120)+Norm `∞-dist(5120)+Norm
Layer3 `∞-dist(5120)+Norm `∞-dist(5120)+Norm `∞-dist(5120)+Norm `∞-dist(5120)+Norm
Layer4 `∞-dist(5120)+Norm `∞-dist(5120)+Norm `∞-dist(5120)+Norm `∞-dist(5120)+Norm
Layer5 `∞-dist(10) FC(512)+Tanh `∞-dist(5120)+Norm `∞-dist(5120)+Norm
Layer6 FC(10) `∞-dist(10) FC(512)+Tanh
Layer7 FC(10)

Table 6. Hyper-parameters to produce results in Table 1.
Dataset MNIST FashionMNIST CIFAR-10 TinyImageNet

Architecture `∞ Net `∞ Net+MLP `∞ Net `∞ Net+MLP `∞ Net `∞ Net+MLP `∞ Net+MLP
Optimizer Adam(β1 = 0.9, β2 = 0.99, ε = 10−10)
Batch size 512

Learning rate 0.02 (0.04 for TinyImageNet)
Weight decay 0.005

pstart 8
pend 1000
εtrain - 0.35 - 0.11 - 8.8/255 0.005
κ - 0.5 - 0.5 - 0 0
t 0.9 - 0.45 - 80/255 - -
e1 50 50 50 50 100 100 100
e2 300 300 300 300 650 650 350
e3 50 50 50 50 50 50 50

Total epochs 400 400 400 400 800 800 500

Table 7. Performance of `∞-dist Net trained using different initialization methods on CIFAR-10 dataset.

#Layers Gaussian Initialization Identity Map Initialization
Train Test Train Test

5 63.01 55.76 65.93 56.56
6 63.46 55.85 65.51 56.80
7 63.82 56.77 66.58 57.06
8 63.46 56.72 67.11 56.64
9 61.57 55.94 67.52 57.01
10 58.72 55.04 68.84 57.18

Table 8. Details of convolutional network architectures. Here “Norm” denotes mean shift normalization in Section 5.1.
Convolutional `∞-dist Net+MLP (CIFAR-10)

Layer1 `∞-dist-conv(3, 128, kernel=3)+Norm
Layer2 `∞-dist-conv(128, 128, kernel=3)+Norm
Layer3 `∞-dist-conv(128, 256, kernel=3, stride=2)+Norm
Layer4 `∞-dist-conv(256, 256, kernel=3)+Norm
Layer5 `∞-dist-conv(256, 256, kernel=3)+Norm
Layer6 `∞-dist(512)+Norm
Layer7 FC(512)+Tanh
Layer8 FC(10)

Table 9. Performance of convolutional `∞-dist nets and existing methods.
Dataset Method FLOPs Test Robust Certified

CIFAR-10
(ε = 8/255)

PVT 2.4M 48.64 32.72 26.67
DiffAI 96.3M 40.2 - 23.2
COLT 6.9M 51.7 - 27.5
IBP 151M 50.99 31.27 29.19

CROWN-IBP 151M 45.98 34.58 33.06
Conv `∞-dist Net+MLP 566M 49.17 37.23 34.30

