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Appendices
A. Additional Related Work
RL in standard MDPs. Learning MDPs with stochastic rewards and transitions is relatively well-studied for the tabular
case (that is, a finite number of states and actions). For example, in the episodic setting, the UCRL2 algorithm (Auer et al.,
2009) achieves O(

√
H4S2AT ) regret, where H is the episode length, S is the state space size, A is the action space size,

and T is the total number of steps. Later the UCBVI algorithm (Azar et al., 2017; Dann et al., 2017) achieves the optimal
O(
√
H2SAT ) regret matching the lower-bound (Osband & Van Roy, 2016; Dann & Brunskill, 2015). Recent work extends

the analysis to various linear setting (Jin et al., 2020b; Yang & Wang, 2019b;a; Zanette et al., 2020; Ayoub et al., 2020; Zhou
et al., 2020; Cai et al., 2019; Du et al., 2019; Kakade et al., 2020) with known linear feature. For unknown feature, (Agarwal
et al., 2020b) proposes a sample efficient algorithm that explicitly learns feature representation under the assumption that
the transition matrix is low rank. Beyond the linear settings, there are works assuming the function class has low Eluder
dimension which so far is known to be small only for linear functions and generalized linear models (Osband & Van Roy,
2014). For more general function approximation, (Jiang et al., 2017; Sun et al., 2019) showed that polynomial sample
complexity is achievable as long as the MDP and the given function class together induce low Bellman rank and Witness
rank, which include almost all prior models such as tabular MDP, linear MDPs (Yang & Wang, 2019b; Jin et al., 2020b),
Kernelized nonlinear regulators (Kakade et al., 2020), low rank MDP (Agarwal et al., 2020b), and Bellman completion
under linear functions (Zanette et al., 2020).

B. Proof for lower bound result
Theorem B.1 (Theorem 3.1). For any algorithm, there exists an MDP such that the algorithm fails to find an

(
ε

2(1−γ)

)
-

optimal policy under the ε-contamination model with a probability of at least 1/4.

Proof of Theorem B.1. Consider two MDPs M1,M2, both with 3 states and 2 actions, defined as

P1(s2|s1, a1) =
1− ε

2
, P1(s3|s1, a1) =

1 + ε

2
, P1(s3|s1, a2) = P1(s3|s1, a2) =

1

2
(8)

P2(s2|s1, a1) =
1 + ε

2
, P2(s3|s1, a1) =

1− ε
2

, P2(s3|s1, a2) = P2(s3|s1, a2) =
1

2
(9)

and for both MDPs s2, s3 are absorbing states with constant reward 1 and 0, respectively. So for M1, the optimal policy is
π∗1(s1) = a2, and for M2, the optimal policy is π∗2(s1) = a1. In both cases, choosing the alternative action in s1 will incur a
suboptimality gap of ε

2(1−γ) .

Let N(·) be the probability function of Bernoulli distribution on {s2, s3}: N(x) =

{
1 if x = s2

0 if x = s3

. First of all, notice

that an 2ε-oblivious adversary can make the two MDPs M1,M2 indistinguishable by changing P1(· | s1, a1) to be
(1 − 2ε

1+ε )P1(· | s1, a1) + 2ε
1+εN(·), which is exactly P2(· | s1, a1). Note that 2ε

1+ε ≤ 2ε and thus can be achieved by a
2ε-oblivious adversary.

When the two MDPs are indistinguishable, any rollout has the same probability under both MDP, and thus conditioned on
any roll-out, the learner can at best obtain an ε

2(1−γ) -optimal policy with probability 1/2 on both MDP.

What remains to be shown is that with high probability, the ε-contamination adversary can simulate the oblivious adversary.

Let Xi, Yi be Bernoulli random variables s.t. Xi =

{
s2 U ≤ 1−ε

2

s3 o.w.
, Yi =

{
s2 U ≤ 1+ε

2

s3 o.w.
, where U is picked uniformly

random in [0, 1]. Then (Xi, Yi) is a coupling with law: P ((Xi, Yi) = (s2, s2)) = 1−ε
2 , P ((Xi, Yi) = (s2, s3)) = 0,

P ((Xi, Yi) = (s3, s2)) = ε, P ((Xi, Yi) = (s3, s3)) = 1−ε
2 , Xi and Yi can be thought as the outcome of P1(· | s1, a1),

P2(· | s1, a1) respectively. The ε-contamination adversary can simulate the oblivious adversary by changing Xi to Yi when
X1 6= Yi, which has probability ε. This is possible when there are at most ε fraction of index i s.t. Xi 6= Yi. Suppose there
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are T episodes, then

P

(
T∑
i=1

1{a1 is taken at s1}
1{Xi 6=Yi} ≥ εT

)
≤ P (

T∑
i=1

1{Xi 6=Yi} ≥ Tε) ≤
1

2
(10)

because the median of Binomial(n, p) is at most dnpe. Therefore, the probability that the adaptive adversary can simulate
the oblivious adversary throughout T episodes is at least 1/2. Assuming that when the adversary fails to simulate, the
learner automatically succeed in finding the optimal policy, then we’ve established that the learner will still fail to find an(

ε
2(1−γ)

)
-optimal policy with probability 1/4 on both MDPs.

C. Property of Q̂(s, a) sampled from Algorithm 1

To prepare for the analysis that follows, we first show that the Q̂(s, a) sampled from Algorithm 1 is unbiased and has
bounded variance.

Lemma C.1. E
[
Q̂π(s, a)

]
= Qπ(s, a), Var(Q̂π(s, a)) ≤ γ

(1−γ)2 + σ2

1−γ . The bound for variance is tight.

Proof of Lemma C.1. In the following, we treat (s0, a0) as deterministic.

E
[
Q̂π(s0, a0)

]
=

∞∑
k=0

E

[
T∑
t=0

r(st, at)

∣∣∣∣∣T = k

]
P (T = k) (by law of total expectation)

=

∞∑
k=0

E

[
k∑
t=0

r(st, at)

]
(1− γ)γk (each r(s, a) is independent of T )

=(1− γ)

∞∑
k=0

γk

1− γ
E [r(ak, sk)]

=Qπ(s0, a0)

Now, we upperbound the variance. Let r̄(s, a) := r(s, a) − e(s, a) be the expected reward over the zero-mean noise.
Because the zero-mean noise is independent of state transition, we observe that:

E [r(s, a)] =E [r̄(s, a)]

E
[
r(s, a)2

]
=E

[
(r̄(s, a) + e(s, a))2

]
= E

[
r̄(s, a)2

]
+ E

[
e(s, a)2

]
≤ E

[
r̄(s, a)2

]
+ σ2

E [r(si, ai)r(sj , aj)] =E [(r̄(si, ai) + e(si, ai))(r̄(sj , aj) + e(sj , aj))] = E [r̄(si, ai)r̄(sj , aj)] ,

for i 6= j.

Given the above observations, we can bound the variance as follows

Var(Q̂π(s0, a0))

≤ σ2 + E
[
(Q̂π(s0, a0)− r̄(s0, a0))2

]
−
(
E
[
Q̂π(s0, a0)

]
− r̄(s0, a0)

)2

(separate the variance of r(s0, a0))

= σ2 +

∞∑
k=1

(1− γ)γkE

( k∑
t=1

r(st, at)

)2
− (E [Q̂π(s0, a0)

]
− r̄(s0, a0)

)2

= σ2 +

∞∑
k=1

(1− γ)γk

 k∑
t=1

E
[
r(st, at)

2
]

+ 2

k∑
i=1

k∑
j=i+1

E [r(si, ai)r(sj , aj)]

− (E [Q̂π(s0, a0)
]
− r̄(s0, a0)

)2

= σ2 +

∞∑
t=1

γtE
[
r(st, at)

2
]

+ 2

∞∑
i=1

∞∑
j=i+1

γjE [r(si, ai)r(sj , aj)]−
(
E
[
Q̂π(s0, a0)

]
− r̄(s0, a0)

)2
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≤ σ2

1− γ
+

∞∑
t=1

γtE
[
r̄(st, at)

2
]

+ 2

∞∑
i=1

∞∑
j=i+1

γjE [r̄(si, ai)r̄(sj , aj)]−
(
E
[
Q̂π(s0, a0)

]
− r̄(s0, a0)

)2

≤ σ2

1− γ
+

∞∑
t=1

γtE [r̄(st, at)] + 2

∞∑
i=1

∞∑
j=i+1

γjE [r̄(si, ai)]−
(
E
[
Q̂π(s0, a0)

]
− r̄(s0, a0)

)2

=
σ2

1− γ
+

∞∑
t=1

γtE [r̄(st, at)] + 2

∞∑
i=1

γi+1

1− γ
E [r̄(si, ai)]−

(
E
[
Q̂π(s0, a0)

]
− r̄(s0, a0)

)2

=
σ2

1− γ
+

1 + γ

1− γ

∞∑
t=1

γtE [r̄(st, at)]−

( ∞∑
t=1

γtE [r̄(st, at)]

)2

= −

( ∞∑
t=1

γtE [r̄(st, at)]−
1 + γ

2(1− γ)

)2

+
(1 + γ)2

4(1− γ)2
+

σ2

1− γ

≤ −

( ∞∑
t=1

γt − 1 + γ

2(1− γ)

)2

+
(1 + γ)2

4(1− γ)2
+

σ2

1− γ
=

γ

(1− γ)2
+

σ2

1− γ

The last line is because:
∞∑
t=1

γtE [r̄(st, at)] ≤
∞∑
t=1

γt =
γ

1− γ
≤ 1 + γ

2(1− γ)
.

The equality can be reached by the following reward setting: let P (1 = r̄(s1, a1) = · · · = r̄(st, at) = · · · ) = 1 and
therefore is tight.

D. Proofs for Section 4.
Lemma D.1 (Lemma 4.2). Suppose the adversarial rewards are bounded in [0, 1], and in a particular iteration t, the
adversary contaminates ε(t) fraction of the episodes, then given M episodes, it is guaranteed that with probability at least
1− δ,

Es,a∼d(t)
[(
Qπ

(t)

(s, a)− φ(s, a)>w(t)
)2
]

(11)

≤ 4
(
W 2 +WH

)(
ε(t) +

√
8

M
log

4d

δ

)
.

where H = (log δ − logM)/ log γ is the effective horizon.

Proof of Lemma D.1. First of all, observe that since the adversarial reward is bounded in [0, 1], with probability 1− δ, the
Q̂(s, a) estimates collected in the adversarial episodes are bounded by H := (log δ − logM)/ log γ.

Conditioned on the above event, consider three loss functions f̂ , f† and f , representing the loss w.r.t. clean data, corrupted
data and underlying distribution respectively, i.e.

f̂ =
1

M

M∑
i=1

(yi − x>i w)2 (12)

f† =
1

M

[∑
i∈C

(y†i − x
†>
i w)2 +

∑
i/∈C

(yi − x>i w)2

]
(13)

f = E(yi − x>i w)2 (14)

Then, for all w, we can make the following decomposition

||∇wf† −∇wf || ≤ ||∇wf† −∇wf̂ ||+ ||∇wf̂ −∇wf ||. (15)



Robust Policy Gradient against Strong Data Corruption

We next bound each of the two terms in equation 15. For the first term,

‖∇wf† −∇wf̂‖ (16)

=

∥∥∥∥∥ 2

M

∑
i∈C

[
(x†ix

†>
i − xix

>
i )w + (y†ix

†
i − yixi)

]∥∥∥∥∥ (17)

≤ 4 (W +H) ε(t) (18)

where the last step uses the fact that |C|/M ≤ ε(t), and ‖x‖ ≤ 1, |y†| ≤ H and ‖w‖ ≤W . For the second term

||∇wf̂ −∇wf || (19)

≤ 2

∥∥∥∥∥
(
E[xx>]− 1

M

M∑
i=1

xix
>
i

)
w −

(
E[yx]− 1

M

M∑
i=1

yixi

)∥∥∥∥∥ (20)

≤ 2

(
2

3M
log

4d

δ
+

√
2

M
log

4d

δ

)
W + 2

√
2

M
log

4d

δ
· 2H (21)

≤ 4

√
8

M
log

4d

δ
(W +H) , for M ≥ 2 log

4d

δ
. (22)

where in step (21) we apply Matrix Bernstein inequality (Tropp, 2015) on the first term and vector Hoeffding’s inequality
(Jin et al., 2019) on the second term. The constant in Corollary 7 of (Jin et al., 2019) is instantiated to be c = 1, because
boundedness means we always have condition 2 in Lemma 2 of (Jin et al., 2019). This condition is all we need throughout
the proof for the vector Hoeffding.

Now, let M be sufficiently large, and instantiate w to be wt, i.e. the constrained linear regression solution w.r.t f†, then our
result above implies that for any vector v such that ||w + v|| ≤W , we have∇wf†(wt)>v/||v|| ≥ 0, and thus

∇wf(wt)>v/||v|| ≥ −4 (W +H)

(
ε(t) +

√
8

M
log

4d

δ

)
(23)

which by Lemma B.8 of (Diakonikolas et al., 2019) implies that

ε
(t)
stat ≤ 4

(
W 2 +HW

)(
ε(t) +

√
8

M
log

4d

δ

)
, w.p. 1− 2δ. (24)

Theorem D.1 (Theorem 4.1). Under assumptions 3.1 (linear Q function) and 3.2 (reset distribution with small κ), given a
desired optimality gap α, there exists a set of hyperparameters agnostic to the contamination level ε, such that Algorithm
2 guarantees with a poly(1/α, 1/(1 − γ), |A|,W, σ, κ) sample complexity that under ε-contamination with adversarial
rewards bounded in [0, 1], we have

E
[
V ∗(µ0)− V π̂(µ0)

]
≤ Õ

(
max

[
α,W

√
|A|κε

(1− γ)3

])

where π̂ is the uniform mixture of π(1) through π(T ).

Proof of Theorem D.1. First note that εstat = Es,a∼d(t) [
(
φ(s, a)>(w(t) − w∗)

)2
] ≤ 4W 2, because ‖φ(s, a)‖ ≤ 1 and

‖w(t)‖, ‖w∗‖ ≤W . As a result, the high probability bound in Lemma 4.2 can be ready translate into an expected bound:

E
[
Es,a∼d(t)

[(
Qπ

(t)

(s, a)− φ(s, a)>w(t)
)2
]]

(25)

≤ 4
(
W 2 +HW

)(
ε(t) +

√
8

M
log

4d

δ

)
+ 8δW 2 (26)
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where δ becomes a free parameter. Plugging this into Lemma 4.1, we get

E

[
1

T

T∑
t=1

{V ∗(µ0)− V (t)(µ0)}

]

≤ W

1− γ

√
2 log |A|

T
+

1

T

T∑
t=1

√
4|A|κε(t)

stat

(1− γ)3

≤ W

1− γ

√
2 log |A|

T
+

1

T

T∑
t=1

√√√√√16|A|κ
(

(W 2 +HW )

(
ε(t) +

√
8
M log 4d

δ

)
+ 2δW 2

)
(1− γ)3

≤ W

1− γ

√
2 log |A|

T
+

1

T

T∑
t=1

√√√√√16|A|κ
(

(W 2 +HW )
√

8
M log 4d

δ + 2δW 2

)
(1− γ)3

+
1

T

T∑
t=1

√
16|A|κ (W 2 +HW ) ε(t)

(1− γ)3

≤ W

1− γ

√
2 log |A|

T
+

√√√√√16|A|κ
(

(W 2 +HW )
√

8
M log 4d

δ + 2δW 2

)
(1− γ)3

+

√
16|A|κ (W 2 +HW ) ε

(1− γ)3

where the last step is by Cauchy Schwarz and the fact that the attacker only has ε budget to distribute, which implies that∑T
t=1 ε

(t) = Tε. Setting

T =
2W 2 log |A|
α2(1− γ)2

(27)

δ =
α2(1− γ)3

32W 2|A|κ
(28)

M =
512|A|2W 2(W +H)2κ2

α4(1− γ)6
log

4d

δ
, (29)

we get

E

[
1

T

T∑
t=1

{V ∗(µ0)− V (t)(µ0)}

]
≤ 3α+

√
16|A|κ (W 2 +HW ) ε

(1− γ)3
. (30)

with sample complexity

TM =
1024|A|2 log |A|W 4(W +H)2κ2

α6(1− γ)8
log

128W 2|A|κd
α2(1− γ)3

. (31)

E. A modified analysis for SEVER
In this section, we will derive an expected error bound for SEVER (Diakonikolas et al., 2019) when applied to a linear
regression problem. The high level idea is to use the results of (Diakonikolas et al., 2020) to show the existence of a stable
set and change the probabilistic argument in (Diakonikolas et al., 2019) to an expectation argument. We note that the original
result in (Diakonikolas et al., 2019) works only with probability 9/10, and there is no direct way of translating it into either
a high-probability argument or an expectation argument.

In the following, we consider a robust linear regression problem. We observe pairs (Xi, Yi) ∈ Rd × R for i ∈ [n], where
Xi’s are drawn i.i.d. from a distribution Dx and Yi = w∗>Xi + ei for some unknown w∗ ∈ Rd. ei’s are i.i.d, noise from
some distribution De|x. Note that here ei and Xi may not be independent. We let Dxy be the joint distribution of (X,Y ).
Let fi(w) = (Yi −w>Xi)

2. Given a multiset of observations {(Xi, Yi)}ni=1, our goal is to minimize the objective function

f̄(w) = E(X,Y )∼Dxy [(Y − w>X)2] (32)
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on a convex feasible set H. Let r := maxw∈H ‖w‖ be the `2-radius of H. In the following, we use ‖ · ‖ to denote the
spectral norm of a matrix and the 2-norm of a vector. We use Cov to denote the covariance matrix of a random vector:
Cov[X] = E

[
(X − EX)(X − EX)>

]
. When S is a set, we use ES and CovS to denote the expectation and covariance

over the empirical distribution on S. We allow for an ε-fraction of the observations to be arbitrary outliers. The ε-corruption
model is defined in more detail in the Appendix A of (Diakonikolas et al., 2019).

Due to our application, we make assumptions on the linear regression model that is slight different from Assumption E.1
in (Diakonikolas et al., 2019):

Assumption E.1. Given the model for linear regression described above, assume the following conditions for De|x and Dx:

• E [e|X] = 0;

• E
[
e2
∣∣X] ≤ ξ;

• EX∼Dx [XX>] � s2I for some s > 0;

• There is a constant C > 0, such that for all unit vectors v, EX∼Dx [〈v,X〉4] ≤ Cs4.

In (Diakonikolas et al., 2019), the noise term e and X are independent. We weaken the assumption on e and bound its first
and second moments conditional on X .

E.1. Stability with subgaussian rate

We first note that the gradient of fi, ∇fi(w) has bounded covariance matrix. We will show this by following the proof of
Lemma E.3 in (Diakonikolas et al., 2019), but make minor changes as we do not assume e and X are independent:

Lemma E.1 (A variant of Lemma E.3 in (Diakonikolas et al., 2019)). SupposeDxy satisfies the conditions of Assumption E.1.
Then for all unit vectors v ∈ Rd, we have

v>Cov(Xi,Yi)∼Dxy [∇fi(w)]v ≤ 4s2ξ + 4Cs4‖w∗ − w‖2. (33)

Proof of Lemma E.1. We first note that fi(w) = (Yi − w>Xi)
2 and ∇fi(w) = −2((w∗ − w)>Xi + ei)Xi. By the

property of conditional expectation, for any function g(·), h(·), we have E [g(X)h(e)] = EX
[
Eh(e)|X [g(X)h(e)|X]

]
=

EX
[
g(X)Eh(e)|X [h(e)|X]

]
. Then

E
[
∇fi(w)∇fi(w)>

]
= 4E

[
((w∗ − w)>Xi + ei)

2XiX
>
i

]
(34)

= 4E
[
((w∗ − w)>Xi)

2XiX
>
i

]
+ 4E

[
e2
iXiX

>
i

]
+ 4E

[
2(w∗ − w)>XieiXiX

>
i

]
(35)

= 4E
[
((w∗ − w)>Xi)

2XiX
>
i

]
+ 4E

[
XiX

>
i E

[
e2
i

∣∣Xi

]]
(36)

By Assumption E.1, for all unit vectors v ∈ Rd, we have

v>E
[
((w∗ − w)>Xi)

2XiX
>
i

]
v = E

[
((w∗ − w)>Xi)

2(v>Xi)
2
]

(37)

≤
√

E [((w∗ − w)>Xi)4]E [(v>Xi)4] (38)

≤ Cs4‖w∗ − w‖2 (39)

and
v>E

[
XiX

>
i E

[
e2
i

∣∣Xi

]]
v ≤ ξv>E

[
XiX

>
i

]
v ≤ s2ξ (40)

Thus for all unit vectors v ∈ Rd, we have

v>Cov(Xi,Yi)∼Dxy [∇fi(w)]v ≤ v>E
[
∇fi(w)∇fi(w)>

]
v ≤ 4s2ξ + 4Cs4‖w∗ − w‖2. (41)

We then use the following Theorem E.1 to show that the observations f1, . . . , fn satisfies the Assumption E.2 with high
probability:
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Theorem E.1 (Theorem 1.4 in (Diakonikolas et al., 2020)). Fix any 0 < τ < 1. Let S be a multiset of n i.i.d. samples
from a distribution on Rd with mean µ and covariance Σ. Let ε′ = C̃ (log(1/τ)/n+ ε) = O(1), for some constant C̃ > 0.
Then, with probability at least 1− τ , there exists a subset S′ ⊆ S such that |S′| ≥ (1− ε′)n and for every S′′ ⊆ S′ with
|S′′| ≥ (1 − 2ε′)|S′|, the following conditions hold: (i) ‖µS′′ − µ‖ ≤

√
‖Σ‖δ, and (ii) ‖ΣS′′ − ‖Σ‖I‖ ≤ ‖Σ‖δ2/(2ε′),

for δ = O
(√

(d log d)/n+
√
ε+

√
log(1/τ)/n

)
.

where µS′′ = 1
|S′′|

∑
x∈S′′ x and ΣS′′ = 1

|S′′|
∑
x∈S′′(x− µ)(x− µ)>.

We use a notion of stability similar to that in (Diakonikolas et al., 2019) but allow the parameter to depend on the confidence
level and sample size:
Assumption E.2 (A variant of Assumption B.1 in (Diakonikolas et al., 2019)). Fix 0 < ε < 1/2. With probability at least
1− τ , there exists an unknown set Igood ⊆ [n] with |Igood| ≥ (1− ε)n of “good” functions {fi}i∈Igood and parameters σ,
α(ε, n, τ), β(ε, n, τ) ∈ R+ such that for all w ∈ H:∥∥∥∥∥∥ 1

|Igood|
∑

i∈Igood

∇fi(w)−∇f̄(w)

∥∥∥∥∥∥ ≤ σα(ε, n, τ) (42)

and ∥∥∥∥ 1

|Igood|
(∇fi(w)−∇f̄(w))(∇fi(w)−∇f̄(w))>

∥∥∥∥ ≤ σ2β(ε, n, τ) (43)

We can then equivalently write Theorem E.1 as the following Proposition:
Proposition E.1. Given a linear regression model fi(w) = (Yi−w>Xi)

2 satisfying Assumption E.1, Xi ∼ Dx, De ∼ De,
with probability at least 1 − τ , {fi}i∈[n] satisfies Assumption E.2 with σ = 2s

√
ξ + 2

√
Cs2‖w∗ − w‖, α(ε, n, τ) =

O
(√

(d log d)/n+
√
ε+

√
log(1/τ)/n

)
and β(ε, n, τ) =

(
d log d

log(1/τ)+nε + 1
)

.

Proof of Proposition E.1. By Theorem E.1 and Lemma E.1, with probability at least 1− τ , there exist an unknown set
Igood ⊆ [n] with |Igood| ≥ (1− ε′)n, s.t.∥∥∥∥ 1

|Igood|
(∇fi(w)−∇f̄(w))(∇fi(w)−∇f̄(w))>

∥∥∥∥ (44)

≤
∥∥∥∥ 1

|Igood|
(∇fi(w)−∇f̄(w))(∇fi(w)−∇f̄(w))> − ‖Covf∈p∗ [∇f ]‖ I

∥∥∥∥+ ‖Covf∈p∗ [∇f ]‖ (45)

≤
(
4s2ξ + 4Cs4‖w∗ − w‖2

)
O

(
d log d

log(1/τ) + nε
+ 1

)
(46)

≤
(

2s
√
ξ + 2

√
Cs2‖w∗ − w‖

)2

O

(
d log d

log(1/τ) + nε
+ 1

)
=: σ2β(ε, n, τ). (47)

‖∇f̂(w)−∇f̄(w)‖ ≤ σO
(√

(d log d)/n+
√
ε+

√
log(1/τ)/n

)
=: σα(ε, n, τ). (48)

E.2. The expected optimality gap

In order to prove the expected optimality gap, we first state a slightly modified version of the main theorem in (Diakonikolas
et al., 2019) by specifying the probability of success;
Theorem E.2 (Theorem B.2 in (Diakonikolas et al., 2019)). Let the corruption level ε ∈ [0, c], for some small
enough c > 0. Suppose that the functions f1, . . . , fn, f̄ : H → R are bounded below, and that Assump-
tion E.2 is satisfied. Then SEVER applied to f1, . . . , fn returns a point w ∈ H that, fix p ≥

√
ε, with prob-

ability at least 1 − p, is a O
(
σ
(
α(ε, n, τ) +

√
α(ε, n, τ)2 + β(ε, n, τ)

√
ε/p
))

-approximate critical point of f̄ ,

i.e. for all unit vectors v where w + λv ∈ H for arbitrarily small positive λ, we have that v · ∇f(w) ≥
−O

(
σ
(
α(ε, n, τ) +

√
α(ε, n, τ)2 + β(ε, n, τ)

√
ε/p
))

.
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if f̄ is convex, we have the following optimality gap. Recall r is the radius of the convex setH where w∗ belongs.

Corollary E.1 (Corollary B.3 in (Diakonikolas et al., 2019)). Let the corruption level ε ∈ [0, c], for some small enough
c > 0. For functions f1, . . . , fn : H → R, suppose that Assumption E.2 holds and thatH is convex. Then, fix p ≥

√
ε, with

probability at least 1− p, the output of SEVER satisfies the following: if f̄ is convex, the algorithm finds a w ∈ H such that
f̄(w)− f̄(w∗) = O

(
rσ
(
α(ε, n, τ) +

√
α(ε, n, τ)2 + β(ε, n, τ)

√
ε/p
))

Given Theorem E.1, we can prove the following expected optimality gap:

Theorem E.3 (expected optimality gap). Let the corruption level ε ∈ [0, c], for some small enough c > 0. Let H be a
convex set. Given n samples from a linear regression model f(w) = (Y − w>X)2 satisfying Assumption E.1, where
X ∼ Dx, e ∼ De, Y = w∗>X + e for some unknown w∗ ∈ H, SEVER will find a w ∈ H, such that

E
[
f̄(w)− f̄(w∗)

]
= O

((
sr
√
ξ + s2r2

)(
τ +

√
(d log d)/n+

√
ε+

√
log(1/τ)/n

))
. (49)

where the expectation above is over both the randomness of SEVER and (Xi, Yi) pairs.

Proof of Theorem E.3. In the following, we use α and β as shorthands of α(ε, n, τ) and β(ε, n, τ). We first show that
f̄(w)− f̄(w∗) is upper bounded:

f̄(w)− f̄(w∗) = EX,Y
[
(Y − w>X)2 − (Y − w∗>X)2

]
(50)

= EX,e
[
(w∗ − w)>X + e)2 − e2

]
(51)

= (w∗ − w)>EX [XX>](w∗ − w) ≤ s2(w − w∗)2 ≤ 4s2r2. (52)

For some constant M > 0, define x1 := Mrσ
(
α/
√
ε+

√
α2 + β

)√
ε. Let A1 be the event of

{Assumption E.2 holds}. Let A2 be the event of {SEVER removes less than (1 + 1/
√
ε)εn points}. Let A3(p) be the

event of
{
f̄(w)− f̄(w∗) > Mrσ

(
α+

√
α2 + β

√
ε/p
)}

. Then, ∀0 ≤ p <
√
ε

P (A2, A3(p) | A1) = 0. (53)

By Corollary E.1, ∀
√
ε ≤ p ≤ 1

P (A2, A3(p) | A1) ≤ p. (54)

By Proposition E.1,
P (A1) ≥ 1− τ. (55)

By Lemma E.3,
P (A2 | A1) ≥ 1−

√
ε, (56)

and thus
1− P (A1, A2) = 1− P (A2 | A1)P (A1) ≤ τ +

√
ε. (57)

Then, we have:

P
(
f̄(w)− f̄(w∗) > x1/

√
p | A1, A2

)
(58)

≤P (A3(p) | A1, A2) = P (A2, A3(p) | A1)/P (A2 | A1) (59)

≤

{
0 0 ≤ p <

√
ε

p
1−
√
ε

√
ε ≤ p ≤ 1

. (60)

Let x = x1/
√
p, we have:

P
(
f̄(w)− f̄(w∗) > x

∣∣A1, A2

)
≤


0 x ≥ x1ε

−1/4

1
1−
√
ε

x2
1

x2 x1 ≤ x < x1ε
−1/4

1 0 ≤ x < x1

. (61)
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Algorithm 4 SEVER(f1:n,L, σ)

1: Input: Sample functions f1, . . . , fn : H → R, bounded below on a closed domainH, γ-approximate learner L, and
parameter σ ∈ R+.

2: Initialize S ← {1, . . . , n}.
3: repeat
4: w ← L({fi}i∈S). . Run approximate learner on points in S.
5: Let ∇̂ = 1

|S|
∑
i∈S ∇fi(w).

6: Let G = [∇fi(w)− ∇̂]i∈S be the |S| × d matrix of centered gradients.
7: Let v be the top right singular vector of G.

8: Compute the vector τ of outlier scores defined via τi =
(

(∇fi(w)− ∇̂) · v
)2

.
9: S′ ← S

10: S ← FILTER(S′, τ, σ) . Remove some i’s with the largest scores τi from S; see Algorithm 5.
11: until S = S′.
12: Return w.

By Proposition E.1 and law of total expectation, we can bound the expected optimality gap by:

E
[
f̄(w)− f̄(w∗)

]
≤ E

[
f̄(w)− f̄(w∗)

∣∣A1, A2

]
P (A1, A2) + 4s2r2(1− P (A1, A2)) (62)

≤
∫ ∞

0

P
(
f̄(w)− f̄(w∗) > x

∣∣A1, A2

)
dx+ 4s2r2(τ +

√
ε) (63)

=

∫ x1

0

1dx+
1

1−
√
ε

∫ x1ε
−1/4

x1

x2
1

x2
dx+ 4s2r2(τ +

√
ε) (64)

≤ 2x1 + 4s2r2(τ +
√
ε) (65)

= 2Mrσ
(
α/
√
ε+

√
α2 + β

)√
ε+ 4s2r2(τ +

√
ε) (66)

= O
((
sr
√
ξ + s2r2

)(
τ +

√
(d log d)/n+

√
ε+

√
log(1/τ)/n

))
(67)

Note that the expectation above is over both the randomness of SEVER and (Xi, Yi) pairs.

E.3. Proof of Theorem E.2

In this proof, we mainly follow the steps in (Diakonikolas et al., 2019) but use our notion of stability in Assumption E.2. We
also allow the success probability to vary, so that we can give an expected error bound later on.

We first restate the SEVER algorithm in Algorithm 4 and Algorithm 5. Throughout this proof we let Igood be as in

Algorithm 5 FILTER(S, τ, σ)

1: Input: Set S ⊆ [n], vector τ of outlier scores, and parameter σ ∈ R+.
2: If 1

|S|
∑
i∈S τi ≤ c0 · σ2, for some constant c0 > 1, return S . We only filter out points if the variance is larger than an

appropriately chosen threshold.
3: Draw T from the uniform distribution on [0,maxi τi].
4: Return {i ∈ S : τi < T}.

Assumption E.2. We require the following three lemmas. Roughly speaking, the first states that with high probability, we
will not remove too many points throughtout the process, the second states that on average, we remove more corrupted
points than uncorrupted points, and the third states that at termination, and if we have not removed too many points, then we
have reached a point at which the empirical gradient is close to the true gradient. Formally:

Lemma E.2. If the samples satisfy Assumption E.2, |S| ≥ c1n, and the filtering threshold is at least

2(1− ε)σ2

c1 − 2ε

(
α(ε, n, τ)2 + β(ε, n, τ)

)
(68)
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then if S′ is the output of FILTER(S, τ, σ), we have that

E[|Igood ∩ (S\S′)|] ≤ E[|([n]\Igood) ∩ (S\S′)|]. (69)

Lemma E.3 (Revised version of Lemma 6 in (Diakonikolas et al., 2019)). Assume filtering threshold is 4(α(ε, n, τ)2 +
β(ε, n, τ))σ2, ε ≤ 1/16, then we have that for any given p ≥

√
ε, with probability at least 1− p, n− |S| ≤ (1 + 1/p)εn

when the filtering algorithm terminates.

Lemma E.4. If the samples satisfy Assumption E.2, FILTER(S, τ, σ) = S, and n− |S| ≤ (1 + 1/p)εn, for p ≥
√
ε, then∥∥∥∥∥∇f̄(w)− 1

|Igood|
∑
i∈S
∇fi(w)

∥∥∥∥∥
2

≤ O
(
σ
(
α(ε, n, τ) +

√
α(ε, n, τ)2 + β(ε, n, τ)

√
ε/p
))

(70)

Before we prove these lemmata, we show how together they imply Theorem E.2.

Proof of Theorem E.2 assuming Lemma E.3 and Lemma E.4. First, we note that the algorithm must terminate in at
most n iterations. This is easy to see as each iteration of the main loop except for the last must decrease the size of S by at
least 1.

It thus suffices to prove correctness. Note that Lemma E.3 says that with probability at least 1− p, SEVER will not remove
too many points, this will allow us to apply Lemma E.4 to complete the proof, using the fact that w is a critical point of

1
|Igood|

∑
i∈S ∇fi(w).

Thus it suffices to prove these three lemmata.

Proof of Lemma E.2. Let Sgood = S ∩ Igood and Sbad = S\Igood. We wish to show that the expected number of
elements thrown out of Sbad is at least the expected number thrown out of Sgood. We note that our result holds trivially if
FILTER(S, τ, σ) = S. Thus, we can assume that Ei∈S [τi] ≥ 2(1−ε)σ2

c1−2ε

(
α(ε, n, τ)2 + β(ε, n, τ)

)
.

It is easy to see that the expected number of elements thrown out of Sbad is proportional to
∑
i∈Sbad

τi, while the number
removed from Sgood is proportional to

∑
i∈Sgood

τi (with the same proportionality). Hence, it suffices to show that∑
i∈Sbad

τi ≥
∑
i∈Sgood

τi.

We first note that since Covi∈Igood [∇fi(w)] � σ2I , we have that

Covi∈Sgood
[v · ∇fi(w)] ≤ 1− ε

c1 − ε
Covi∈Igood [v · ∇fi(w)] (since |Sgood| ≥ c1−ε

1−ε |Igood|) (71)

=
1− ε
c1 − ε

 1

|Igood|
∑

i∈Igood

(v · (∇fi(w)− f̄(w)))2 − (f̄(w)− Ei∈Igood [v · ∇fi(w)])2

 (72)

≤ (1− ε)σ2

c1 − ε
(
α(ε, n, τ)2 + β(ε, n, τ)

)
(By Assumption E.2), (73)

Let µgood = Ei∈Sgood
[v · ∇fi(w)] and µ = Ei∈S [v · ∇fi(w)]. Note that

Ei∈Sgood
[τi] = Covi∈Sgood

[v · ∇fi(w)] + (µ− µgood)2 ≤ (1− ε)σ2

c1 − ε
(
α(ε, n, τ)2 + β(ε, n, τ)

)
+ (µ− µgood)2 . (74)

We now split into two cases.

Firstly, if

(µ− µgood)2 ≥ ε

c1 − 2ε

(1− ε)σ2

c1 − ε
(
α(ε, n, τ)2 + β(ε, n, τ)

)
, (75)

we let µbad = Ei∈Sbad
[v · ∇fi(w)], and note that |µ− µbad||Sbad| = |µ− µgood||Sgood|. We then have that

Ei∈Sbad
[τi] = Covi∈Sbad

[v · ∇fi(w)] + (µ− µbad)2 ≥ (µ− µbad)2 (76)
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= (µ− µgood)2

(
|Sgood|
|Sbad|

)2

(77)

≥ |Sgood|
|Sbad|

c1 − ε
ε

(µ− µgood)2 (because |Sgood| ≥ (c1 − ε)n and |Sbad| ≤ εn) (78)

=
|Sgood|
|Sbad|

(
c1 − 2ε

ε
(µ− µgood)2 + (µ− µgood)2

)
(79)

≥ |Sgood|
|Sbad|

(
(1− ε)σ2

c1 − ε
(
α(ε, n, τ)2 + β(ε, n, τ)

)
+ (µ− µgood)2

)
(by (75)) (80)

≥ |Sgood|
|Sbad|

Ei∈Sgood
[τi] (by (74)). (81)

Hence,
∑
i∈Sbad

τi ≥
∑
i∈Sgood

τi.

On the other hand, if (µ − µgood)2 ≤ ε
c1−2ε

(1−ε)σ2

c1−ε
(
α(ε, n, τ)2 + β(ε, n, τ)

)
, then Ei∈Sgood

[τi] ≤(
1 + ε

c−2ε

)
(1−ε)σ2

c1−ε
(
α(ε, n, τ)2 + β(ε, n, τ)

)
≤ Ei∈S [τi]/2. Therefore

∑
i∈Sbad

τi ≥
∑
i∈Sgood

τi once again. This
completes our proof.

Proof of Lemma E.3. Define the event

A = {n− |S| ≤ (1 + 1/p)εn}, (82)

and we want to lower-bound P (A). Given that ε ≤ 1/16, the threshold is 4(α(ε, n, τ)2 + β(ε, n, τ))σ2 and p ≥
√
ε, and

conditioned on the eventA, it can be verified that the asusumption of Lemma E.2 is satisfied. In particular, simple calculation
shows that given c1 = 1− (1 + 1/p)ε, ε ≤ 1/16, p ≥

√
ε, we have

4σ2 ≥ 2(1− ε)σ2

c1 − 2ε
(83)

And Lemma E.2 implies that |([n]\Igood) ∩ S| + |Igood\S| is a supermartingale. Since its initial size is at most εn,
with probability at least 1 − p, it never exceeds εn/p, and therefore at the end of the algorithm, we must have that
n− |S| ≤ εn+ |Igood\S| ≤ (1 + 1/p)εn.

We now prove Lemma E.4.

Proof of Lemma E.4. We note that∥∥∥∥∥∑
i∈S

(∇fi(w)−∇f̄(w))

∥∥∥∥∥
2

(84)

≤

∥∥∥∥∥∥
∑

i∈Igood

(∇fi(w)−∇f̄(w))

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈(Igood\S)

(∇fi(w)−∇f̄(w))

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈(S\Igood)

(∇fi(w)−∇f̄(w))

∥∥∥∥∥∥
2

(85)

≤

∥∥∥∥∥∥
∑

i∈(Igood\S)

(∇fi(w)−∇f̄(w))

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈(S\Igood)

(∇fi(w)−∇f̄(w))

∥∥∥∥∥∥
2

+ nσα(ε, n, τ). (86)

First we analyze ∥∥∥∥∥∥
∑

i∈(Igood\S)

(∇fi(w)−∇f̄(w))

∥∥∥∥∥∥
2

. (87)
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This is the supremum over unit vectors v of ∑
i∈(Igood\S)

v · (∇fi(w)−∇f̄(w)). (88)

However, we note that ∑
i∈Igood

(v · (∇fi(w)−∇f̄(w)))2 ≤ nσ2β(ε, n, τ). (89)

Since |Igood\S| ≤ (1 + 1/p)εn, we have by Cauchy-Schwarz that∑
i∈(Igood\S)

v · (∇fi(w)−∇f̄(w)) =
√

(nσ2β(ε, n, τ))((1 + 1/p)εn) = nσ
√
β(ε, n, τ)(1 + 1/p)ε, (90)

as desired.

Let

∆ :=

∥∥∥∥∥∑
i∈S

(∇fi(w)−∇f̄(w))

∥∥∥∥∥
2

. (91)

Because our Filter algorithm terminates with n−|S| ≤ (1+1/p)εn, and the stopping condition is set as ‖ 1
|S|
∑
i∈S(∇fi(w)−

∇f̂(w))(∇fi(w)−∇f̂(w))>‖ ≤ 4(α(ε, n, τ)2 + β(ε, n, τ))σ2, we note that since for any such v that

∑
i∈S

(v · (∇fi(w)−∇f̄(w)))2 =
∑
i∈S

(v · (∇fi(w)−∇f̂(w)))2 + |S|(v · (∇f̂(w)−∇f̄(w)))2 (92)

≤
∑
i∈S

(v · (∇fi(w)−∇f̂(w)))2 + ∆2/|S| ≤ n4(α(ε, n, τ)2 + β(ε, n, τ))σ2 + ∆2/((1− (1 + 1/p)ε)n) (93)

and since |S\Igood| ≤ (1 + 1/p)εn, and so we have similarly that∥∥∥∥∥∥
∑

i∈(S\Igood)

∇fi(w)−∇f̄(w)

∥∥∥∥∥∥
2

≤ 2nσ
√
α(ε, n, τ)2 + β(ε, n, τ)

√
(1 + 1/p)ε+ ∆

√
(1 + 1/p)ε

1− (1 + 1/p)ε
. (94)

Combining with the above we have that

∆

n
≤ σα(ε, n, τ) +σ

√
β(ε, n, τ)(1 + 1/p)ε+ 2σ

√
α(ε, n, τ)2 + β(ε, n, τ)

√
(1 + 1/p)ε+

∆

n

√
(1 + 1/p)ε

1− (1 + 1/p)ε
, (95)

Thus
∆

n
≤ 1

1−
√

(1+1/p)ε
1−(1+1/p)ε

(
σα(ε, n, τ) + 6σ

√
α(ε, n, τ)2 + β(ε, n, τ)

√
ε/p
)

(96)

and therefore, ∆
n = O

(
σ
(
α(ε, n, τ) +

√
α(ε, n, τ)2 + β(ε, n, τ)

√
ε/p
))

as desired.

F. Proofs for Section 5
Lemma F.1 (Lemma 5.1). Suppose the adversarial rewards are unbounded, and in a particular iteration t, the adversarial
contaminate ε(t) fraction of the episodes, then given M episodes, it is guaranteed that if ε(t) ≤ c, for some absolute constant
c, and any constant τ ∈ [0, 1], we have

E
[
Es,a∼d(t)

[(
Qπ

(t)

(s, a)− φ(s, a)>w(t)
)2
]]

(97)

≤ O
((

W 2 +
σW

1− γ

)(√
ε(t) + f(d, τ)M−

1
2 + τ

))
.

where f(d, τ) =
√
d log d+

√
log(1/τ).
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Proof of Lemma F.1. The proof of Lemma 5.1 follows by instantiating Theorem E.3 to our specific linear regression
problem instance. To specify the constants in Theorem E.3, we make the following observations

1. By Lemma C.1, we have that ξ = 1
(1−γ)2 + σ2

1−γ .
2. Since ‖X‖ ≤ 1, EX∼Dx

[
XX>

]
≤ I , and thus s = 1.

3. max‖v‖=1 E
[
(v>X)4

]
≤ E

[
‖v‖4‖X‖4

]
≤ 1, thus C = 1.

Plugging in the above instantiation to Theorem E.3 concludes the proof.

Theorem F.1 (Theorem 5.1). Under assumptions 3.1 and 3.2, given a desired optimality gap α, there exists a set of
hyperparameters agnostic to the contamination level ε, such that Algorithm 2, using Algorithm 3 as the linear regression
solver, guarantees with a poly(1/α, 1/(1− γ), |A|,W, σ, κ) sample complexity that under ε-contamination, we have

E
[
V ∗(µ0)− V π̂(µ0)

]
(98)

≤ Õ

(
max

[
α,

√
|A|κ (W 2 + σW )

(1− γ)4
ε1/4

])
.

where π̂ is the uniform mixture of π(1) through π(T ).

Proof of Theorem F.1. Denote z := 2W and again εstat ≤ (2W )2 = z2. Denote
(
W 2 + σW

1−γ

)
= b. Notice that Lemma

5.1 only holds when ε(t) ≤ c for some absolute constant c, and there are at most εT/c iterations in which ε(t) > c, which
incurs at most εstat ≤ z2 error. Given this observation we can now plugging Lemma 5.1 into Lemma 4.1, and we get

E

[
1

T

T∑
t=1

{V ∗(µ0)− V (t)(µ0)}

]
(99)

≤ W

1− γ

√
2 log |A|

T
+

1

T

T∑
t=1

√
4|A|κε(t)

stat

(1− γ)3
(100)

≤ W

1− γ

√
2 log |A|

T
+
z2

c
ε+

1

T

T∑
t=1

√√√√4|A|κb
(√

ε(t) +
√

(d log d)/M +
√

log(1/τ)/M + τ
)

(1− γ)3
(101)

≤ W

1− γ

√
2 log |A|

T
+
z2

c
ε+

√√√√4|A|κb
(√

(d log d)/M +
√

log(1/τ)/M + τ
)

(1− γ)3
+

1

T

T∑
t=1

√
4|A|κb

√
ε(t)

(1− γ)3
(102)

≤ W

1− γ

√
2 log |A|

T
+
z2

c
ε+

√√√√4|A|κb
(√

(d log d)/M +
√

log(1/τ)/M + τ
)

(1− γ)3
+

√
4|A|κb

(1− γ)3
ε1/4 (103)

where the last two steps are by Cauchy Schwarz and the fact that the attacker only has ε budget to distribute, which implies
that

∑T
t=1 ε

(t) = Tε. Setting

T =
2W 2 log |A|
α2(1− γ)2

(104)

τ =
α2(1− γ)3

4|A|bκ
(105)

M =
16|A|2b2κ2

α4(1− γ)6
max [d log d, log(1/τ)] (106)

we get

E

[
1

T

T∑
t=1

{V ∗(µ0)− V (t)(µ0)}

]
≤ O

(
α+

√
|A|κb

(1− γ)3
ε1/4

)
. (107)



Robust Policy Gradient against Strong Data Corruption

Algorithm 6 FPG-TRPO
1: Input: initial policy parameter θ0; initial value function parameter φ0.
2: Hyperparameters: KL-divergence limit δ; backtracking coefficient α; maximum number of backtracking steps K;

upper-bound of corruption level ε; episode length H; batch size M .
3: for k = 0, 1, . . . do
4: Collect set of M trajectories Dk = {τi}1:M by running policy πk = π(θk) in the environment.
5: Compute rewards-to-go R̂t,i =

∑H
h=t γ

h−trh,i.
6: Using GAE to compute advantage estimate Ât,i based on the current value function Vφk .
7: Compute and save ĝt,i = ∇θ log πθ(at,i, st,i)|θk for all t = 1 : H and i = 1 : M .
8: Call the filtered conjugate gradient algorithm in Alg. 7 to get Sk ⊂ [M ]× [H], x̂k = FCG(ĝt,i, Ât,i).
9: Compute policy gradient estimate ĝk = 1

|Sk|
∑

(t,i)∈Sk ĝt,iÂt,i.
10: Update the policy by backtracking line search with

θk+1 = θk + αj

√
2δ

x̂kĝk
x̂k (109)

where j ∈ {0, 1, 2, ...,K} is the smallest value which improves the sample loss and satisfies the sample KL-divergence
constraint.

11: Fit the value function by regression on mean-squared error on the filtered trajectories Sk:

φk+1 = arg min
φ

1

|Sk|
∑

(t,i)∈Sk

(
Vφ(st,i)− R̂t,i

)2

(110)

In practice, one often only take a few gradient steps in each iteration k, instead of optimizing to convergence.

Algorithm 7 Filtered Conjugate Gradient (FCG)

1: Input: ĝt,i, Ât,i
2: Hyperparameters: Number of iterations r (default r = 4), fraction of data filtered in each iteration p (default p = ε/2,

i.e. filter out 2ε data in total).
3: Initialize S = {1, 2, . . . ,M}.
4: for k = 1, . . . , r do
5: Call standard CG to solve for x̂ = F̂−1ĝ, where F̂ = 1

S

∑
(t,i)∈S ĝt,iĝ

>
t,i and ĝ = 1

S

∑
(t,i)∈S ĝt,iÂt,i.

6: Compute the residues rt,i = ĝt,iĝ
>
t,ix̂− ĝt,iÂt,i for (t, i) ∈ S and save in a matrix G of size d× |S|.

7: Let v be the top right singular vector of G.
8: Compute the vector τ of outlier scores defined via τt,i =

(
r>t,iv

)2
.

9: Remove (HMp) number of (t, i) pair with the largest outlier scores from S.
10: Call standard CG one more time and return (S, x̂).

with sample complexity

TM =
32W 2|A|2 log |A|b2κ2

α6(1− γ)8
max [d log d, log(1/τ)] . (108)

G. Implementation Details of FPG-TRPO
In the experiment, we use a TRPO variant of FPG implementation, which differs from Alg. 2 in several ways:

1. Most existing TRPO implementation uses the conjugate gradient (CG) method instead of linear regression to solve for
the matrix inverse vector product problem. We follow this convention and design FPG-TRPO to use a filtered conjugate
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Parameters Values Description

γ 0.995 discounting factor.
λ 0.97 GAE parameter (Schulman et al., 2015b).
l2-reg 0.001 L2 regularization weight in value loss.
δ 0.01 KL constraint in TRPO.
damping 0.1 damping factor in conjugate gradient.
batch-size 25000 number of time steps per policy gradient iteration.
α 0.5 backtracking coefficient.
K 10 maximum number of backtracking steps.

Table 1. Hyperparameters for FPG-TRPO.

gradient (FCG) subroutine to replace the standard CG produce. The FPG procedure is detailed in Alg. 7. At a high level
FCG performs a filtering algorithm (a.k.a. outlier removal) on the residues of CG with respect to each data point.

2. Again following existing TRPO implementations, FPG-TRPO builds another network to estimate the value function
for the purpose of variance reduction, effectively resulting in an actor-critic algorithm. Instead of performing robust
learning procedure on both policy and value function learning, we perform the main filtering algorithm on the policy
learning procedure (the CG step discussed above), which also returns a filtered subset of data as a by-product. We then
use this filtered subset of data to perform the rest of the learning procedure, including value function update and the
sample loss estimation in backtracking line search. This allows us to perform the robust learning procedure only once per
PG iteration.

3. FPG-TRPO uses a deterministic variant of the filtering algorithm suggested in (Diakonikolas et al., 2019), which
empirically performs better and is simpler to implement than the stochastic variant used for theoretical analysis.
Specifically, the filtering algorithm will simply remove a fixed fraction of points with the largest deviation along the top
singular value direction (step 9 of Alg. 7).

The pseudo-code of FPG-TRPO can be found in Alg. 6. Similar to the NPG variant of FPG, the only difference between
Alg. 6 and a standard TRPO implementation is the replacement of the CG subroutine with the FCG subroutine. This modular
implementation allows one to easily replace Alg. 7 with any state-of-the-art robust CG procedure in the future. Table 1 lists
all the hyper-parameters we used in our experiments, which are taken from open-source implementations of TRPO tuned for
the MuJoCo environments. Our code to reproduce the experiment result is included in the supplementary material and will
be open-sourced. Finally, Figure 4 presents the detailed results on all experiments, completing the partial results shown in
Figure 3.
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Figure 4. Detailed Results on the MuJoCo benchmarks.


