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Abstract
In hypothesis testing, a false discovery occurs
when a hypothesis is incorrectly rejected due to
noise in the sample. When adaptively testing mul-
tiple hypotheses, the probability of a false discov-
ery increases as more tests are performed. Thus
the problem of False Discovery Rate (FDR) con-
trol is to find a procedure for testing multiple
hypotheses that accounts for this effect in deter-
mining the set of hypotheses to reject. The goal
is to minimize the number (or fraction) of false
discoveries, while maintaining a high true posi-
tive rate (i.e., correct discoveries). In this work,
we study False Discovery Rate (FDR) control in
multiple hypothesis testing under the constraint of
differential privacy for the sample. Unlike previ-
ous work in this direction, we focus on the online
setting, meaning that a decision about each hy-
pothesis must be made immediately after the test
is performed, rather than waiting for the output
of all tests as in the offline setting. We provide
new private algorithms based on state-of-the-art
results in non-private online FDR control. Our
algorithms have strong provable guarantees for
privacy and statistical performance as measured
by FDR and power. We also provide experimental
results to demonstrate the efficacy of our algo-
rithms in a variety of data environments.

1. Introduction
In the modern era of big data, data analyses play an impor-
tant role in decision-making in healthcare, information tech-
nology, and government agencies. The growing availability
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of large-scale datasets and ease of data analysis, while bene-
ficial to society, has created a severe crisis of reproducibility
in science. In 2011, Bayer HealthCare reviewed 67 in-house
projects and found that they could replicate fewer than 25
percent, and found that over two-thirds of the projects had
major inconsistencies (National Academies, 2019). One
major reason is that random noise in the data can often be
mistaken for interesting signals, which does not lead to valid
and reproducible results. This problem is particularly rel-
evant when testing multiple hypotheses, when there is an
increased chance of false discoveries based on noise in the
data. For example, an analyst may conduct 250 hypothesis
tests and find that 11 are significant at the 5% level. This
may be exciting to the researcher who publishes a paper
based on these findings, but elementary statistics suggests
that (in expectation) 12.5 of those tests should be significant
at that level purely by chance, even if the null hypotheses
were all true. To avoid such problems, statisticians have
developed tools for controlling overall error rates when per-
forming multiple hypothesis tests.

In hypothesis testing, the null hypothesis of no interesting
scientific discovery (e.g., a drug has no effect), is tested
against the alternative hypothesis of a particular scientific
theory being true (e.g., a drug has a particular effect). The
significance of each test is measured by a p-value, which is
the probability of the observed data occurring under the null
hypothesis, and a hypothesis is rejected if the correspond-
ing p-value is below some (fixed) significance level. Each
rejection is called a discovery, and a rejected hypothesis is a
false discovery if the null hypothesis is actually true. When
testing multiple hypotheses, the probability of a false dis-
covery increases as more tests are performed. The problem
of false discovery rate (FDR) control is to find a procedure
for testing multiple hypotheses that takes in the p-values
of each test, and outputs a set of hypotheses to reject. The
goal is to minimize the number of false discoveries, while
maintaining high true positive rate (i.e., true discoveries).

In many applications, the dataset may contain sensitive per-
sonal information, and the analysis must be conducted in a
privacy-preserving way. For example, in genome-wide asso-
ciation studies (GWAS), a large number of single-nucleotide
polymorphisms (SNPs) are tested for an association with a
disease simultaneously or adaptively. Prior work has shown
that the statistical analysis of these datasets can lead to
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privacy concerns, and it is possible to identify an individ-
ual’s genotype when only minor allele frequencies are re-
vealed (Homer et al., 2008). The field of differential pri-
vacy (Dwork et al., 2006) offers data analysis tools that
provide powerful worst-case privacy guarantees, and has
become a de facto gold standard in private data analysis.
Informally, an algorithm that is ε-differentially private en-
sures that any particular output of the algorithm is at most
eε more likely when a single data point is changed. This
parameterization allows for a smooth tradeoff between ac-
curate analysis and privacy to the individuals who have
contributed data. In the past decade, researchers have devel-
oped a wide variety of differentially private algorithms for
many statistical tasks; these tools have been implemented in
practice at major organizations including Google (Erlings-
son et al., 2014), Apple (Differential Privacy Team, Apple,
2017), Microsoft (Ding et al., 2017), and the U.S. Census
Bureau (Dajani et al., 2017).

Related Work. The only prior work on differentially pri-
vate FDR control (Dwork et al., 2018) considers the classic
offline multiple testing problem, where an analyst has all the
hypotheses and corresponding p-values upfront. Their pri-
vate method repeatedly applies REPORTNOISYMIN (Dwork
& Roth, 2014) to the celebrated Benjamini-Hochberg (BH)
procedure (Benjamini & Hochberg, 1995) in offline multiple
testing to privately pre-screen the p-values, and then applies
the BH procedure again to select the significant p-values.
The (non-private) BH procedure first sorts all p-values, and
then sequentially compares them to an increasing thresh-
old, where all p-values below their (ranked and sequential)
threshold are rejected. The REPORTNOISYMIN mechanism
privatizes this procedure by repeatedly (and privately) find-
ing the hypothesis with the lowest p-value.

Although the work of (Dwork et al., 2018) showed that
it was possible to integrate differential privacy with FDR
control in multiple hypothesis testing, the assumption of
having all hypotheses and p-values upfront is not reason-
able in many practical settings. For example, a hospital
may conduct multi-phase clinical trials where more patients
join over time, or a marketing company may perform A/B
testings sequentially. In this work, we focus on the more
practical online hypothesis testing problem, where a stream
of hypotheses arrive sequentially, and decisions to reject
hypotheses must be made based on current and previous
results before the next hypothesis arrives. This sequence of
the hypotheses could be independent or adaptively chosen.
Due to the fundamental difference between the offline and
online FDR procedures, the method of (Dwork et al., 2018)
based on REPORTNOISYMIN cannot be applied to the on-
line setting. Instead, we use SPARSEVECTOR, described in
Section 2.1, as a starting point. Discussion of non-private
online multiple hypothesis testing appears in Section 2.2.

Our Results. We develop a differentially private online
FDR control procedure for multiple hypothesis testing,
which takes a stream of p-values and a target FDR level
and privacy parameter ε, and outputs discoveries that can
control the FDR at a certain level at any time point. Such a
procedure provides unconditional differential privacy guar-
antees (to ensure that privacy will be protected even in the
worst case) and satisfy the theoretical guarantees dictated
by the FDR control problem.

Our algorithm, Private Alpha-investing P-value Rejecting It-
erative sparse veKtor Algorithm (PAPRIKA, Algorithm 1),
is presented in Section 3. Its privacy and accuracy guaran-
tees are stated in Theorem 3 and 4, respectively. While the
full proofs appear in the appendix, we describe the main
ideas behind the algorithms and proofs in the surrounding
prose. In Section 4, we provide a thorough empirical inves-
tigation of PAPRIKA, with additional empirical results in
Appendix C.

2. Preliminaries
2.1. Background on Differential Privacy

Differential Privacy bounds the maximal amount that one
data entry can change the output of the computation.
Databases belong to the space Dn and contain n entries–
one for each individual–where each entry belongs to data
universe D. We say that D,D′ ∈ Dn are neighboring
databases if they differ in at most one data entry.

Definition 1 (Differential Privacy (Dwork et al., 2006)). An
algorithmM : Dn → R is (ε, δ)-differentially private if
for every pair of neighboring databases D,D′ ∈ Rn, and
for every subset of possible outputs S ⊆ R, Pr[M(D) ∈
S] ≤ exp(ε) Pr[M(D′) ∈ S] + δ. If δ = 0, we say thatM
is ε-differentially private.

The additive sensitivity of a real-valued query f : Dn → R
is denoted ∆f , and is defined to be the maximum change in
the function’s value that can be caused by changing a single
entry. That is, ∆f = maxD,D′ neighbors |f(D)− f(D′)| .
Differential privacy guarantees are often achieved by adding
Laplace noise at various places in the computation, where
the noise scales with ∆f/ε. A Laplace random variable
with parameter b is denoted Lap(b), and has probability
density function, pLap(b)(x) = 1

2b exp
(
−|x|
b

)
∀x ∈ R.

The SPARSEVECTOR algorithm, first introduced by (Dwork
et al., 2010) and refined to its current form by (Dwork &
Roth, 2014), privately reports the outcomes of a potentially
very large number of computations, provided that only a
few are “significant.” It takes in a stream of queries and
releases a bit vector indicating whether or not each noisy
query answer is above the fixed noisy threshold. Pseudocode
appears in Appendix A. We build off this algorithm, using
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it as a framework for our online private false discovery rate
control algorithm as new hypotheses arrive online, and we
only care about those “significant” hypotheses when the p-
value is below a certain threshold. We note that the standard
presentation below checks for queries with values above a
threshold, but by simply changing signs this framework can
be used to check for values below a threshold, as we will do
with the p-values.

Theorem 1 ((Dwork et al., 2010)). For any sequence of
k queries f1, . . . , fk with sensitivity ∆ such that |{i :
fi(D) ≥ T − αSV }| ≤ c, SPARSEVECTOR outputs with
probability at least 1− β a stream of a1, . . . , ak ∈ {>,⊥}
such that ai = ⊥ for every i ∈ [m] with f(i) < T − αSV
and ai = > for every i ∈ [m] with f(i) > T +αSV as long
as αSV ≥ 8∆c log(2kc/β)

ε .

Unlike the conventional use of additive sensitivity, (Dwork
et al., 2018) defined the notion of multiplicative sensitivity
specifically for p-values. It is motivated by the observation
that, although the additive sensitivity of a p-value may be
large, the relative change of the p-value on two neighboring
datasets is stable unless the p-value is very small. This
notion allows us to treat the logarithm of the p-values as
having additive sensitivity η, substantially reducing the scale
of noise required to preserve privacy.

Definition 2 (Multiplicative Sensitivity (Dwork et al.,
2018)). A p-value function p is said to be (η, µ)-
multiplicative sensitive if for all neighboring databases D
and D′, either both p(D), p(D′) ≤ µ or

exp(−η)p(D) ≤ p(D′) ≤ exp(η)p(D).

2.2. Background on Online False Discovery Rate
Control

In the online false discovery rate (FDR) control problem, a
data analyst receives a stream of hypotheses on the database
D, or equivalently, a stream of p-values p1, p2, . . .. The
analyst must pick a threshold αt at each time t to reject
the hypothesis when pt ≤ αt; this threshold can depend on
previous hypotheses and discoveries, and rejection must be
decided before the next hypothesis arrives.

The error metric is the false discovery rate, formally de-
fined as: FDR = E [FDP] = E

[
|H0∩R|
|R|

]
, where H0 is

the (unknown to the analyst) set of hypotheses where the
null hypothesis is true, and R is the set of rejected hy-
potheses. We will also write these terms as a function of
time t to indicate their values after the first t hypotheses:
FDR(t), FDP(t), H0(t), R(t). The goal of FDR control
is to guarantee that for any time t, the FDR up to time t is
less than a pre-determined quantity α ∈ (0, 1).

Such a problem was first investigated by (Foster & Stine,
2008), who proposed a framework known as online alpha-

investing that models the hypothesis testing problem as an
investment problem. The analyst is endowed with an initial
budget, can test hypotheses at a unit cost, and receives an
additional reward for each discovery. The alpha-investing
procedure ensures that the analyst always maintains an α-
fraction of their wealth, and can therefore continue testing
future hypotheses indefinitely. Unfortunately, this approach
only controls a slightly relaxed version of FDR, known as

mFDR, which is given by mFDR(t) =
E[|H0∩R|]

E[|R|] . This
approach was later extended to a class of generalized alpha-
investing (GAI) rules (Aharoni & Rosset, 2014).

A generalized alpha-investing procedure starts with an ini-
tial wealth W (0) = α, where α is the testing level. It
uses a GAI rule IW (0) that takes in past rejections to de-
termine three quantities at each time t: the level of the
test αt, the amount ϕt subtracted from the wealth, and
the reward ψt received for each discovery. (αt, ϕt, ψt) =
IW (0)({R1, R2, . . . , Rt−1}). The wealth updating rule is
W (t) = W (t − 1) − ϕt + Rtψt. A GAI rule maintains
nonnegative wealth W (t) ≥ 0 for any t, and the following
ineuqality holds:

0 ≤ ψt ≤ min(
ϕt
ρt

+ α,
ϕt
ρt

+ α− 1), (1)

where ρt is the best power of the t-th test.

One subclass of GAI rules, the Level based On Recent Dis-
covery (LORD), was shown to have consistently good per-
formance in practice (Javanmard & Montanari, 2015; 2018).
GAI++ in (Ramdas et al., 2017) improves the class of GAI,
with LORD++ as an explicit example. The SAFFRON
procedure, proposed by (Ramdas et al., 2018), further im-
proves the LORD procedures by adaptively estimating the
proportion of true nulls, and is the current state-of-the-art in
online FDR control for multiple hypothesis testing.

To understand the main differences between the SAFFRON
and the LORD procedures, we first introduce an oracle
estimate of the FDP as FDP∗(t) =

∑
j≤t,j∈H0 αj

|R(t)| . The nu-
merator

∑
j≤t,j∈H0 αj overestimates the number of false

discoveries, so FDP∗(t) overestimates the FDP. The or-
acle estimator FDP∗(t) cannot be calculated since H0 is
unknown. LORD’s naive estimator

∑
j≤t αj/|R(t)| is a

natural overestimate of FDP∗(t). The SAFFRON’s thresh-
old sequence is based on a novel estimate of FDP as

F̂DPSAFFRON(t) =

∑
j≤t αj

I(pj>λj)

1−λj
|R(t)| , where {λj}∞j=1 is a

sequence of user-chosen parameters in the interval (0, 1),
which can be a constant or a deterministic function of the
information up to time t − 1. This estimate provides the
null-proportion adaptivity basis for SAFFRON.

Our private algorithm is built upon the LORD++ and the
SAFFRON algorithms, which are given formally in Al-
gorithm 3 and 4 in Appendix A. As a class of GAI, the
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LORD++ and the SAFFRON both start off with an er-
ror budget, which will be allocated to different tests over
time. The wealth budget decays as each hypothesis is tested,
and it earns back wealth on every rejection except for the
first. The decay factors γj that depreciate past wealth is a
non-increasing sequence summing to one, which ensures
that the sum of the wealth budget is always below the de-
sired level α. SAFFRON involves an additional candidacy
checking step to be null-proportion adaptive: it never loses
wealth when testing candidate p-values with pj < λj . The
sequence {λj}∞j=1 can be defined by any coordinatewise
non-decreasing function gt. For example, {λj}∞j=1 can be a
deterministic sequence of constants, or λt = αt, as in the
case of alpha-investing. These λj values serve as a weak
overestimate of αj . The algorithm first checks if a p-value is
below λj , and if so, adds it to the candidate set of hypothe-
ses that may be rejected. It then computes the αj threshold
based on current wealth, current size of the candidate set,
and the number of rejections so far, and decides to reject the
hypothesis if pj ≤ αj .

Both LORD++ and SAFFRON require that the input se-
quence of p-values are still valid p-values given past infor-
mation. which is formalized as conditional super-uniformity
of null p-values, with respect to a filtration process on the
sequence of rejection decisions {Rj} and candidacy {Cj}
(for SAFFRON). This is stated formally in Appendix A.
Intuitively, it means that the sequence of hypotheses cannot
be overly adaptive. Independent p-values is a special case
of conditional super-uniformity.

SAFFRON provides the following accuracy guarantees un-
der this condition.

Theorem 2 ((Ramdas et al., 2018)). If the null p-values are
conditionally super-uniformly distributed, then we have:
(a) E

[∑
j≤t,j∈H0 αj

I(pj>λj)
1−λj

]
≥ E

[
|H0 ∩R(t)|

]
;

(b) The condition F̂DPSAFFRON(t) ≤ α for all t ∈ N implies
that mFDR(t) ≤ α for all t ∈ N.
If the null p-values are independent of each other
and of the non-null p-values, and {αt} and {λt} are
coordinatewise non-decreasing functions of the vector
R1, . . . , Rt−1, C1, . . . , Ct−1, then
(c) E

[
F̂DPSAFFRON(t)

]
≥ E [FDP (t)] := FDR(t) for all

t ∈ N;
(d) The condition F̂DPSAFFRON(t) ≤ α for all t implies that
FDR(t) ≤ α for all t ∈ N.

3. Private online false discovery rate control
In this section, we provide our algorithm for private on-
line false discovery rate control, PAPRIKA, given formally
in Algorithm 1. It starts with SAFFRON, using SPARSE-
VECTOR to ensure privacy of the rejection set. However,
the combination of these tools is far from immediate, and

several algorithmic innovations are required, including: dy-
namic thresholds in SPARSEVECTOR to accommodate the
alpha-investing rule, adding noise that scales with the multi-
plicative sensitivity of p-values to reduce the noise required
for privacy, shifting the SparseVector threshold to accom-
modate FDR as a novel accuracy metric, and the candidacy
indicator step which cannot be done privately and requires
modifications to the wealth updates. We resolve this by
using a similar wealth updating rule as in LORD++. We
provide new analysis for both privacy and accuracy. Com-
plete proofs of our privacy and accuracy results appear in
the appendix; we elaborate here on the algorithmic details
and why these modifications are needed to ensure privacy
and FDR control.

The non-private online false discovery rate control algo-
rithms decide to reject hypothesis t if the corresponding
p-value pt is less than the rejection threshold αt; that is, if
pt ≤ αt. We instantiate the SPARSEVECTOR framework
in this setting, where pt plays the role of the tth query an-
swer ft(X), and αt plays the role of the threshold. Note
that SPARSEVECTOR uses a single fixed threshold for all
queries, while our algorithm PAPRIKA allows for a dy-
namic threshold that depends on the previous output. Our
privacy analysis of the algorithm accounts for this change
and shows that dynamic thresholds do not affect the privacy
guarantees of SPARSEVECTOR. However, the algorithm
would not be private if the dynamic thresholds also depend
on the data. Note that SAFFRON never loses wealth when
testing candidate p-values with pj ≤ λj , and the threshold
αj depends on the data since it is based on current wealth.
We remove such dependence in PAPRIKA by losing wealth
at every step regardless of whether we test a candidate p-
values, similar to LORD++. This will result in stricter
FDR control (and potentially weaker power) because our
wealth decays faster.

Similar to prior work on private offline FDR control (Dwork
et al., 2018), we use multiplicative sensitivity as described
in Definition 2, as p-values may have high sensitivity and
require unacceptably large noise to be added to preserve
privacy. We assume that our input stream of p-values
p1, p2, . . . , each has multiplicative sensitivity (η, µ). As
long as µ is small enough (i.e., less than the rejection thresh-
old), we can treat the logarithm of the p-values as the queries
with additive sensitivity η. Because of this change, we must
make rejection decisions based on the logarithm of the p-
values, so our reject condition is log pt +Zt ≤ logαt +Zα
for Laplace noise terms Zt, Zα drawn from the appropriate
distributions.
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Algorithm 1 PAPRIKA(α, λ,W0, γ, c, ε, δ, s)

Input: stream of p-values {p1, p2, . . .} with mutiplica-
tive sensitivity (η,µ), target FDR level α, initial wealth
W0 < α, positive non-increasing sequence {γj}∞j=0 of
summing to one, expected number of rejections c, privacy
parameters ε, δ, threshold shift magnitude s, maximum
number of p-values k.
Let Z0

α ∼ Lap(2ηc/ε), count = 0,
A = scη

ε log 2
3 min{δ,1−((1−δ)/ exp(ε))1/k}

for each p-value pt do
if count ≥ c then Output Rt = 0
else
Sample Zt ∼ Lap(4ηc/ε). Set λt =
gt(R1:t−1, C1:t−1). Set the indicator for candi-
dacy Ct = I(log pt < log 2λt).
if t = 1
then Set α1 = (1− 2λ1)γ1W0

else
Compute αt = (1 − 2λt)(W0γt + (α −W0)γt−τ1 +∑
j≥2 αγt−τj )

if Ct = 1 and log pt + Zt ≤ logαt −A+ Zcount
α

then OutputRt = 1. Set count = count +1 and sample
Zcount
α ∼ Lap(2ηc/ε)

else Output Rt = 0
end for

The accuracy guarantees of SPARSEVECTOR ensure that
if a value is reported to be below threshold, then with
high probability it will not be more than αSV above the
threshold. However, to ensure that our algorithm satis-
fies the desired bound FDR ≤ α, we require that re-
ports of “below threshold” truly do correspond to p-values
that are below the desired threshold αt. To accommodate
this, we shift our rejection threshold logαt down by a pa-
rameter A. A is chosen such that the algorithm satisfies
(ε, δ)-differential privacy, but the choice can be seen as in-
spired by the αSV -accuracy term of SPARSEVECTOR as
given in Theorem 1. Therefore our final reject condition is
log pt + Zt ≤ logαt − A+ Zα. This ensures that “below
threshold” reports are below (logαt −A) + αSV ≈ logαt
with high probability. Empirically, we see that the bound of
A in Theorem 3 may be overly conservative and lead to no
hypotheses being rejected, so we allow an additional scaling
parameter s that will scale the magnitude of shift by a factor
of s. The conservative bounds of Theorem 3 correspond
to s = 4, but in many scenarios a smaller value of s = 1
or 2 will lead to better performance while still satisfying
the privacy guarantee. Further guidance choosing this shift
parameter is given in Appendix C.1.

Even with these modifications, a naive combination of
SPARSEVECTOR and SAFFRON would still not satisfy
differential privacy. This is due to the candidacy indicator

step of the algorithm. In the SAFFRON algorithm, a pre-
processing candidacy step occurs before any rejection deci-
sions. This step checks whether each p-value pt is smaller
than a loose upper bound λt on the eventual reject threshold
αt. The algorithm chooses αt using an α-investing rule
that depends on the number of candidate hypotheses seen
so far, and ensures that αt ≤ λt, so only hypotheses in
this candidate set can be rejected. These λ values are used
to control F̂DPSAFFRON(t), which serves as a conservative
overestimate of FDP(t). (For a discussion of how to choose
λt, see Lemma 1 or our experimental results in Section 4.
Reasonable choices would be λt = αt or a small constant
such as 0.2.)

Without adding noise to the candidacy condition, there may
be neighboring databases with p-values pt, p′t for some hy-
pothesis such that log pt < log λt < log p′t, and hence the
hypothesis would have positive probability of being rejected
under the first database and zero probability of rejection un-
der the neighbor. This would violate the (ε, 0)-differential
privacy guarantee intended under SPARSEVECTOR. If we
were to privatize the condition for candidacy using, for ex-
ample, a parallel instantiation of SPARSEVECTOR, then we
would have to reuse the same realizations of the noise when
computing the rejection threshold αt to still control FDP,
but this would no longer be private.

Since we cannot add noise to the candidacy condition, we
weaken it in PAPRIKA to be log pt < log 2λt

1 Then if a
hypothesis has different candidacy results under neighbor-
ing databases and the multiplicative sensitivity η is small,
then the hypothesis is still extremely unlikely to be rejected
even under the database for which it was candidate. To
see this, consider a pair of neighboring databases that in-
duce p-values where log pt < log 2λt < log p′t. Due
to the multiplicative sensitivity constraint, we know that
log pt ≥ log 2λt − η. Plugging this into the rejection
condition log pt + Zt ≤ logαt − A + Zα, we see that
we would need the difference of the noise terms to satisfy
Zt−Zα ≤ log 1

2 −A+η, which by analysis of the Laplace
distribution, will happen with exponentially small probabil-
ity in n when η = poly−1(n).2 Our PAPRIKA algorithm
is thus (ε, δ)-differentially private, and we account for this

1We note that although this change is algorithmically equiva-
lent to scaling up the parameter λt by a factor of 2, this slack is
relevant for certain instantiations of PAPRIKA that set λt = αt,
which we show perform well empirically. (See Section 4 for more
details.) We write this step as a relaxation of the candidacy con-
dition both for notational consistency with existing non-private
alpha-investing-based FDR control methods, such as SAFFRON
AI (Ramdas et al., 2018), that also choose λt = αt, and to em-
phasize that this slack in the candidacy condition is necessary in
ensuring differential privacy of the overall algorithm.

2Such values of η are typical; see examples in Section 4 where
η = 1√

n
. The shift term A also has dependence on η which

contributes to the bound.



Private Online False Discovery Rate Control

failure probability in our (exponentially small) δ parameter,
as stated in Theorem 3.

One may wonder whether this candidacy step in necessary
at all. Since we have removed the dependence of αt on
the size of the candidate set in PAPRIKA, the threshold
αt is no longer null-proportion sensitive. The advantage of
being null-proportion adaptive in SAFFRON increases as
the proportion of non-nulls increases, but we focus on the
case where the non-nulls are sparse, and thus it has little
impact in our setting. In Section 4, we empirically compare
PAPRIKA to two private versions of LORD++, which
we call PrivLORD and PrivLORD2. The former combines
SPARSEVECTOR and LORD++, with the same threshold
shifting as described earlier in this section. The latter adds
the candidacy checking step on top of PrivLORD. We see
in Section 4.2 that both methods provide poor FDR control
relative to PAPRIKA, thus providing empirical evidence
that the candidacy step in PAPRIKA plays a vital role in
FDR control, even if αt is not null-proportion sensitive. Fur-
ther details about PrivLORD and PrivLORD2 are deferred
to Appendix C.

Our PAPRIKA algorithm allows analysts to specify a max-
imum number of hypotheses tested k and rejections c. We
require a bound on the maximum number of hypotheses
tested because the accuracy guarantees of SPARSEVECTOR
only allows exponentially (in the size of the database) many
queries to be answered accurately. Once the total number of
rejections reaches c, the algorithm will fail to reject all future
hypotheses. We do not halt the algorithm as in SPARSEVEC-
TOR and therefore, PAPRIKA does not have a stopping
criterion, and we can safely talk about the FDR control at
any fixed time, just like SAFFRON and LORD++.

Our algorithm also controls at each time t,

F̂DPPAPRIKA(t) ≤
∑
j≤t αt

I(pj>2λj)

1−2λj

|R(t)| . We note that

this is equivalent to F̂DPSAFFRON(t) by scaling down λj by
a factor of 2. By analyzing and bounding this expression,
we achieve FDR bounds for our PAPRIKA algorithm, as
stated in Theorem 4.

Theorem 3. For any stream of p-values {p1, p2, . . .}, PA-
PRIKA is (ε, δ)-differentially private.

As a starting point, our privacy comes from SPARSEVEC-
TOR, but as discussed above, many crucial modifications are
required. To briefly summarize the key considerations, we
must handle different thresholds at different times, multi-
plicative rather than additive sensitivity, a modified notion
of the candidate set, and introducing a small delta parameter
to account for the new candidate set definition and the shift.
The proof of Theorem 3 appears in Appendix D.

Next we describe the theoretical guarantees of FDR con-
trol for our private algorithm PAPRIKA which is an ana-

log of Theorem 2. We modify the notation of the condi-
tional super-uniformity assumption of SAFFRON to in-
corporate the added Laplace noise. The conditions are
otherwise identical. (See (2) in Appendix A for com-
parison.) We note that independent p-values is a spe-
cial case of conditional super-uniformity, but this require-
ment more generally allows for a broader class of de-
pendencies among p-values. Let Rj := I(pj + Zj ≤
αj + Zα) be the rejection decisions, and let Cj := I(pj ≤
2λj) be the indicators for candidacy. We let αt :=
ft(R1, . . . , Rt−1, C1, . . . , Ct−1), where ft is an arbitrary
function of the first t− 1 indicators for rejections and can-
didacy. Define the filtration formed by the sequences of σ-
fields F ′t := σ(R1, . . . , Rt, C1, . . . , Ct, Z1, . . . , Zt, Zα).
The null p-values are conditionally super-uniformly dis-
tributed with respect to the filtration F ′ if when the null
hypothesis Hi is true, then Pr(pt ≤ αt|F ′t−1

) ≤ αt. We
emphasize that this condition is only needed for FDR con-
trol, and that our privacy guarantee of Theorem 3 holds
for arbitrary streams of p-values, even those which do not
satisfy conditional super-uniformity.

Our FDR control guarantees for PAPRIKA mirror those of
SAFFRON (Theorem 2). The first two statements apply if
p-values are conditionally super-uniform, and the last two
statements apply if the p-values are additionally indepen-
dent under the null. The proof of Theorem 4 appears in
Appendix E.

Theorem 4. If the null p-values are conditionally super-
uniformly distributed, then we have:
(a) E

[∑
j≤t,j∈H0 αj

I(pj>2λj)
1−2λj

]
+ δt ≥ E

[
|H0 ∩R(t)|

]
;

(b)The condition F̂DPPAPRIKA(t) ≤ α for all t ∈ N implies
that mFDR(t) ≤ α+ δt for all t ∈ N.
If the null p-values are independent of each other
and of the non-null p-values, and {αt} and {λt} are
coordinate-wise non-decreasing functions of the vector
R1, . . . , Rt−1, C1, . . . , Ct−1, then
(c) E

[
F̂DPPAPRIKA(t)

]
+ δt ≥ E [FDP (t)] := FDR(t)

for all t ∈ N;
(d) The condition F̂DPPAPRIKA(t) ≤ α for all t implies that
FDR(t) ≤ α+ δt for all t ∈ N.

Relative to the non-private guarantees of Theorem 2, the
FDR bounds provided by PAPRIKA are weaker by an
additive of δt. In most differential privacy applications, δ is
typically required to be cryptographically small (i.e., at most
negligible in the size of the database) (Dwork & Roth, 2014),
so this additional term should have a minuscule effect on the
FDR.3 We note that ε plays a role in the analysis of Theorem

3Alternatively, δ could be treated like a tunable parameter to
balance the tradeoff between privacy and FDR control. If an
analyst has an upper bound on the allowable slack in FDR, say
0.01, then she could set δ = 0.01/t to ensure her desired bound.
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4, although it does not appear in FDR bounds. Equation
(22) in the appendix shows that the additive slack term δt

in Theorem 4 is in fact min
{
δ, 1− ((1− δ)/ exp(ε))

1
k

}
t,

which is upper bounded by δt.

The following lemma is a key tool in the proof of Theorem 4.
Though it is qualitatively similar to Lemma 2 in (Ramdas
et al., 2018), it is crucially modified to show an analogous
statement holds under the addition of Laplace noise. Its
proof appears in Appendix F.

Lemma 1. Assume p1, p2, . . . are all independent
and let h : {0, 1}k → R be any coordinate-wise
non-decreasing function. Assume ft and gt are
coordinate-wise non-decreasing functions and that
αt = ft(R1:t−1, C1:t−1) and λt = gt(R1:t−1, C1:t−1).
Then for any t ≤ k such that Ht ∈ H0, we have
E
[

αtI(pt>2λt)
(1−2λt)h(R1:k) |F

′t−1
]

≥ E
[

αt
h(R1:k) |F

′t−1
]

and E
[

min{αt exp(Zα−Zt−A),1}
h(R1:k) |F ′t−1

]
≥

E
[
I(log pt+Zt≤logαt+Zα−A)

h(R1:k) |F ′t−1
]
.

There are no known theoretical bounds on the statistical
power of SAFFRON even in the non-private setting. In-
stead, we validate power empirically through the experimen-
tal results in Section 4.

4. Experiments
We experimentally compare the FDR and the statistical
power of variations of the PAPRIKA and SAFFRON pro-
cedures, under different sequences of {λj}. Following the
convention of (Ramdas et al., 2018), we define PAPRIKA-
Alpha-Investing, or PAPRIKA AI, to be the instantiation
of Algorithm 1 with the sequence λj = αj , where the
rejection threshold matches the α-investing rule, and we
use PAPRIKA to denote Algorithm 1 instantiated with a
sequence of constant of λj , which in our experiments is
λj = 0.2. We use λj = 0.5 in SAFFRON.4 We gener-
ally observe that, even under moderately stringent privacy
restrictions, PAPRIKA and its AI variant perform compa-
rably to the non-private alternatives, with PAPRIKA AI
typically outperforming PAPRIKA. This suggests that even
though setting λj as a fixed constant may be easier for imple-
mentation, parameter optimization can lead to meaningful
performance improvements. We chose the sequence {γj} to
be a constant 1/k up to time k. Note that the sequence can be
decreasing such as of the form γj ∝ j−s in (Ramdas et al.,
2018), which controls the wealth to be more concentrated
around small values of j. See (Ramdas et al., 2018) for more
discussion on the choice of {γj}. In our experiments, we
set the target FDR level α+ δt = 0.2, and thus our privacy

4Recall from Section 3 that our λj is equivalent to the λj in
SAFFRON scaling down by a factor of 2.

parameter δ is set to be bounded by 0.2/800 = 2.5× 10−4.
The maximum number of rejections c = 40. All the results
are averaged over 100 runs. We investigate two settings: the
observations come Bernoulli distributions in Section 4.1,
and the observations are generated from truncated exponen-
tial distributions in Section 4.3. In Section 4.2, we com-
pare our algorithm against other private algorithms. In Ap-
pendix C.1, we discuss our choice of the shift parameter A
and give guidance on how to choose this parameter in prac-
tice. Code for PAPRIKA and our experiments is available
at https://github.com/wanrongz/PAPRIKA.

4.1. Testing with Bernoulli Observations

We assume that the database D contains n individuals with
k independent features. The ith feature is associated with n
i.i.d. Bernoulli variables ξi1, . . . , ξ

i
n, each of which takes the

value 1 with probability θi, and takes the value 0 otherwise.
Let ti be the sum of the ith features. A p-value for testing
null hypothesis Hi

0 : θi ≤ 1/2 against Hi
1 : θi > 1/2

is given by pi(D) =
∑n
k=ti

1
2n

(
n
k

)
. (Dwork et al., 2018)

showed that pi is (µ, η)-multiplicatively sensitive for µ =

m−1−c and η �
√

logn
n , where m ≤ poly(n) and c is

any small positive constant. We choose θi = 0.5 with
probability 1− π1, and θi = 0.75 with probability π1, for
varying values of π1, which represents the expected fraction
of non-null hypotheses. We consider relatively small values
of π1 as most practical applications of FDR control (such
as GWAS studies) will have only a small fraction of true
“discoveries” in the data.

In the following experiments, we sequentially test Hi
0 ver-

sus Hi
1 for i = 1, . . . , k. We use n = 1000 as the size of

the database D, and k = 800 as the number of features
as well as the number of hypotheses. Our experiments
are run under several different shifts A, but due to space
constraints, we only report results in the main body with
A = cη

ε log 2
3 min{δ,1−((1−δ)/ exp(ε))1/k} (i.e., when s = 1),

which still satisfies our privacy guarantee. Further discus-
sion on the choice of A and additional results under other
shift parameters s are deferred to Appendix C.1. The re-
sults are summarized in Figure 1, which plots the FDR and
statistical power against the expected fraction of non-nulls,
π1. In Figure 1(a) and (b), we compare our algorithms
with privacy parameter ε = 5 to the non-private baseline
methods of LORD (Javanmard & Montanari, 2015; 2018),
Alpha-investing (Aharoni & Rosset, 2014), and SAFFRON
and SAFFRON AI from (Ramdas et al., 2018). In Figure
1(c,d) and (e,f), we compare the performance of PAPRIKA
AI and PAPRIKA, respectively, with varying privacy pa-
rameters ε = 3, 5, 10. We also list these values in Table 1
in Appendix C.2.

As expected, the performance of PAPRIKA generally di-
minishes as ε decreases. A notable exception is that FDR

https://github.com/wanrongz/PAPRIKA
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also decreases in Figure 1(c). This phenomenon is because
we set λj = αj , resulting in a smaller candidacy set and
leading to insufficient rejections. Surprisingly, PAPRIKA
AI also yields a lower FDR than many of the non-private
algorithms (Figure 1(a)), since it tends to make fewer re-
jections. We also see that PAPRIKA AI performs dramati-
cally better than PAPRIKA, suggesting that the choice of
λj = αj should be preferred to constant λj to ensure good
performance in practice.
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Figure 1. FDR and statistical power versus fraction of non-null
hypotheses π1 for PAPRIKA (with λj = 0.2), PAPRIKA AI
(with λj = αj), and non-private algorithms when the database
consists of Bernoulli observations.

4.2. Comparison with Other Private Algorithms

As PAPRIKA is the first algorithm for private online FDR
control, there is no private baseline for comparison. In
Appendix C, we show that naı̈ve Laplace privatization of
SAFFRON is ineffective. This naı̈ve approach applies the
Laplace Mechanism (Dwork et al., 2006) to the p-values
of each hypothesis, and then uses these noisy p-values as
input to SAFFRON. We see that this baseline mechanism
performs extremely poorly relative to PAPRIKA and PA-
PRIKA AI.

We also compare our PAPRIKA against PrivLORD and

PrivLORD2 with Bernoulli observations in Figure 2 and
truncated exponential observations in Figure 6 in Appendix
4.3. For comparison, we use the same shift A for the four
algorithms, but we note thatA should be larger in PrivLORD
to control FDR at the level 0.2 as it lacking the candidate
checking step, and a larger A leads to worse power, see
Section C.1.
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Figure 2. FDR and statistical power versus fraction of non-nulls
π1 for PAPRIKA (with λj = 0.2), PAPRIKA AI (with λj =
αj), and PrivLORD and PrivLORD2 when the database consists
of Bernoulli observations.

We make three key observations. First, PrivLORD makes
significantly more false discoveries than the other three algo-
rithms, suggesting that the candidacy checking step largely
offsets against the added noise for private algorithms. The
performance of PrivLORD gets closer to PAPRIKA and
PAPRIKA AI when we add less noise as ε goes large.
Second, PAPRIKA with constant λt has stricter FDR con-
trol and slightly weaker power compared to PrivLORD2
as expected, since the threshold αt in PAPRIKA has an
additional constant (1− 2λt) factor. Third, PAPRIKA AI
provides dramatically better FDR and power tradeoffs—it
controls FDR at a much lower level while maintaining power
at a similar level as other methods (even the best in Figure
2(f) and 6(d)), suggesting PAPRIKA with a smart choice
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of the predictable sequence {λt} is preferred.

4.3. Testing with Truncated Exponential Observations

We again assume that the database D contains n individu-
als with k independent features. The ith feature is associ-
ated with n i.i.d. truncated exponential distributed variables
ξi1, . . . , ξ

i
n, each of which is sampled according to density

fi(x | θi, b) = θi exp(−θix)
1−exp(−bθi)I(0 ≤ x ≤ b), for positive

parameters b and θi. Let ti be the realized sum of the ith
features, and let Ti denote the random variable of the sum of
the n truncated exponential distributed variables in the ith
entry. A p-value for testing the null hypothesis Hi

0 : θi = 1
against the alternative hypothesis Hi

1 : θi > 1 is given by,
pi(D) = Prθi=1(Ti > ti). (Dwork et al., 2018) showed
that pi is (µ, η)-multiplicatively sensitive for µ = m−1−c

and η �
√

logn
n , where m ≤ poly(n) and c is any small

positive constant. In the following experiments, we gener-
ate our database using the exponential distribution model
truncated at b = 1. We set θi = 1 with probability 1− π1,
and θi = 1.95 with probability π1, again varying the value
of π1.

We sequentially test Hi
0 versus Hi

1 for i = 1, . . . , k. We
use n = 1000 as the size of the database D, and k = 800
as the number of features as well as the number of hy-
potheses. While there is no closed form to compute the
p-values, the sum of n = 1000 i.i.d. samples is approxi-
mately normally distributed by the Central Limit Theorem.
The expectation and the variance of ξij with b = 1 are

E
[
ξij
]

= 1
θi

+ 1
1−exp(θi)

and Var[ξij ] = 1
θ2i
− exp(θi)

(exp(θi)−1)2 ,
respectively. Therefore, Ti is approximately distributed
as N (nE

[
ξij
]
, nVar[ξij ]), and we compute the p-values

accordingly. We run the experiments with shift A =
cη
ε log 2

3 min{δ,1−((1−δ)/ exp(ε))1/k} (shift magnitude s = 1).
The results are shown in Figure 3, which plots the FDR and
statistical power against the expected fraction of non-nulls,
π1.

As in the case with binomial data, we see that the perfor-
mance of PAPRIKA generally diminishes as ε decreases,
and that PAPRIKA AI outperforms PAPRIKA, again re-
inforcing the need for tuning the parameters λj based on
the alpha-investing rule. All methods perform well in this
setting, and the FDR of PAPRIKA AI is visually indistin-
guishable from 0 at all levels of ε and π1 tested. Numerical
values are listed in Table 2 in Appendix C for ease of com-
parison.

Additionally in Appendix C: we plot the rejection threshold
αt and wealth of all methods over time in Figure 4, and find
that our private algorithms are consistent with the rejections
of the non-private algorithms, another perspective which
empirically confirms their accuracy. We also vary θi, which

parameterizes the strength of the signal between the null
and alternative hypotheses. We also vary the signal in the
alternative hypotheses and Figure 5 shows that performance
begins to decline with a weaker signal. Finally, in Appendix
C.1 we discuss how the shift parameter A should be chosen
to balance the tradeoff between FDR and statistical power,
displaying results in Figure 7.
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Figure 3. FDR and statistical power versus fraction of non-nulls π1

for PAPRIKA (with λj = 0.2), PAPRIKA AI (with λj = αj),
and non-private algorithms when the database consists of truncated
exponential observations.
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