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In Appendix A, we show a summary of our theoretical results, compare it with related work, and demonstrate the complete
proofs. In Appendix B, we visualize the key characteristics for improving the gradient estimator, and formally justify
the existence of the optimal scale. In Appendix C, we show how the target models, i.e., the models we attacked in the
experiments, are prepared. In Appendix D, we include more details about our PSBA-PGAN, such as the architecture
and training of the projection model, the detailed algorithmic description of the progressive scaling procedure, and the
implementation details. In Appendix E, we show additional quantitative experimental results and ablation studies. Finally,
in Appendix F, we randomly sample a few original and attacked image pairs to demonstrate the efficiency of our attack
compared with other baselines.

A. Theorems and Proofs
This appendix contains a discussion and comparison of theoretical results and all omitted mathematical proofs.

A.1. An outline of Main Theoretical Results

We summarize our main theoretical results—the lower bound of cosine similarity between the estimated gradient and the
true gradient, in Table 2.

In the table:

• “Expectation” indicates the bound of the expected cosine similarity;

• “Concentration” indicates the bound of the cosine similarity that holds with probability at least 1− p;

• “At Boundary” indicates the case where the estimated point is an exact boundary point, i.e., Sx∗(x) = 0;

• “Approaching Boundary” indicates the general case where the estimated point is away from the decision boundary
within a small distance θ (measured along the true gradient direction).

“At Boundary” is actually a special case of “Approaching Boudary” with θ = 0. In the main text, we only present Theorems 1
and 2 that are for the general case, i.e., “Approaching Boundary” case.

Table 2. A brief summary of the cosine similarity bounds for the boundary gradient estimator in Section 4.1.
Expectation Concentration

At Boundary Theorem 3 Theorem 4
Approaching Boundary Theorem 1 Theorem 2

A.2. Comparison of Theoretical Results

We compare our theoretical results with existing work in Table 3. Note that it is better to have fewer assumptions and be
applicable to more scenarios. As one can observe, our theoretical result is among the most general ones. Furthermore, as
discussed in Section 4.1, ours is also among the tightest ones. From these tightest bounds, under general assumptions, we
are able to discover the key characteristics and the existence of the optimal scale. The coarse bounds from the previous work
cannot reflect these properties.
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Table 3. A brief comparison of the cosine similarity bounds for the boundary gradient estimator in our work with existing work.
Scenario Assumption

At Boundary Approaching Boundary Sampling Projection
Expectation Concentration Expectation Concentration Orthogonal Identical Linear Orthogonal No Bias

HSJA (Chen et al., 2020) X X X X X X
QEBA (Li et al., 2020a) X X X X X

NonLinear-BA (Li et al., 2021) X X
Ours X X X X X

A.3. Proof of Lemma 4.1

Lemma 4.1 (∇f Decomposition). Under the assumption in Section 4.1, there exists a singular value decomposition of
∇f(0) = UΣV T such that

U:,1 = proj∇f(0)∇S(xt)/‖∇S(xt)‖2 or U:,1 = −proj∇f(0)∇S(xt)/‖∇S(xt)‖2

where U ∈ Rn×n and V ∈ Rm×m are orthogonal matrices; Σ = diag(α1, α2, . . . , αm) ∈ Rn×m≥0 is a rectangular
diagonal matrix with α1 > 0.

Proof of Lemma 4.1. For simplicity, we defineM := ∇f(0). According to the assumption, there exists a column vector
M:,c that is not orthogonal with the gradient direction∇S(xt). If c 6= 1, we define T := [ec e2 · · · ec−1 e1 ec+1 · · · em];
otherwise, we let T := Im. Here, ei ∈ Rm is a standard basis vector, i.e., it satisfies (ei)i = 1 and (ei)j = 0 for any j 6= i.
As the result,

M = [M:,cM:,2M:,3 · · ·M:,c−1M:,1M:,c+1 · · ·M:,m]T := M ′T .

Here M:,i stands for the i-th column vector of M . M ′ just exchanges the first column vector with the c-th column
vector of M . According to the assumption in Section 4.1, M ′

:,1 is aligned with projM∇(xt), and for i ≥ 2, we have
〈M ′

:,i,M
′
:,1〉 = 0.

Now, we apply QR decomposition to M ′ via Gram-Schmidt Process, which yields M ′ = U ′R, where U ′ ∈ Rn×n is
an orthogonal matrix, and R ∈ Rn×m is an upper-triangular matrix. We are going to show two interesting properties of

U ′ and R: 1) U ′:,1 =
projM∇S(xt)
‖projM∇S(xt)‖2

or U ′:,1 = − projM∇S(xt)
‖projM∇S(xt)‖2

; and 2) R can be written as
[
α1 0
0 R′

]
where α1 > 0

and R′ is an upper-triangular matrix. The first property is apparent, since in Gram-Schmidt Process, we always have
U ′:,1 = M ′

:,1/‖M ′
:,1‖2. Thus, it is equal to ±∇projMS(xt)/‖projM∇S(xt)‖2. For the second property, according to the

definition of the process, (R)1,i = 〈M ′
:,1,M

′
:,i〉 = 0. Meanwhile, α1 = ‖M ′

:,1‖22 > 0 sinceM ′
:,1 aligns with ∇S(xt) and

it is non-zero.

We apply SVD decomposition to the sub-matrix R′ ∈ R(n−1)×(m−1): R′ := S′Σ′W ′T. Here, S′ ∈ R(n−1)×(n−1) and
W ′ ∈ R(m−1)×(m−1) are orthogonal matrices, while Σ′ ∈ R(n−1)×(m−1) is a triangular diagonal matrix. Therefore, R
can be decomposed as such:

R =

[
α1 0
0 R′

]
=

S︷ ︸︸ ︷[
1 0
0 S′

] Σ︷ ︸︸ ︷[
α1 0
0 Σ′

] W T︷ ︸︸ ︷[
1 0
0 W ′T

]
.

It is easy to observe that Σ = diag(α1, α2, · · · , αm) is a rectangular diagonal matrix with α1 > 0, and V is an orthogonal
matrix. Notice that

∇f(0) = M = M ′T = U ′RT = U ′SΣW TT

=

 | | · · · |
U ′:,1 U ′:,2 · · · U ′:,m
| | · · · |

[1 0
0 S′

]
ΣW TT

=
[
U ′:,1 U ′:,2:mS

′]︸ ︷︷ ︸
U

ΣW TT︸ ︷︷ ︸
V T

.

We have already shownU ′:,1 =
proj∇f(0)∇S(xt)
‖proj∇f(0)∇S(xt)‖2

orU ′:,1 = − proj∇f(0)∇S(xt)
‖proj∇f(0)∇S(xt)‖2

. To finish the proof, we only need to verify

that U and V are orthogonal matrices. Since U ′ and S′ are both orthogonal matrices, the U ′:,2:mS
′ is a semi-orthogonal
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matrix (the column vectors are unitary and orthogonal). Furthermore, U ′:,1 ⊥ span(U ′:,2:m) because U ′ is an orthogonal
matrix. Thus, U ′:,1 ⊥ span(U ′:,2:mS

′). As the result, U is an orthogonal matrix. For V , V TV = W TTT TW = Im so it is
an orthogonal matrix.

A.4. Warmup: Expectation Bound at Boundary

As a warm-up, we begin with the special case where the point is exactly the boundary point.

The proof of the following theorems require the following lemma.

Lemma A.1 (Cosine Similarity in Projected Subspace). LetW ∈ Rn×m be a matrix. The vector w ∈ Rn is in span(W ),
and the vector v ∈ Rn has non-zero projection in span(W ), i.e., projW v 6= 0. Then,

cos〈w, v〉 = cos〈w, projW v〉 · ‖projW v‖2
‖v‖2

. (5)

Proof of Lemma A.1. The lemma can be illustrated by simple geometry. To be rigorous, here we give an algebraic proof.

cos〈w, v〉 =
〈w, v〉
‖w‖2‖v‖2

=
〈w, v〉

‖w‖2‖projW v‖2
· ‖projW v‖2
‖v‖2

.

We notice that w ∈ span(w), and v = projW v + (v − projW v) where (v − projW v) is orthogonal to w. Thus,

〈w, v〉 = 〈w, projW v〉.

So

cos〈w, v〉 = cos〈w, projW v〉 · ‖projW v‖2
‖v‖2

.

Remark. The lemma reveals that for any vector w in span(W ), the maximum possible cosine similarity between w and v is
‖projW v‖2/‖v‖2. This is achieved by setting w = k · projW v.

Theorem 3 (Expected cosine similarity; at boundary). The difference function S and the projection f are as defined before.
For a boundary point xt such that S(xt) = 0, let estimated gradient ∇̃S(xt) be as computed by Definition 2 with step size δ
and sampling size B. Over the randomness of the sampled vectors {ub}Bi=1,

cos〈E∇̃S(xt),∇S(xt)〉 ≥
‖proj∇f(0)∇S(xt)‖2
‖∇S(xt)‖2

·

1− (m− 1)2δ2

8α2
1

δγ2
α1

+
γ

α1

√∑m
i=2 α

2
i

m− 1
+

√
1

m− 1
1.58βf

2
 ,

(6)
where

γ := βf +
βS
(
maxi∈[m] αi + 1/2δβf

)2
‖proj∇f(0)∇S(xt)‖2

. (7)

Proof of Theorem 3. We begin with an important lemma.

Lemma A.2. We let

w :=
1

2
δ

(
βf‖∇S(xt)‖2 + βS

(
‖∇f(0)‖2 +

1

2
δβf

)2
)
. (8)

On the point xt such that S(xt) = 0, for any δ > 0 and unit vector u ∈ Rn,

〈∇S(xt), ∇f(0) · u〉 > w =⇒ φ(xt + ∆f(δu)) = 1,

〈∇S(xt), ∇f(0) · u〉 < −w =⇒ φ(xt + ∆f(δu)) = −1.
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Proof of Lemma A.2. We prove the lemma by Taylor expansion and the smoothness condition on S and f . First, from
Taylor expansion on function ∆f(δu) at the origin,

∆f(δu) = f(δu)− f(0) = ∇f(0) · (δu) + 1/2(δu)T∇2f(ξ)(δu), (9)

where ξ is a point on the segment between the origin and (δu). Since f is βf -smooth, ‖1/2(δu)T∇2f(ξ)(δu)‖2 ≤ 1/2βfδ
2.

Thus,
〈∇S(xt),∆f(δu)〉 ∈ δ〈∇S(xt),∇f(0) · u〉 ± 1/2δ2‖∇S(xt)‖2βf .

Also we have

‖∆f(δu)‖2 ≤ ‖∇f(0) · (δu)‖2 + ‖1/2(δu)T∇2f(ξ)(δu)‖2 ≤ δ‖∇f(0)‖2 + 1/2βfδ
2.

Easily seen, this also applies to any point ξ′ between the origin and (δu). Now, we apply Taylor expansion on function
S (xt + ∆f(δu)) at point xt, and get

S(xt + ∆f(δu)) =

0︷ ︸︸ ︷
S(xt) +〈∇S(xt),∆f(δu)〉+ 1/2(∆f(ξ′))T∇2S(xt)(∆f(ξ′))

∈ δ〈∇S(xt),∇f(0) · u〉 ± 1/2δ2‖∇S(xt)‖2βf ± 1/2βS
(
δ‖∇f(0)‖2 + 1/2βfδ

2
)2

= δ
(
〈∇S(xt),∇f(0) · u〉 ± 1/2δ

(
‖∇S(xt)‖2βf + βS (‖∇f(0)‖2 + 1/2δβf )

2
))

= δ (〈∇S(xt),∇f(0) · u〉 ± w) .

Since the step size δ > 0,
〈∇S(xt), ∇f(0) · u〉 > w =⇒ S(xt + ∆f(δu)) > 0,

〈∇S(xt), ∇f(0) · u〉 < −w =⇒ S(xt + ∆f(δu)) < 0.

Observing that φ is the sign function of S according to Definition 1, we conclude the proof.

Remark. This lemma shows the connection between the value of sign function and the direction alignment between∇f(0)·u
and the true gradient.

Then, we study the distribution of∇f(0) · u.

Lemma A.3.
〈∇S(xt),∇f(0) · u〉 ∼ α1‖proj∇f(0)∇S(xt)‖2

(
2Beta

(
m− 1

2
,
m− 1

2

)
− 1

)
. (10)

Meanwhile, for any c ∈ [−‖∇S(xt)‖2,+‖∇S(xt)‖2],

E [∇f(0) · u | 〈∇S(xt),∇f(0) · u〉 = c] = c
proj∇f(0)∇S(xt)

‖proj∇f(0)∇S(xt)‖22
. (11)

Proof of Lemma A.3. According to Lemma 4.1, ∇f(0) = UΣV T. Since V is an orthongonal basis of Rm, and u is
uniformly sampled from the uniform sphere Sm−1, we let v = V Tu and v ∼ Unif(Sm−1) too. Then,

〈∇S(xt),∇f(0) · u〉 = 〈∇S(xt),UΣv〉 =
〈
∇S(xt),

m∑
i=1

αiviU:,i

〉
= α1v1‖proj∇f(0)∇S(xt)‖2

〈 proj∇f(0)∇S(xt)

‖proj∇f(0)∇S(xt)‖2
,U:,1

〉
(∗)
= ±α1v1‖proj∇f(0)∇S(xt)‖2,

(12)

where (∗) follows from U is an orthogonal basis with U:,1 = ±∇proj∇f(0)S(xt)/‖proj∇f(0)∇S(xt)‖2 as Lemma 4.1
shows.

From (Yang et al., 2020) (Lemma I.23), 1+v1
2 ∼ Beta

(
m−1
2 , m−12

)
, where Beta(·, ·) stands for the Beta distribution. As the

result,

α1v1‖proj∇f(0)∇S(xt)‖2 ∼ α1‖proj∇f(0)∇S(xt)‖2
(

2Beta
(
m− 1

2
,
m− 1

2

)
− 1

)
.
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Observing that this is a symmetric distribution centered at 0, we have

〈∇S(xt),∇f(0) · u〉 ∼ α1‖proj∇f(0)∇S(xt)‖2
(

2Beta
(
m− 1

2
,
m− 1

2

)
− 1

)
,

which proves the first part of the lemma.

For the second part, hereinafter, we condition the distribution of u on 〈∇S(xt),∇f(0) · u〉 = c. According to Eq. (12), the
condition means that

v1 = c1 :=
c

α1‖proj∇f(0)∇S(xt)‖2

〈 proj∇f(0)∇S(xt)

‖proj∇f(0)∇S(xt)‖2
,U:,1

〉
.

Here we define the constant c1. Since v ∼ Unif(Sm−1), it means that under this condition, v′ = (v2, v3, · · · , vm) is
uniformly sampled from the (m− 1)-dimension hypersphere with radius r =

√
1− c21. Therefore,

E[∇f(0) · u | 〈∇S(xt),∇f(0) · u〉 = c] = E[UΣv | v1 = c1]

=E

[
α1v1U:,1 +

m∑
i=2

αiviU:,i

∣∣∣ v1 = c1

]
= α1c1U:,1 +

m∑
i=2

E [αiviU:,i|v1 = c1]

=c
proj∇f(0)∇S(xt)

‖proj∇f(0)∇S(xt)‖22
+

m∑
i=2

αiU:,i · E[vi|v1 = c1].

(13)

Since under this condition, v′ = (v2, · · · , vm) is uniformly sampled from a hypersphere centered at the origin (with radius
r), we have E[vi|v1 = c1] = 0 for i ≥ 2 by the symmetry of Beta distribution. Thus,

E[∇f(0) · u | 〈∇S(xt),∇f(0) · u〉 = c] = c
proj∇f(0)∇S(xt)

‖proj∇f(0)∇S(xt)‖22
.

Remark. The lemma considers the distribution of sampled vector u after the transformation by f approximated in the
first-order. The first equation of the lemma, Eq. (10), reveals the distribution of the projection (dot product) onto the true
gradient direction. The distribution is a linearly scaled Beta distribution. The second equation of the lemma, Eq. (11),
reveals that the sampled vector is unbiased on any direction orthogonal to the true gradient, i.e., conditioned on the same
projected length on the true gradient direction, the expectation of the sampled vector aligns with the projected true gradient
direction without any directional bias.

According to Lemma 4.1, we write ∇f(0) = UΣV T. For notation simplicity, we let proj∇f(0)∇Ŝ(xt) denote

the normalized true gradient: proj∇f(0)∇Ŝ(xt) := proj∇f(0)∇S(xt)/‖proj∇f(0)∇S(xt)‖2. Furthermore, we let

s := 〈proj∇f(0)∇Ŝ(xt),U:,1〉 ∈ {±1} denote the sign between these two aligned vectors.

With respect to the randomness of u ∼ Unif(Sm−1), we denote v to V Tu ∼ Unif(Sm−1), and we define the following
three events E−, Eo, and E+:

E− :〈∇S(xt),∇f(0) · u〉 ∈ (−∞,−w), (14)
Eo :〈∇S(xt),∇f(0) · u〉 ∈ [−w,+w], (15)

E+ :〈∇S(xt),∇f(0) · u〉 ∈ (+w,+∞). (16)

From Lemma A.3, we denote p to Pr[Eo], and by the symmetry of Beta distribution, Pr[E−] = Pr[E+] = (1 − p)/2.
From Eq. (12), we know 〈∇S(xt),∇f(0) · u〉 = α1‖proj∇f(0)∇S(xt)‖2sv1. Therefore, with events E− and E+,
|v1| > w

α1‖proj∇f(0)∇S(xt)‖2
while the signs of v1 are different between the two events; and with event Eo, |v1| ≤

w
α1‖proj∇f(0)∇S(xt)‖2

.

According to the definition of the gradient estimator in Definition 2, we have E∇̃S(xt) = E[φ(xt + ∆f(δu))∆f(δu)].
According to Eq. (9), for any unit vector u,

φ(xt + ∆f(δu))∆f(δu) = φ(xt + ∆f(δu)) (δ∇f(0) · u+ ξδu) = δφ(xt + ∆f(δu))∇f(0) · u+ ξ′δu
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where ξδu and ξ′δu are vectors depended by δu with length ≤ 1/2βfδ
2. Therefore,

‖E∇̃S(xt)− δE[φ(xt +∇f(δu))∇f(0) · u]‖2 ≤ 1/2βfδ
2. (17)

Now, we inspect E[φ(xt +∇f(δu))∇f(0) · u]:

E[φ(xt+∇f(δu))∇f(0)·u] =

(∗)︷ ︸︸ ︷
pE [φ(xt +∇f(δu))∇f(0) · u |Eo] +

(∗∗)︷ ︸︸ ︷
1− p

2

(
E
[
−∇f(0) · u |E−

]
+ E

[
∇f(0) · u |E+

])
.

(18)
According to Lemma A.3 (Eq. (11)),

E[∇f(0) · u |E+] = E[|v1| |E+]α1proj∇f(0)∇Ŝ(xt), E[∇f(0) · u |E−] = E[−|v1| |E−]α1proj∇f(0)∇Ŝ(xt).

By symmetry of Beta distribution, E [|v1| |E+] = E [|v1| |E−], and

(∗∗) =
1− p

2

(
E
[
−∇f(0) · u |E−

]
+ E

[
∇f(0) · u |E+

])
= (1− p)α1E

[
|v1| |E+

]
proj∇f(0)∇Ŝ(xt).

For (∗), we notice that

E [φ(xt +∇f(δu))∇f(0) · u |Eo] Eq. 13
= E

[
φ(xt +∇f(δu))

(
α1v1s · proj∇f(0)∇Ŝ(xt) +

m∑
i=2

αiviU:,i

) ∣∣∣Eo]

= α1sE [φ(xt +∇f(δu))v1 |Eo] proj∇f(0)∇Ŝ(xt) +

m∑
i=2

αiE [φ(xt +∇f(δu))vi |Eo]U:,i.

Combining them with Eq. (18), we have

E[φ(xt +∇f(δu))∇f(0) · u] =α1

(
psE [φ(xt +∇f(δu))v1 |Eo] + (1− p)E

[
|v1| |E+

])
proj∇f(0)∇Ŝ(xt)

+ p

m∑
i=2

αiE [φ(xt +∇f(δu))vi |Eo]U:,i.

We notice that {proj∇f(0)∇Ŝ(xt),U:,2, · · · ,U:,m} is an orthogonal basis of Rn. Thus,∥∥E[φ(xt +∇f(δu))∇f(0) · u]− α1E [|v1|] proj∇f(0)∇Ŝ(xt)
∥∥
2

=
∥∥∥α1

(
psE [φ(xt +∇f(δu))v1 |Eo] + (1− p)E

[
|v1| |E+

]
− E [|v1|]

)
proj∇f(0)∇Ŝ(xt)

+ p

m∑
i=2

αiE [φ(xt +∇f(δu))vi |Eo]U:,i

∥∥∥
2

=

√√√√√√α2
1

(
psE [φ(xt +∇f(δu))v1 |Eo] + (1− p)E

[
|v1| |E+

]
− E [|v1|]

)2︸ ︷︷ ︸
(I)

+

m∑
i=2

α2
i p

2E [φ(xt +∇f(δu))vi |Eo]2︸ ︷︷ ︸
(II)

.

We bound the two terms (I) and (II) individually. For the first term, we notice that∣∣psE [φ(xt +∇f(δu))v1 |Eo] + (1− p)E
[
|v1| |E+

]
− E [|v1|]

∣∣
≤p
∣∣E [φ(xt +∇f(δu))v1 |Eo]

∣∣+
∣∣(1− p)E [|v1| |E+

]
− (1− p)E

[
|v1| |E+

]
− pE [|v1| |Eo]

∣∣
≤pE [|v1| |Eo] + pE [|v1| |Eo] = 2pE [|v1| |Eo] ≤

2pw

α1‖proj∇f(0)∇S(xt)‖2
.

For the second term, we have

(II) = p2
m∑
i=2

α2
iE [φ(xt +∇f(δu))vi |Eo]2 ≤ p2

m∑
i=2

α2
iE [|vi| |Eo]2 ≤ p2

m∑
i=2

α2
iE
[
v2i |Eo

]
.
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Since v = (v1, v2, . . . , vm)T is uniformly sampled from Sm−1, conditioned on every sampled v1, the vector (v2, . . . , vm)T

is uniformly sampled from the
√

1− v21Sm−2. We let v′ = (v′2, . . . , v
′
m)T be uniformly sampled from Sm−2. Thus,

for every sampled v1, we always have E
[
v2i | v1

]
≤ E

[
v′i

2
]

because v′ is sampled from a larger hypersphere. By

stacking all sampled v1’s that forms the event Eo, we have (II) ≤ p2
∑m
i=2 α

2
iE
[
v′i

2
]
. According to (Yang et al., 2020),

1+v′i
2 ∼ Beta

(
m
2 − 1, m2 − 1

)
, whose variance Var

(
1+v′i
2

)
= 1

4(m−1) . Since Var
(

1+v′i
2

)
= E

[(
1+v′i
2

)2]
−E

[
1+v′i
2

]2
=

1
4E
[
v′i

2
]
, we have E

[
v′i

2
]

= 1
m−1 . Thus,

(II) ≤ p2
m∑
i=2

α2
iE
[
v′i

2
]

=
1

m− 1
p2

m∑
i=2

α2
i .

As a result,

∥∥E[φ(xt + ∆f(δu))∇f(0) · u]− α1E [|v1|] proj∇f(0)∇Ŝ(xt)
∥∥
2
≤

√
4p2w2

‖proj∇f(0)∇S(xt)‖22
+
p2
∑m
i=2 α

2
i

m− 1
. (19)

Combining Eq. (19) with Eq. (17), we have

‖E∇̃S(xt)− δα1E [|v1|] proj∇f(0)∇Ŝ(xt)‖2 ≤ pδ

√
4w2

‖proj∇f(0)∇S(xt)‖22
+

∑m
i=2 α

2
i

m− 1
+ 1/2βfδ

2. (20)

It means
cos〈E∇̃S(xt), proj∇f(0)∇S(xt)〉

= cos
〈
E∇̃S(xt), δα1E [|v1|] proj∇f(0)∇Ŝ(xt)

〉

≥1− 1

2

pδ
√

4w2

‖proj∇f(0)∇S(xt)‖22
+

∑m
i=2 α

2
i

m−1 + 1
2βfδ

2

δα1E [|v1|]


2

≥1− 1

2

 2pw

α1E [|v1|] ‖proj∇f(0)∇S(xt)‖2
+

p

α1E [|v1|]

√∑m
i=2 α

2
i

m− 1
+

δβf
2α1E [|v1|]

2

.

(21)

To this point, we need to unfold p and E [|v1|]. From the definition of event Eo(Eq. (15)),

p = Pr
[
−w/(α1‖proj∇f(0)∇S(xt)‖2) ≤ v1 ≤ w/(α1‖proj∇f(0)∇S(xt)‖2)

]
= Pr

[
v21 ≤ w2/(α2

1‖proj∇f(0)∇S(xt)‖2)
]
,

where v21 ∼ Beta(1/2, (m− 1)/2) (Chen et al., 2020). Thus, let B(·, ·) be the Beta function,

p =

∫ w2

α2
1‖proj∇f(0)∇S(xt)‖22

0

x−1/2(1− x)
m−3

2

B
(
1
2 ,

m−1
2

) dx ≤ 2w

B( 1
2 ,

m−1
2 )α1‖proj∇f(0)∇S(xt)‖2

. (22)

Also, from (Li et al., 2021) (Lemma 1), we have

E [|v1|] = 2

∫ 1

0

x(1− x2)
m−3

2

B( 1
2 ,

m−1
2 )

dx =
2

(m− 1) ·B( 1
2 ,

m−1
2 )

. (23)

Plugging them into Eq. (21):

cos〈E∇̃S(xt), proj∇f(0)∇S(xt)〉 ≥

1− 1

2

 m− 1

α2
1‖proj∇f(0)∇S(xt)‖2

 2w2

‖proj∇f(0)∇S(xt)‖2
+ w

√∑m
i=2 α

2
i

m− 1

+
δβf (m− 1)B( 1

2 ,
m−1
2 )

4α1

2

.
(24)
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We apply Stirling’s approximation with error bound to (m− 1)B( 1
2 ,

m−1
2 ):

√
2π(m− 1) ≤ (m− 1)B

(
1

2
,
m− 1

2

)
≤ 1.26

√
2π(m− 1) for all m ≥ 1,

and plug w (Eq. (8)) in (we also replace ‖∇f(0)‖2 by maxi∈[m] αi):

cos〈E∇̃S(xt), proj∇f(0)∇S(xt)〉

≥1− 1

2

 m− 1

α2
1‖proj∇f(0)∇S(xt)‖2

 2w2

‖proj∇f(0)∇S(xt)‖2
+ w

√∑m
i=2 α

2
i

m− 1

+ 0.315
√

2π(m− 1)
δβf
α1

2

=1− (m− 1)2δ2

8α2
1

 δ

α1

(
βf‖proj∇f(0)∇S(xt)‖2 + βS

(
maxi∈[m] αi + 1/2δβf

)2
‖proj∇f(0)∇S(xt)‖2

)2

+
1

α1

√∑m
i=2 α

2
i

m− 1

βf‖proj∇f(0)∇S(xt)‖2 + βS
(
maxi∈[m] αi + 1/2δβf

)2
‖proj∇f(0)∇S(xt)‖2

+ 0.63

√
2π

m− 1
βf

2

≥1− (m− 1)2δ2

8α2
1

δγ2
α1

+
γ

α1

√∑m
i=2 α

2
i

m− 1
+

√
1

m− 1
1.58βf

2

.

(25)

According to Lemma A.1, we have

cos〈E∇̃S(xt),∇S(xt)〉 ≥
‖proj∇f(0)∇S(xt)‖2
‖∇S(xt)‖2

·

1− (m− 1)2δ2

8α2
1

δγ2
α1

+
γ

α1

√∑m
i=2 α

2
i

m− 1
+

√
1

m− 1
1.58βf

2
 .

(26)

A.5. Warmup: Concentration Bound at Boundary

Now we consider the concentration bound for the boundary point gradient estimation.

Theorem 4 (Concentration of cosine similarity; at boundary). Under the same setting as Theorem 3, over the randomness
of the sampled vector {ub}Bi=1, with probability 1− p,

cos〈∇̃S(xt),∇S(xt)〉

≥
‖proj∇f(0)∇S(xt)‖2
‖∇S(xt)‖2

·

1− (m− 1)2δ2

8α2
1

δγ2
α1

+
γ

α1

√∑m
i=2 α

2
i

m− 1
+

1.58βf + 1
δ

√∑m
i=1 α

2
i ·
√

2
B ln(mε )

√
m− 1

2 ,

(27)
where

γ := βf +
βS
(
maxi∈[m] αi + 1/2δβf

)2
‖∇S(xt)‖2

. (28)

Proof of Theorem 4. The key idea for the proof is to bound the `2 distance from the estimated gradient vector to the
expectation of the estimated gradient vector via concentration bounds. Then, the bound is combined to the proof of
Theorem 3, concretely, Eq. (19), to derive the required result.

In the proof, to distinguish the “p” in probability bound from the definition in Eq. (15), we change this variable to “ε”, i.e.,
the bound reads “with probability 1− ε, . . . ”.
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We note that the gradient estimator per Definition 2 is

∇̃S(xt) =
1

B

B∑
b=1

φ(xt + ∆f(δub))∆f(δub)

where ub ∼ Unif(Sm−1). Thus, let u ∼ Unif(Sm−1),∥∥∇̃S(xt)− δE [φ(xt + ∆f(δu))∇f(0) · u]
∥∥
2

(i.)
=
∥∥∥ 1

B

B∑
b=1

φ(xt + ∆f(δub))∇f(0) · (δub) +
1

B

B∑
b=1

ξδub − δE [φ(xt + ∆f(δu))∇f(0) · u]
∥∥∥
2

≤1/2βfδ
2 + δ

∥∥∥ 1

B

B∑
b=1

φ(xt + ∆f(δub))∇f(0) · ub − E [φ(xt + ∆f(δu))∇f(0) · u]
∥∥∥
2

=1/2βfδ
2 + δ

∥∥ 1

B

B∑
b=1

φ(xt + ∆f(δub))UΣvb − E [φ(xt + ∆f(δu))UΣv]
∥∥∥
2

(Lemma 4.1, v = V Tu)

=1/2βfδ
2 + δ

∥∥∥ 1

B

B∑
b=1

m∑
i=1

φ(xt + ∆f(δub))U:,iαivb,i −
m∑
i=1

E [φ(xt + ∆f(δu))U:,iαivi]
∥∥∥
2

=1/2βfδ
2 + δ

∥∥∥ m∑
i=1

αiU:,i

(
1

B

B∑
b=1

φ(xt + ∆f(δub))vb,i − E[φ(xt + ∆f(δu))vi]

)∥∥∥
2

(ii.)
= 1/2βfδ

2 + δ

√√√√ m∑
i=1

α2
i

(
1

B

B∑
b=1

φ(xt + ∆f(δub))vb,i − E[φ(xt + ∆f(δu))vi]

)2

.

In (i.), ‖ξδub‖2 ≤ 1/2βfδ
2 from Taylor expansion as in Eq. (12). In (ii.), U:,i’s are orthogonal basis vectors.

For each i, since the φ(xt+∆f(δub))vb,i’s for different b’s are independent, and within range [−1, 1], we apply Hoeffding’s
inequality and yield

Pr

[∣∣∣ 1

B

B∑
b=1

φ(xt + ∆f(δub))vb,i − E[φ(xt + ∆f(δu))vi]
∣∣∣ ≤√ 2

B
ln
(m
ε

)]
≥ 1− ε

m
.

From union bound, with probability 1− ε, for any i ∈ [m], we have

∣∣∣ 1

B

B∑
b=1

φ(xt + ∆f(δub))vb,i − E[φ(xt + ∆f(δu))vi]
∣∣∣ ≤√ 2

B
ln
(m
ε

)
.

Under this condition, we have

∥∥∇̃S(xt)− δE [φ(xt + ∆f(δu))∇f(0) · u]
∥∥
2
≤ 1/2βfδ

2 + δ

√√√√ m∑
i=1

α2
i ·
√

2

B
ln
(m
ε

)
. (29)

Note that a tighter concentration may be achieved by replacing the Hoeffding’s inequality by other tailored tail bounds for
Beta-distributed vi’s. But due to the uncertainty brought by the sign term φ(·), it is challenging. On the other hand, for these
i.i.d. random variable’s concentration, the Hoeffding’s inequality is tight in terms of orders due to central limit theorem.

Now, we combine Eq. (29) with Eq. (19) and get

‖∇̃S(xt)−δα1E [|v1|] proj∇f(0)∇Ŝ(xt)‖2 ≤ pδ

√
4w2

‖proj∇f(0)∇S(xt)‖22
+

∑m
i=2 α

2
i

m− 1
+δ

√√√√ m∑
i=1

α2
i ·
√

2

B
ln
(m
ε

)
+1/2βfδ

2,

(30)
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where∇Ŝ is the normalized tue gradient, p := Pr[Eo], and Eo is as defined in Eq. (15). Similar as Eq. (21):

cos〈∇̃S(xt), proj∇f(0)∇S(xt)〉 ≥ 1− 1

2

pδ
√

4w2

‖proj∇f(0)∇S(xt)‖22
+

∑m
i=2 α

2
i

m−1 + δ
√∑m

i=1 α
2
i ·
√

2
B ln

(
m
ε

)
+ 1

2βfδ
2

δα1E [|v1|]


2

.

Following the similar process as in the proof of Theorem 3, we get

cos〈∇̃S(xt),∇S(xt)〉

≥
‖proj∇f(0)∇S(xt)‖2
‖∇S(xt)‖2

·

1− (m− 1)2δ2

8α2
1

δγ2
α1

+
γ

α1

√∑m
i=2 α

2
i

m− 1
+

1.58βf + 1
δ

√∑m
i=1 α

2
i ·
√

2
B ln(mε )

√
m− 1

2 .

(31)

A.6. Main Result: Expectation Bound Near Boundary (Theorem 1)

Theorem 1 (Expected cosine similarity; approaching boundary). The difference function S and the projection f
are as defined before. For a point xt that is θ-close to the boundary, i.e., there exists θ′ ∈ [−θ, θ] such that
S(xt + θ′∇S(xt)/‖∇S(xt)‖2) = 0, let estimated gradient ∇̃S(xt) be as computed by Definition 2 with step size δ
and sampling size B. Over the randomness of the sampled vectors {ub}Bi=1,

cos〈E∇̃S(xt),∇S(xt)〉 ≥
‖proj∇f(0)∇S(xt)‖2
‖∇S(xt)‖2

·1− (m− 1)2δ2

8α2
1

δγ2
α1

+
γ

α1

√∑m
i=2 α

2
i

m− 1
+

1.58βf√
m− 1

+
γθ

α1δ
· ‖∇S(xt)‖2
‖proj∇f(0)∇S(xt)‖2

2
 ,

(32)
where

γ := βf +
βS
(
maxi∈[m] αi + 1/2δβf

)2
+ βSθ

2/δ2

‖proj∇f(0)∇S(xt)‖2
. (33)

Proof of Theorem 1. The high-level idea is similar to the proof of Theorem 3: we build the connection between
〈∇S(xt,∇f(0) · u〉 and φ(xt + ∆f(δu)). Then, due to the unbiased sampling, the expectation of estimated gradient is
close to the true gradient direction with bounded error.

For simplicity, from the symmetry and monotonicity, we let θ′ = θ, i.e., S(xt + θ∇S(xt)/‖∇S(xt)‖2) = 0.

Lemma A.4. We let

w :=
1

2
δ

(
βf‖∇S(xt)‖2 + βS

(
‖∇f(0)‖2 +

1

2
δβf

)2
)

+
βSθ

2

2δ
. (34)

On the point xt such that S(xt + θ∇S(xt)/‖∇S(xt)‖2) = 0, for any δ > 0 and unit vector u ∈ Rn,

〈∇S(xt), ∇f(0) · u〉 > w +
θ‖∇S(xt)‖2

δ
=⇒ φ(xt + ∆f(δu)) = 1,

〈∇S(xt), ∇f(0) · u〉 < −w +
θ‖∇S(xt)‖2

δ
=⇒ φ(xt + ∆f(δu)) = −1.

Proof of Lemma A.4. We do Taylor expansion on S(xt + ∆f(δu)) at point xt:

S(xt + ∆f(δu)) ∈ S(xt) + δ
(
〈∇S(xt),∇f(0) · u〉 ± 1/2δ

(
‖∇S(xt)‖2βf + βS (‖∇f(0)‖2 + 1/2δβf )

2
))

.
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Notice that S(xt + θ∇S(xt)/‖∇S(xt)‖2) can also be expanded at point xt:

0 = S(xt + θ∇S(xt)/‖∇S(xt)‖2) ∈ S(xt) + θ‖∇S(xt)‖2 ±
1

2
βSθ

2,

i.e.,

S(xt) ∈ −θ‖∇S(xt)‖2 ±
1

2
βSθ

2.

Therefore,

S(xt+∆f(δu)) ∈ δ

(
〈∇S(xt),∇f(0) · u〉 − θ‖∇S(xt)‖2

δ
± 1

2
δ

(
‖∇S(xt)‖2βf + βS

(
‖∇f(0)‖2 +

1

2
δβf

)2
)
± βSθ

2

2δ

)
.

Noticing that φ(xt + ∆f(δu)) = sgn (S(xt + ∆f(δu)), we conclude the proof.

According to Lemma 4.1, we write ∆f(0) = UΣV T. We let ∇Ŝ(xt) denote the normalized true gradient: ∇Ŝ(xt) :=

∇S(xt)/‖∇S(xt)‖2. Furthermore, we define s := 〈∇Ŝ(xt),U:,1〉 ∈ {±1}, which is the sign between these two aligned
vectors.

With respect to the randomness of u ∼ Unif(Sm−1), we let v denote V Tu ∼ Unif(Sm−1), and we define the following
three events E−, Eo, and E+ with probability p−, po and p+ respectively:

E− :〈∇S(xt),∇f(0) · u〉 ∈ (−∞,−w + θ‖∇S(xt)‖2/δ), p− := Pr[E−] (35)
Eo :〈∇S(xt),∇f(0) · u〉 ∈ [−w + θ‖∇S(xt)‖2/δ,+w + θ‖∇S(xt)‖2/δ], po := Pr[Eo] (36)

E+ :〈∇S(xt),∇f(0) · u〉 ∈ (+w + θ‖∇S(xt)‖2/δ,+∞). p+ := Pr[E+] (37)

We notice that Lemma A.3 still holds since u is still uniformly sampled from hypersphere Sm−1 and Lemma 4.1 still holds
for ∇f(0). Thus,

〈∇S(xt),∇f(0) · u〉 = α1‖proj∇f(0)∇S(xt)‖2sv1.

And with event Eo, we have

|v1| ≤
w

α1‖proj∇f(0)∇S(xt)‖2
+

θ

α1δ
· ‖∇S(xt)‖2
‖proj∇f(0)∇S(xt)‖2

. (38)

Now, we can start to bound the error between expectation of estimated gradient and a scaled true gradient. As the first step,
according to Eq. (17), we have

‖E∇̃S(xt)− δE[φ(xt + ∆f(δu))∇f(0) · u]‖2 ≤
1

2
βfδ

2. (39)

Then we decompose E[φ(xt + ∆f(δu))∇f(0) · u] to connect it with the (projected) true gradient:

E[φ(xt + ∆f(δu))∇f(0) · u]

=poE[φ(xt + ∆f(δu))∇f(0) · u |Eo] + p+E[∇f(0) · u |E+] + p−E[−∇f(0) · u |E−]

=po
m∑
i=1

αiE [φ(xt + ∆f(δu))vi |Eo]U:,i + p+α1proj∇f(0)∇Ŝ(xt)sE[v1 |E+] + p−α1proj∇f(0)∇Ŝ(xt)sE[−v1 |E−]

=α1s
(
poE[φ(xt + ∆f(δu))v1 |Eo] + p+E[v1 |E+] + p−E[−v1 |E−]

)
proj∇f(0)∇Ŝ(xt)

+ po
m∑
i=2

αiE[φ(xt + ∆f(δu))vi |Eo]U:,i. (40)

We notice that∣∣s (poE[φ(xt + ∆f(δu))v1 |Eo] + p+E[v1 |E+] + p−E[−v1 |E−]
)
− E[|v1|]

∣∣
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=po |E[φ(xt + ∆f(δu))v1 − |v1| |Eo]| ≤ 2poE[|v1| |Eo]

≤2po

(
w

α1‖proj∇f(0)∇S(xt)‖2
+

θ

α1δ
· ‖∇S(xt)‖2
‖proj∇f(0)∇S(xt)‖2

)
. (Eq. (38))

For any i ≥ 2, we define a new vector v′ = (v′2, v
′
3, · · · , v′m) ∼ Unif(Sm−2). Thus,

E[φ(xt + ∆f(δu))vi |Eo] ≤ E[|vi| |Eo] ≤ E[|v′i|].

Combining the above equations to Eq. (40), we get∥∥E[φ(xt + ∆f(δu))∇f(0) · u]− α1E [|v1|] proj∇f(0)∇Ŝ(xt)
∥∥
2

≤

√√√√4α2
1(po)2

(
w

α1‖proj∇f(0)∇S(xt)‖2
+

θ

α1δ
· ‖∇S(xt)‖2
‖proj∇f(0)∇S(xt)‖2

)2

+ (po)2
m∑
i=2

α2
iE[|v′i|]2

≤po

√√√√4α2
1

(
w

α1‖proj∇f(0)∇S(xt)‖2
+

θ

α1δ
· ‖∇S(xt)‖2
‖proj∇f(0)∇S(xt)‖2

)2

+

m∑
i=2

α2
i

m− 1
. (41)

Combining with Eq. (39):∥∥E∇̃S(xt)− δα1E [|v1|] proj∇f(0)∇Ŝ(xt)
∥∥
2

≤δpo

√√√√4α2
1

(
w

α1‖proj∇f(0)∇S(xt)‖2
+

θ

α1δ
· ‖∇S(xt)‖2
‖proj∇f(0)∇S(xt)‖2

)2

+

m∑
i=2

α2
i

m− 1
+

1

2
βfδ

2.
(42)

Thus,

cos〈E∇̃S(xt), proj∇f(0)∇S(xt)〉

≥1− 1

2

 2pow

α1E [|v1|] ‖proj∇f(0)∇S(xt)‖2
+

2poθ

α1δE [|v1|]
· ‖∇S(xt)‖2
‖proj∇f(0)∇S(xt)‖2

+
po

α1E [|v1|]

√∑m
i=2 α

2
i

m− 1
+

δβf
2α1E [|v1|]

2

.

(43)
We notice that v1 is distributed around 0 with symmetry and concentration, so

po = Pr[Eo] = Pr

[
sv1 ∈

[
− w

α1‖proj∇f(0)∇S(xt)‖2
+

θ

α1δ
· ‖∇S(xt)‖2
‖proj∇f(0)∇S(xt)‖2

,

w

α1‖proj∇f(0)∇S(xt)‖2
+

θ

α1δ
· ‖∇S(xt)‖2
‖proj∇f(0)∇S(xt)‖2

]]

≤Pr

[
v21 ≤

w2

α2
1‖proj∇f(0)∇S(xt)‖22

]
Eq.22
≤ 2w

B( 1
2 ,

m−1
2 )α1‖proj∇f(0)∇S(xt)‖2

.

And from Eq. (23),

E [|v1|] =
2

(m− 1) ·B( 1
2 ,

m−1
2 )

.

Insert them into Eq. (43), we get

cos〈E∇̃S(xt),∇S(xt)〉 ≥
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+
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m− 1

2
 ,

(44)
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A.7. Main Result: Concentration Bound Near Boundary (Theorem 2)

Theorem 2 (Concentration of cosine similarity; approaching boundary). Under the same setting as Theorem 1, over
the randomness of the sampled vector {ub}Bi=1, with probability 1 − p, Under the same setting as Theorem 1, over the
randomness of the sampled vector {ub}Bi=1, with probability 1− p,

cos〈E∇̃S(xt),∇S(xt)〉 ≥
‖proj∇f(0)∇S(xt)‖2
‖∇S(xt)‖2

·1− (m− 1)2δ2
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1
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+
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√∑m
i=2 α

2
i
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1.58βf√
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· ‖∇S(xt)‖2
‖proj∇f(0)∇S(xt)‖2

+

1
δ

√∑m
i=1 α

2
i ·
√

2
B ln(mp )

√
m− 1

2 ,

(45)
where

γ := βf +
βS
(
maxi∈[m] αi + 1/2δβf

)2
+ βSθ

2/δ2

‖proj∇f(0)∇S(xt)‖2
. (46)

Proof of Theorem 2. The proof follows the similar way as how we extend Theorem 3 to Theorem 4.

Similar as the proof in Theorem 4, by applying Hoefdding bound, with probability 1− ε,

∥∥∇̃S(xt)− δE [φ(xt + ∆f(δu))∇f(0) · u]
∥∥
2
≤ 1/2βfδ

2 + δ

√√√√ m∑
i=1

α2
i ·
√

2

B
ln
(m
ε

)
.

When this holds, combining it with Eq. (41), we get∥∥∇̃S(xt)− δE [φ(xt + ∆f(δu))∇f(0) · u]
∥∥
2

≤1

2
βfδ

2 + δ
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,

where po is as defined in Eq. (36). Thus,

cos〈∇̃S(xt), proj∇f(0)∇S(xt)〉
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.

We conclude the proof by observing that

cos〈∇̃S(xt),∇S(xt)〉 =
‖proj∇f(0)∇S(xt)‖2
‖∇S(xt)‖2

cos〈∇̃S(xt), proj∇f(0)∇S(xt)〉

from Lemma A.1.

A.8. Bound in Big-O Notation

We mainly simplify the bound in Theorems 1 and 2 by omitting the terms with smaller orders of m. In boundary attack,
following HSJA (Chen et al., 2017), we set binary search precision θ = (m

√
m)−1 and step size δt = ‖xt − x∗‖2/m =
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Θ(1/m). Therefore, θ/δ = Θ(1/
√
m). We first simplify γ in Theorems 1 and 2:

γ = βf +
βS
(
maxi∈[m] αi + 1/2δβf

)2
+ βSθ
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We plug in the γ into Theorem 2:
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We can discard all terms with negative order of m (since they will be negligible with respect to other terms when m is not
too small) and get
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Therefore, the bound in Theorem 2 becomes:
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It recovers the simplified bound in Fig. 3. Note the the last term ln(m/p)
Bα1

is the extra term of Theorem 2 that guarantees the
1− p holding probability, and discarding this term yields the version bound for the expectation bound (Theorem 1).

B. Discussion on Key Characteristics and Optimal Scale
This section illustrates the key characteristics for improving the gradient estimator, and discusses the existence of the optimal
scale.

B.1. Illustration of Key Characteristics

The figure illustrates the key characteristics, or the optimization goals, for improving the projection-based gradient estimator
as discussed in Section 4.1.
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Figure 9. An illustration of key characteristics for a good projection-based gradient estimator.

B.2. Existence of Optimal Scale

As discussed in Section 4.2, the scale is mapped to the dimensionality of the projection subspace—m.

Due to the trade-off between large ‖proj∇f(0)∇S(xt)‖2 and small m, from Eq. (47), we can intuitively learn that for a
given projection f , the optimal scale mopt always exists. Now we define this formally. We first explicitly show that f relies
on the dimensionality of the projection subspace. To do so, we use fm : Rm → Rn instead of the general notion f . fm can
be viewed as being drawn from a pre-defined projection function family F = {fi : i ∈ [n]}. Then, the optimal scale mopt
can be then explicit expressed as such:

mopt = arg max
m∈[n]

‖proj∇fm(0)∇S(xt)‖2
‖∇S(xt)‖2

·

(
1−O
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m2 ·
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+

ln(mp )

Bα1

)))
.

The objective function in above arg max encodes the precise bound in Theorem 2.

A SIMPLIFIED FORM FOR LINEAR CASE

When both the projection function fm and the difference function S are locally linear, i.e., βfm = βS = 0, we can simplify
the above equation as such:

mopt = arg max
m∈[n]

‖proj∇fm(0)∇S(xt)‖2
‖∇S(xt)‖2

(
1− Cm2 ln

(
m

p

))
,

where 0 < C < 1 is a constant.

Now, the existence of optimal scale becomes more apparent. While increasing m can increase
‖proj∇fm(0)∇S(xt)‖2

‖∇S(xt)‖2 , this term
has its upper bound 1. On the other hand, the m2 ln(m/p) in the second term will also be increased, and it is unbounded.
Therefore, an optimal m should be non-zero but not large, i.e., an optimal scale mopt usually exists.

The optimal scale depends on the actual function family fm and the difference function S. For common and practical cases,
as shown in Fig. 4, the objective function for arg max is usually unimodal so that the progressive scaling is guaranteed to
find the optimal scale. We leave it as our future work to theoretically analyze on what cases this objective function is strictly
unimodal.

C. Target Models
In this section, we introduce the target models used in the experiments including the implementation details and the target
model performance.

C.1. Implementation Details

Offline Models. Following (Li et al., 2020a; 2021), the pretrained ResNet-18 models are used here as the target models.
We also evaluate model ResNeXt50 32×4d (Xie et al., 2017) to demonstrate the generalization ability. For models that are
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finetuned, cross entropy error is employed as the loss function and is implemented as ‘torch.nn.CrossEntropyLoss’
in PyTorch.

For ImageNet, no finetuning is performed as the pretrained target model is just trained exactly on Ima-
geNet. The model is loaded with PyTorch command ‘torchvision.models.resnet18(pretrained=True)’
or ‘torchvision.models.resnext50 32x4d(pretrained=True)’ following the documentation (PyTorch,
2020).

For CelebA, the target model is fine-tuned to do binary classification on image attributes. Among the 40 binary attributes asso-
ciated with each image, the top-5 balanced attributes are ‘Attractive’, ‘Mouth Slightly Open’, ‘Smiling’, ‘Wearing Lipstick’,
‘High Cheekbones’. Though the ‘Attractive’ attribute is the most balanced one, however, it is more subjective than objective,
thus we instead choose the second attribute ‘Mouth Slightly Open’.

For MNIST and CIFAR-10 datasets, we first resize the original images to 224× 224 by linear interpolation, then the target
model is finetuned to do 10-way classification. One reason for doing interpolation is that it can provide us more spatial
scales to explore. The another reason is that the linear interpolation step also makes image sizes consistent among all the
tasks and experiments.

Commercial Online API. Among all the APIs provided by the Face++ platform (MEGVII, 2020c), the ‘Compare’
API (MEGVII, 2020a) which takes two images as input and returns a confidence score indicating whether they contain
the faces from the same person. This is also consistent with the same online attacking in (Li et al., 2020a; 2021). In
implementation during the attack process, the two image arrays with floating number values are first converted to integers
and stored as jpg images on disk. Then they are encoded as base64 binary data and sent as POST request to the request
URL (MEGVII, 2020b). We set the similarity threshold as 50% in the experiments following (Li et al., 2020a; 2021): when
the confidence score is equal to or larger than 50%, we consider the two faces to belong to the ‘same person’, vice versa.

For source-target images that are from two different persons, the goal of the attack is to get an adversarial image that looks
like the target image (has low MSE between the adversarial image and target image), but is predicted as ‘same person’
with the source image. We randomly sample 50 source-target image pairs from the CelebA dataset that are predicted as
different persons by the ‘Compare’ API. Then we apply the PSBA pipeline with various perturbation vector generators for
comparison.

C.2. Performance of Target Models

The benign accuracy of the target models finetuned on different datasets is shown in Table 4.

Table 4. The benign model accuracy of the target models.

Model MNIST CelebA CIFAR-10 ImageNet
ResNet-18 99.55% 93.77% 88.15% 69.76%

ResNeXt50 32×4d 99.33% 94.00% 90.26% 77.62%

D. Details on PSBA-PGAN
In this section, we introduce the details of Progressive-Scale based projection models including the architecture of Pro-
gressive GAN, the training procedure, the algorithm description for progressive scaling and gradient estimation, and the
implementation details.

D.1. The Architecture of Progressive GAN

Progressive GAN is a method developed by Karras et. al. (Karras et al., 2018) allowing gradually generating the image from
low resolution images to high resolution images. Here, we adopt the implementation of PGAN from pytorch GAN zoo (Re-
search, 2020) to help us explore the influence of different scales on attacking performance.
The Conv2d(n kernel, n stride, n pad) here applies He’s constant (He et al., 2015b) at runtime, and for simplicity, the
LeakyReLU(negative slope = 0.2) is denoted as LReLU. Besides, for the generator, we actually utilize bilinear interpolation
to implement ‘Unsample’ and utilize average pool to implement ‘Downsample’. Then, the detailed model network structures
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for the generator and discriminator with the maximum scale 224× 224 are listed in Table 5 and Table 6.

Table 5. The detailed model structure for generator in PGAN.

Generator Act Output shape
Latent vector - 9408× 1× 1

Fully-connected LReLU 8192× 1× 1
Resize - 512× 4× 4

Conv(3, 1, 1) LReLU 512× 4× 4
Upsample - 512× 7× 7

Conv(3, 1, 1) LReLU 256× 7× 7
Conv(3, 1, 1) LReLU 256× 7× 7

Upsample - 256× 14× 14
Conv(3, 1, 1) LReLU 256× 14× 14
Conv(3, 1, 1) LReLU 256× 14× 14

Upsample - 256× 28× 28
Conv(3, 1, 1) LReLU 128× 28× 28
Conv(3, 1, 1) LReLU 128× 28× 28

Upsample - 128× 56× 56
Conv(3, 1, 1) LReLU 64× 56× 56
Conv(3, 1, 1) LReLU 64× 56× 56

Upsample - 64× 56× 56
Conv(3, 1, 1) LReLU 32× 112× 112
Conv(3, 1, 1) LReLU 32× 112× 112

Upsample - 32× 224× 224
Conv(3, 1, 1) LReLU 16× 224× 224
Conv(3, 1, 1) LReLU 16× 224× 224
Conv(1, 1, 0) Tanh 3× 224× 224

D.2. Projection Model Training Procedure

First, we need to prepare the datasets for PGAN training, which comprise the gradient images generated from a set of
reference models. Generally, the reference models are assumed to have different structures compared with the blackbox target
model. Nonetheless, attacker-trained reference models can generate accessible gradients and provide valuable information
on the distribution of the target model gradients.

In our case, with the same setting as in (Li et al., 2021), there are five reference models (i.e., DenseNet-121 (Huang
et al., 2018), ResNet-50 (He et al., 2015a), VGG16 (Simonyan & Zisserman, 2015), GoogleNet (Szegedy et al., 2014)
and WideResNet (Zagoruyko & Komodakis, 2017)) with different backbones compared with the target model, while the
implementation and training details are similar with the target model in Section C.1. The benign test accuracy results of
these five reference models for MNIST, CIFAR-10 and CelebA datasets are shown in Table 7. After the reference models are
trained, their gradients with respect to the training data points are generated with PyTorch automatic differentiation function
with command ‘loss.backward()’. The loss is the cross entropy between the prediction scores and the ground truth labels.

For ImageNet and CelebA, we randomly sample 500, 000 gradient images (100, 000 per reference model) for each of
ImageNet and CelebA and fix them throughout the experiments for fair comparison.

For CIFAR-10 and MNIST, there are fewer images and so we use the whole dataset and generate 250, 000 gradient images
for CIFAR-10 (50, 000 per reference model) and 300, 000 (60, 000 per reference model) gradient images for MNIST.

For AE and VAE, they are directly trained on the original gradient datasets, and the training details can be found in (Li
et al., 2020a). However, for PGAN, since the size of the images from original gradient datasets is 224× 224, we down-scale
them by average pool first and then as the new training datasets when the PGAN is trained to build the low resolution image.
Actually, this training procedure is just the same as in (Karras et al., 2018), the only difference here is the so-called images
are gradient images generated from reference models instead of the real-world pictures.
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Table 6. The detailed model structure for discriminator in PGAN.
Discriminator Act Output shape
Input image - 3× 224× 224
Conv(1, 1, 0) - 16× 224× 224
Conv(3, 1, 1) LReLU 16× 224× 224
Conv(3, 1, 1) LReLU 32× 224× 224
Downsample - 32× 112× 112
Conv(3, 1, 1) LReLU 32× 112× 112
Conv(3, 1, 1) LReLU 64× 112× 112
Downsample - 64× 56× 56
Conv(3, 1, 1) LReLU 64× 56× 56
Conv(3, 1, 1) LReLU 128× 56× 56
Downsample - 128× 28× 28
Conv(3, 1, 1) LReLU 128× 28× 28
Conv(3, 1, 1) LReLU 256× 28× 28
Downsample - 256× 14× 14
Conv(3, 1, 1) LReLU 256× 7× 7
Conv(3, 1, 1) LReLU 512× 7× 7
Downsample - 512× 4× 4

Minibatch stddev - 513× 4× 4
Conv(3, 1, 1) LReLU 512× 4× 4

Fully-connected LReLU 512× 1× 1
Fully-connected Linear 1× 1× 1

D.3. Reference Model Performance

Intuitively, with well-trained reference models that perform comparatively with the target models, the attacker can get
gradient images that are in a more similar distribution with the target model’s gradients for training, thus increasing the
chance of an attack with higher quality. The reference model performance in terms of prediction accuracy for MNIST,
CIFAR-10, CelebA and ImageNet datasets are shown in Table 7. The model performance is comparable to that of the target
models.

D.4. Algorithm Description

We provide the pseudocode for the progressive-scale process with the PSBA-PGAN in Algorithm 1 (once the optimal scale
determined, it will be used across all the pairs of source and target images) and for frequency reduction gradient estimation
with the PGAN224 in Algorithm 2.

D.5. Attack Implementation

The goal is to generate an adversarial image that looks similar as the target image, i.e., as close as to the target image, but is
predicted as the label of the target image. We fix the random seed to 0 so that the samples are consistent across different
runs and various methods to ensure reproducibility and to facilitate fair comparison.

Table 7. The benign model accuracy of the reference models on four datasets. For the dataset MNIST and CIFAR10, the images are
linearly interpolated to size 224× 224; for the dataset CelebA, the attribute is chosen as ‘mouth slightly open’

Dataset DenseNet-121 ResNet-50 VGG16 GoogleNet WideResNet
MNIST 98.99% 99.43% 99.16% 99.46% 98.59%

CIFAR10 92.73% 88.47% 92.67% 92.26% 85.19%
CelebA 93.81% 94.02% 94.13% 91.77% 93.79%

ImageNet 74.65% 76.15% 71.59% 69.78% 78.51%
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Algorithm 1 The Process for Searching the Optimal Scale for PSBA-PGAN.
Input: a validation set which comprises ten pairs of source-target images, the PGANs with different output scales, access

to query the decision of target model.
Output: the optimal scale for attacking the target model.

1: optimal scale← 7× 7
2: lowest distance←∞
3: for s = 7× 7 to 224× 224 do
4: Take the PGAN generator with output scale s as the gradient estimator to attack the target model.
5: current distance ← the MSE of the the ten adversarial images to the corresponding target images after 10 step

attack. The number of sampled perturbation vectors per step is set to 100.
6: if current distance ≤ lowest distance then
7: lowest distance← current distance
8: optimal scale← s
9: else

10: return optimal scale
11: end if
12: end for
13: return optimal scale

Algorithm 2 Frequency Reduction Gradient Estimation
Input: a data point on the decision boundary x ∈ Rm, nonlinear projection function f , number of random sampling B,

access to query the decision of target model φ(·) = sgn(S(·)).
Output: the approximated gradient ∇̃S(x

(t)
adv).

1: Sample B random Gaussian vectors of the lower dimension: vb ∈ Rn.
2: Use PGAN224 to project the random vectors to the gradient space: ub = f(vb) ∈ Rm.
3: Do DCT transformation on each channel of ub and get the frequency representation: db = DCT(ub)
4: Save the k × k signals on the upper left corner and set other signals to zero : d′b = Filter(db)
5: Map the signals back to the original space by Inverse DCT transformation: u′b = IDCT(d′b)

6: Get query points by adding perturbation vectors with the original point on the decision boundary x(t)adv + δu′b.
7: Monte Carlo approximation for the gradient:
∇̃S(x

(t)
adv) = 1

B

∑B
b=1 φ

(
x
(t)
adv + δu′b

)
u′b = 1

B

∑B
b=1 sgn

(
S
(
x
(t)
adv + δu′b

))
u′b

8: return ∇̃S(x
(t)
adv)
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Gradient Estimation. For convenience and precision concern, we just use δtf(ub) instead of the theoretical representation
∆f(δtub), i.e., f(δtub)− f(0) in the actual calculation of estimated gradient ∇̃S(xt) and the f(ub) is normalized here.
Besides, the variance reduction balancing adopted in (Chen et al., 2020) is also applied in our gradient estimation out of the
concern for the accuracy of estimation.

Offline Models. During the attack, we randomly sample source-target pairs of images from each of the corresponding
datasets. We query the offline models with the sampled images to make sure both source image and target image are
predicted as their ground truth labels and the labels are different so that the attack is nontrivial. For the same dataset, the
results of different attack methods are reported as the average of the same 50 randomly sampled pairs.

Online API. For the online API attacks, the source-target pairs are sampled from the dataset CelebA. The results of
different attack methods are also reported as the average of the same 50 randomly sampled pairs.

E. Quantitative Results
E.1. Attack Setup

We randomly select 50 pairs of source and target images from test set that are predicted by the target model as different
classes for both offline attack and online attack. The goal here is to move the source image gradually to the target image
under the measure of MSE while maintaining being predicted as source label by the target model. In this process, the
number of sampled perturbation vectors at each step (B in Definition 2) is controlled as 100 for every gradient generator
in the Monte Carlo algorithm to estimate the gradient for fairness (except EA, in which the B is set to 1) . The optimal
dimensions chosen on the search space for EA are shown in Table 8, and other hyper-parameters are the same with the
setting in (Dong et al., 2019).

Table 8. The optimal dimension of the search space for EA on different datasets and target models.

Model MNIST CIFAR-10 CelebA ImageNet
ResNet-18 30× 30× 1 30× 30× 3 112× 112× 3 30× 30× 3

ResNeXt50 32×4d 30× 30× 1 45× 45× 3 45× 45× 3 45× 45× 3

E.2. Time and Resource Consumption

The optimal scale is usually small and relatively stable for an assigned dataset as shown in Appendix E.9. Indeed, from our
experimental observation, it is enough to just use 10 scr-tgt image pairs to determine the optimal scale within 10 minutes on
one 2080 Ti GPU. Besides, the model is trained before we start to attack, and the optimal scale is also determined before
the attack. So in fact, no matter in the training or attacking stage, the time and resource consumption are almost the same
with other generative model-based attacks (Li et al., 2021; Tu et al., 2020). The PGAN training time on scale 28× 28 for
ImageNet is about one day with two RTX 2080 Ti GPUs and that for the scale 224× 224 is about two days. We note that
the PGAN training can be done offline and is one-time training for attacking different models. Besides, the averaged attack
time with 10, 000 queries on ImageNet of HSJA is 114.2s, and that of PSBA is 136.4s. We remark that the bulk of PSBA
attack time is on the resize operation similar to the baseline QEBA-S (see (Li et al., 2020a)).

E.3. Attack Performance for Different Datasets and Target Models

The complete attack performance results for different datasets and target models are shown in Fig. 10. On complex datasets
like ImageNet, the major challenge is the excessive number of categories (1,000 on ImageNet). Thus, we suspect that the
geometry of model’s decision boundary is more non-smooth and complex, and therefore the general boundary attacks should
be harder to improve.

The ‘successful attack’ is defined as the xadv reaching some pre-defined distance threshold under the metric of MSE. Note
that because the complexity of tasks and images varies between datasets, we set different MSE thresholds for the datasets.
For example, ImageNet images are the most complicated so the task is most difficult, thus we set larger (looser) threshold for
it. The corresponding numerical results for small query number constrains are shown in Table 9 and Table 10, the visualized
attack success rates for different target models are shown in Fig. 11. Since in practice, we care about the efficiency more,
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Figure 10. Perturbation magnitude (MSE) w.r.t. query numbers. Row 1: For attacks on ResNet-18; Row 2: For attacks on
ResNeXt50 32×4d.

Figure 11. The attack success rate w.r.t. number of queries on four different datasets. Row 1: For attacks on ResNet-18; Row 2: For
attacks on ResNeXt50 32×4d.

Table 9. Comparison of the attack success rate for different attacks at query number 1K (the perturbation magnitude under MSE for each
dataset are: MNIST: 5e− 3; CIFAR10: 5e− 4; CelebA: 1e− 4; ImageNet: 1e− 2).

Data Model
# Queries = 1K

HSJA EA Sign-OPT QEBA-S QEBA-F QEBA-I NLBA-AE NLBA-VAE PSBA

MNIST
ResNet 2% 4% 4% 40% 18% 4% 26% 44% 64%

ResNeXt 4% 0% 4% 44% 30% 4% 28% 50% 64%

CIFAR10
ResNet 16% 2% 14% 52% 42% 30% 50% 50% 62%

ResNeXt 12% 0% 8% 44% 38% 30% 48% 52% 48%

CelebA
ResNet 8% 6% 2% 48% 36% 40% 10% 22% 86%

ResNeXt 2% 0% 0% 32% 24% 22% 6% 12% 72%

ImageNet
ResNet 10% 8% 12% 22% 18% 22% 18% 10% 20%

ResNeXt 12% 6% 10% 16% 14% 24% 14% 10% 20%

that is, we usually focus on the attack performance when the query number is small, like 1K or 2K. But we still provide the
results for large query number constraints in Table 11, Table 12 and Table 13, showing that PSBA achieves the highest or
comparable ASR to other approaches. Note that PSBA converges significantly faster than baselines (≤ 3K) (Fig.6 & 10 in
paper), which leads to its high attack success rate with small number of queries. On the other hand, when large number of
queries are allowed, baselines such as QEBA will eventually converge to similar result (e.g., close to 100% ASR), which
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Table 10. Comparison of the attack success rate for different attacks at query number 3K (the perturbation magnitude under MSE for each
dataset are: MNIST: 5e− 3; CIFAR10: 5e− 4; CelebA: 1e− 4; ImageNet: 1e− 2).

Data Model
# Queries = 3K

HSJA EA Sign-OPT QEBA-S QEBA-F QEBA-I NLBA-AE NLBA-VAE PSBA

MNIST
ResNet 2% 12% 4% 80% 58% 6% 66% 76% 90%

ResNeXt 4% 10% 10% 88% 80% 38% 82% 90% 98%

CIFAR10
ResNet 40% 34% 24% 96% 90% 74% 90% 96% 96%

ResNeXt 50% 2% 30% 96% 90% 82% 96% 100% 96%

CelebA
ResNet 40% 16% 24% 92% 92% 88% 44% 68% 94%

ResNeXt 38% 18% 24% 88% 78% 90% 40% 52% 90%

ImageNet
ResNet 54% 36% 30% 68% 66% 64% 64% 56% 68%

ResNeXt 36% 38% 28% 68% 64% 64% 54% 48% 66%

Table 11. Comparison of the attack success rate for different attacks at query number 5K (the perturbation magnitude under MSE for each
dataset are: MNIST: 5e− 3; CIFAR10: 5e− 4; CelebA: 1e− 4; ImageNet: 1e− 2).

Data Model
# Queries = 5K

HSJA EA Sign-OPT QEBA-S QEBA-F QEBA-I NLBA-AE NLBA-VAE PSBA

MNIST
ResNet 2% 24% 8% 94% 76% 12% 88% 90% 96%

ResNeXt 12% 32% 14% 98% 94% 62% 96% 96% 100%

CIFAR10
ResNet 22% 12% 20% 96% 86% 54% 94% 58% 94%

ResNeXt 36% 2% 22% 98% 86% 82% 96% 70% 94%

CelebA
ResNet 66% 24% 50% 98% 98% 100% 66% 92% 96%

ResNeXt 62% 24% 42% 98% 90% 100% 54% 86% 92%

ImageNet
ResNet 74% 50% 54% 90% 86% 82% 84% 78% 92%

ResNeXt 72% 48% 54% 88% 88% 86% 78% 80% 88%

Table 12. Comparison of the attack success rate for different attacks at query number 8K (the perturbation magnitude under MSE for each
dataset are: MNIST: 5e− 3; CIFAR10: 5e− 4; CelebA: 1e− 4; ImageNet: 1e− 2).

Data Model
# Queries = 8K

HSJA EA Sign-OPT QEBA-S QEBA-F QEBA-I NLBA-AE NLBA-VAE PSBA

MNIST
ResNet 4% 40% 8% 98% 90% 30% 92% 100% 98%

ResNeXt 40% 46% 36% 98% 100% 80% 98% 98% 100%

CIFAR10
ResNet 36% 22% 24% 100% 98% 82% 100% 64% 96%

ResNeXt 54% 2% 36% 98% 98% 94% 98% 80% 98%

CelebA
ResNet 88% 36% 72% 100% 100% 100% 90% 98% 96%

ResNeXt 90% 34% 72% 100% 100% 100% 86% 98% 94%

ImageNet
ResNet 96% 54% 70% 98% 98% 92% 94% 86% 98%

ResNeXt 90% 48% 70% 94% 92% 94% 96% 88% 96%

again demonstrates the importance of evaluation under small query budget.

E.4. Comparison with RayS Attack

RayS attack (Chen & Gu, 2020) performs blackbox attack by enumerating gradient signs at different scales, which is an
efficient attack strategy for untargeted attack under `∞ norm. While PSBA can perform both untargeted and targeted attacks,
the gradient generator used in our experiments is mainly designed for the targeted attack under MSE measure, which is a
more practical and tougher task. To customize our PSBA for `∞ norm bounded attack scenario, we believe some specific
design for the generator is needed. But currently, even if we directly use the original PGAN generator, our method can still
compete with the RayS attack when compared under the `∞ based untargeted attack scenario. The corresponding additional
experiments conducted on ImageNet dataset are shown in Table 14, demonstrating that the PSBA always outperforms RayS
in targeted attacks, while RayS achieves slightly better results for untargeted attack under `∞.
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Table 13. Comparison of the attack success rate for different attacks at query number 10K (the perturbation magnitude under MSE for
each dataset are: MNIST: 5e− 3; CIFAR10: 5e− 4; CelebA: 1e− 4; ImageNet: 1e− 2).

Data Model
# Queries = 10K

HSJA EA Sign-OPT QEBA-S QEBA-F QEBA-I NLBA-AE NLBA-VAE PSBA

MNIST
ResNet 10% 46% 8% 100% 94% 38% 96% 100% 98%

ResNeXt 52% 50% 42% 98% 100% 84% 98% 98% 100%

CIFAR10
ResNet 42% 34% 36% 100% 100% 92% 100% 66% 96%

ResNeXt 62% 2% 50% 100% 100% 98% 100% 82% 100%

CelebA
ResNet 94% 38% 88% 100% 100% 100% 94% 98% 96%

ResNeXt 94% 42% 86% 100% 100% 100% 92% 98% 94%

ImageNet
ResNet 96% 54% 76% 100% 100% 94% 94% 86% 98%

ResNeXt 94% 52% 72% 96% 96% 96% 98% 98% 98%

Table 14. Comparison of Attack Success Rate (ASR) on 100 randomly chosen ImageNet images for ResNet-18 with different perturbation
thresholds ε and attack types (the query budget = 10000).

Attack Type ε Methods Avg. Queries Med. Queries ASR (%)

Targeted Attack

0.30 (`∞)
HSJA 1909.9 853.0 45
RayS 4677.0 4677.0 2
PSBA 1437.7 502.0 96

0.01 (MSE)
HSJA 3182.8 2726.0 99
RayS 2479.0 2479.0 2
PSBA 2460.4 1924.0 99

Untargeted Attack

0.05 (`∞)
HSJA 1782.8 595.5 88
RayS 528.7 214.5 100
PSBA 596.9 270.0 99

0.0001 (MSE)
HSJA 2208.4 1305.0 92
RayS 1798.1 625.0 83
PSBA 1151.5 486.0 96

Since the RayS in targeted setting is not mentioned in the original paper, we have tried two ways to implement it: 1) initialize
the perturbation using the same setting as that in untargeted attack; 2) initialize the perturbation using the images from the
target class. The values recorded in the table are the better ones between these two ways and there may still exist a better
way to do it. The other thing to note is that currently all the methods are not so powerful on ImageNet for targeted attack
with the perturbation threshold ε set to 0.05 under `∞ norm.

E.5. Cosine Similarity Measure for Offline Models

The cosine similarity between the estimated gradient and the true gradient is a significant measure of the quality of the
gradient estimation, and is highly correlated with the actual attack performance. The cosine similarity for the different
boundary attack methods are shown in Fig. 12. As we can see, our approach PSBA-PGAN usually achieves higher cosine
similarity especially when the number of queries is limited.

E.6. Long Tail Distribution for the Gradients Generated from Different Models on Frequency Domain

As mentioned in the Section 5.2, the gradients generated by the target model ResNet-18 tend to focus on the low-frequency
region. However, this pattern actually exists on other models as well and the experiments conducted here are in a more
statistical sense: first, gradients from 1, 000 images are generated from these six models on different datasets respectively;
then, by transforming them into frequency domain by DCT transformation, we average the absolute value of the coefficients
on the corresponding basis components and smooth them by the Savitzky-Golay filter. As a result, if we draw these
components from low-frequency to high-frequency on x-axis, we will see the interesting long tail distribution as shown in
the Fig. 13. This extensively existed phenomenon, as justified in Section 4.2, indicates that the attack performance would be



Progressive-Scale Blackbox Attack via Projective Gradient Estimation

Figure 12. The cosine similarity between the estimated and true gradient w.r.t. the number of queries during attacking models on different
datasets. Row 1: For attacks on ResNet-18; Row 2: For attacks on ResNeXt50 32×4d.

Figure 13. The long-tailed distribution for the coefficients of the gradients represented on DCT basis on different models and datasets.

improved if we just save the low-frequency part of the generated gradient images. This conjecture has already been proved
by our experiments in Appendix E.8.

E.7. High Sensitivity on Gradient Direction

Hereinafter, the target model is specified to ResNet-18 for reducing the redundancy. The tendency on ResNeXt models or
other models is the same, that is, the results shown below are actually decoupled with the structure of the target model.
Verification of High Sensitivity. We empirically verify that the trained PGAN has higher sensitivity on the projected
true gradient as discussed in Section 5.2. The gradient estimator chosen here is the PGAN generator with the optimal
scale 28 × 28 for each dataset. Inspired by the definition in Lemma 4.1, the value α2

1 is approximately calculated by
1
B

∑B
b=1 cos2〈∆f(δtub), proj∇f(0)∇S(xt)〉, where the number of queries, i.e., B, is set to 10, 000 instead of the original

100 for better estimation and verification. The value
∑m
i=2 α

2
i

m−1 is then approximately calculated by 1
B(m−1)

∑B
b=1(1 −

cos2〈∆f(δtub), proj∇f(0)∇S(xt)〉). Since the actual output scale of f is 28 × 28 here, the ground gradient ∇S(xt) is
resized to 28 × 28 first (thus denoted by proj∇f(0)∇S(xt)) and the value m is equal to n channel × 28 × 28 here. All
these values are averaged on 50 pairs of source-target images with 10-step attack on ResNet-18.

As shown in Fig. 14, across all four datasets, we observe that the sensitivity on the projected true gradient direction (blue
bars) is significantly higher than the (averaged) sensitivity on other orthogonal directions (purple bars).

Adjust Sensitivity on Different Directions. Here, we deliberately adjust the sensitivity on different directions to show the
correlation between the attack performance and sensitivity by changing the weight of the components which are orthogonal
to the ground gradient. In other words, we replace the ∆f(δtub) in the original calculation of estimated gradient ∇̃S(xt)

with
(
〈∆f(δtub),∇S(xt)〉

‖∇S(xt)‖
∇S(xt) + k

(
∆f(δtub)−

〈∆f(δtub),∇S(xt)〉
‖∇S(xt)‖

∇S(xt)

))
and then repeat the attack on the

target model. Lower value of k means less weight is put on the orthogonal components. Empirically, the range of k is set
between 0.96 to 1.04 and it is worth noting that when the value of k is set to 1, the new gradient estimation adopted here is
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just the same with the original gradient estimation. We choose the projection ‘PGAN28’ and dataset ImageNet. As shown in
Fig. 15, aligned with our theoretical analysis, lower k results in better attack performance, and vise versa.

Figure 14. The α value on diverse datasets. Figure 15. The perturbation magnitude w.r.t. different number of
queries for different k values on ImageNet.

E.8. PSBA with Different Domains

In this subsection, we demonstrate the performance of PSBA when applied to other domains like frequency and spec-
trum.Since the PGAN is originally designed for spatial expansion, it would be also beneficial for us to adopt some similar
training strategy to expand progressively on both frequency and spectrum domain. However, for both convenience and
effectiveness, we just take PGAN224, whose attack performance is almost the worst compared to other PGAN with smaller
scale, as the gradient generator in the experiments here. As a result, the attack performance on these other domains can be
further improved by progressively expanding training strategy.

With this in mind, in this subsection, the main attention is concentrated on: 1) the existence of the optimal scale on both
frequency and spectrum domain.2) whether the original attack performance of PGAN224 would be improved a lot by just
selecting the optimal scale on specific frequency or spectrum domain. Since the conclusions are consistent with any model,
we just show the experiment results on ResNet-18 below as an instance.

Frequency Domain. As discussed in Appendix E.6, with applying the DCT transformation on the output of PGAN in
224× 224 scale, the low-frequency components will be concentrated at the upper left corner, i.e., low-frequency subspace.
Then, we let ‘PGAN224dk’ denote the adjusted attack process where we just save the k × k signals on the upper left corner
of the frequency representation of the output of PGAN224 and transform it back to the original space by the Inverse DCT to
continue the attack. In other words, we just use some low-frequency part of the original gradient images generated from
PGAN224 to estimate the ground gradient and the pseudocode is also provided in Algorithm 2 for making it more clear. The
final attack performance is shown in Fig. 16, and as we can see, in some cases like when the src-tgt images are sampled
from MNIST, PSBA-freq even outperforms all other baselines with a simple adjustment on the output of the inherent bad
gradient estimator PGAN224. The results corresponding to different choices of frequency region and their induced changes
of cosine similarity are shown in Fig. 17 and Fig. 18. Besides, this simple strategy can also work well on the attack to the
online API, which is shown in Fig. 19 and Fig. 20.

As we can see, even this simple “gating” strategy can improve the attack performance a lot compared with original PGAN224.
Though it is not as competitive as the progressive scaling in the spatial domain due to lack of projection model finetuning.
Furthermore, the existence of optimal scale is pronounced.

Spectrum Domain. Here, we sample 40,000 gradient images generated from PGAN224, and then use PCA to decompose
them to get 9, 408 main components. It may seem to be great if we project the original gradient images generated from
PGAN224 to just part of the main components, however, the computation cost is a little unacceptable, since there are a lot of
dot product operations between two 150, 000-dimensional vectors required. Therefore, for efficiency, the gradient images
generated here are actually composed by the combination of the top-k main components among the total 9, 408 components
with the coefficients sampled from normal distribution. Thus, for simplicity, we denote ‘PGAN224pk’ as the attack with
the combination of the top-k main components decomposed by PCA. By progressively increase the value of k, the attack
performance are shown in Fig. 21. The result on different spectrum scales and corresponding changes of cosine similarity



Progressive-Scale Blackbox Attack via Projective Gradient Estimation

Figure 16. The perturbation magnitude w.r.t. different number of queries for different methods. The PSBA here is applied on frequency
domain.

Figure 17. The perturbation magnitude w.r.t. different number of queries for different scales chosen on frequency domain.

are shown in Fig. 22 and Fig. 23. Again, we observe an apparent improvement over the original PGAN224 and the existence
of the optimal scale.

E.9. Optimal Scale across Different Model Structures

One may think that the optimal scale may be influenced a lot by the specific structure of the target model. In other words,
the depth of the model, the existence of the residual connection and batchnorm layer, and so on, would affect the optimal
scale. However, the result as shown in Table 15 demonstrates that the optimal scale is actually stable, which is usually the
small scale 28× 28.

It is our future work to look into this phenomenon and analyze the optimal properties such as stability of optimal scale.
Besides, together with the improved attack performance owing to the removing of the high frequency part or the focus on
the most informative spectrum of the generated images of PGAN224, it will be promising to explore the benefits brought
from gradient sparsification and devise a more efficient algorithm in the future.

F. Qualitative Results
In this section, we present the qualitative results for attacking both offline models and online APIs.

F.1. Offline Models

The goal of the attack is to generate an adversarial image that looks like the target image but has the same label with source
image. We report qualitative results that show how the adversarial image changes during the attack process in Figure 24,
Figure 25, Figure 26, and Figure 27 for the four datasets respectively. The target model chosen here is ResNet-18. In the
figures, the left-most column has two images: the source image and the target image. They are randomly sampled from the
corresponding dataset. We make sure that the images in the sampled pairs have different ground truth labels (otherwise the
attack is trivial). The other five columns each represents the adversarial image at certain number of queries as indicated by
#q at the bottom line. In other words, all images in these five columns can successfully attack the target model. Each row
represents one method as shown on the right. The d value under each image shows the MSE between the adversarial image
and the target image. The smaller the d is, the better the attack is.
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Figure 18. The cosine similarity between the estimated and true gradients for different scales chosen on frequency domain.

Figure 19. The perturbation magnitude w.r.t. different queries
against Face++ ‘Compare’ API, the PSBA here is applied on
frequency domain.

Figure 20. The perturbation magnitude w.r.t. different number
of queries for different scales chosen on frequency domain
against Face++ ‘Compare’ API.

F.2. Commercial Online API Attack

As discussed in Section 5, the goal is to generate an adversarial image that looks like the target image but is predicted as
‘same person’ with the source image. In this case, we want to get images that looks like the man but is actually identified as
the woman. The qualitative results of attacking the online API Face++ ‘compare’ is shown in Figure 28. In the figure, the
source image and target image are shown on the left-most column.

Table 15. The optimal scale across different model structures.

Model
Dataset

MNIST CIFAR-10 CelebA Imagenet

ResNet-18 28× 28 28× 28 28× 28 28× 28
ResNet-34 28× 28 28× 28 28× 28 56× 56

ResNet-152 28× 28 28× 28 56× 56 56× 56
ResNext50 32x4d 28× 28 28× 28 28× 28 56× 56

Vgg11 28× 28 28× 28 28× 28 56× 56
Vgg19 28× 28 28× 28 28× 28 56× 56

Vgg11 bn 112× 112 28× 28 28× 28 56× 56
Vgg19 bn 112× 112 28× 28 28× 28 56× 56

DenseNet161 28× 28 14× 14 28× 28 56× 56
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Figure 21. The perturbation magnitude w.r.t. different number of queries for different scales chosen on spectrum domain.

Figure 22. The perturbation magnitude w.r.t. different number of queries for different methods, the PSBA here is applied on spectrum
domain.

Figure 23. The cosine similarity between the estimated and true gradients for different scales chosen on spectrum domain.
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Figure 24. The qualitative case study of attacking ResNet-18 model on MNIST dataset.
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Figure 25. The qualitative case study of attacking ResNet-18 model on CIFAR-10 dataset.
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Figure 26. The qualitative case study of attacking ResNet-18 model on CelebA dataset.
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Figure 27. The qualitative case study of attacking ResNet-18 model on ImageNet dataset.
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Figure 28. A case study of Face++ online API attack process. The source-target image pair is randomly sampled from CelebA dataset (ID:
019862 and 168859).
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