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Abstract

Boundary based blackbox attack has been rec-
ognized as practical and effective, given that an
attacker only needs to access the final model pre-
diction. However, the query efficiency of it is
in general high especially for high dimensional
image data. In this paper, we show that such
efficiency highly depends on the scale at which
the attack is applied, and attacking at the optimal
scale significantly improves the efficiency. In par-
ticular, we propose a theoretical framework to ana-
lyze and show three key characteristics to improve
the query efficiency. We prove that there exists
an optimal scale for projective gradient estima-
tion. Our framework also explains the satisfactory
performance achieved by existing boundary black-
box attacks. Based on our theoretical framework,
we propose Progressive-Scale enabled projective
Boundary Attack (PSBA) to improve the query ef-
ficiency via progressive scaling techniques. In par-
ticular, we employ Progressive-GAN to optimize
the scale of projections, which we call PSBA-
PGAN. We evaluate our approach on both spa-
tial and frequency scales. Extensive experiments
on MNIST, CIFAR-10, CelebA, and ImageNet
against different models including a real-world
face recognition API show that PSBA-PGAN sig-
nificantly outperforms existing baseline attacks in
terms of query efficiency and attack success rate.
We also observe relatively stable optimal scales
for different models and datasets. The code is
publicly available at https://github.com/
AI-secure/PSBA.
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1. Introduction

Blackbox attacks against machine learning (ML) models
have raised great concerns recently given the wide applica-
tion of ML (Krizhevsky et al., 2009; He et al., 2016; Vaswani
et al., 2017). Among these blackbox attacks, boundary
blackbox attack (Brendel et al., 2018; Chen et al., 2020)
has shown to be effective. However, it usually requires a
large number of queries against the target model given the
high-dimensional search space. Recent research shows that
it is possible to sample the queries from a lower dimen-
sional sampling space first and project them back to the
original space for gradient estimation to reduce the query
complexity (Li et al., 2020a; 2021). These observations
raise additional questions: What is the “optimal” projection
subspace that we can sample from? How effective such
projective attack would be? What is the query complexity
for such projective gradient estimation approach? To an-
swer these questions, in this paper we analyze the general
Projective Boundary blackbox Attack framework (PBA), for
which only the decision boundary information (i.e. label)
is revealed, and propose Progressive-Scale enabled projec-
tive Boundary blackbox Attack (PSBA) to gradually search
for the optimal sampling space, which can boost the query
efficiency of PBA both theoretically and empirically.

The overall pipeline of PSBA and the corresponding analy-
sis framework are shown in Fig. 1, where an attacker starts
with a source image and manipulate it to be “visually close’
with a target image while preserving its label and therefore
fool a ML model via progressive-scale based projective gra-
dient estimation. In particular, an attacker first conducts
binary search to find a boundary point based on the source
image; then samples several perturbation vectors from a
low-dimensional sampling space and project them back to
the projection subspace via a projection function f to es-
timate the gradient. Finally, the attacker will move along
the estimated gradient direction to construct the adversarial
instance. The main goal of PSBA is to search for the optimal
projection subspace for attack efficiency and effectiveness
purpose, and we explore such optimal projection subspace
both theoretically and empirically.

i

Theoretically, we develop a general framework to analyze
the query efficiency of gradient estimation for PBA. With the
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framework, we 1) provide the expectation and concentration
bounds for cosine similarity between the estimated and true
gradients based on nonlinear projection functions, while
previous work only considers identical projection (Chen
et al., 2020) or orthogonal sampling (Li et al., 2020a; 2021);
2) discover several key characteristics that contribute to
tighter gradient estimation, including small dimensionality
of the projection subspace, large projected length of the true
gradient onto the projection subspace, and high sensitiv-
ity on the projected true gradient direction; 3) analyze the
trade-off between small dimensionality and large projected
length, and prove the existence of an optimal subspace di-
mensionality, i.e., an optimal scale; 4) prove that choosing
a subspace with large projected length of true gradient as
the projection subspace can improve the query efficiency
of gradient estimation. This framework not only provides
theoretical justification for existing PBAs (Brendel et al.,
2018; Chen et al., 2020; Li et al., 2020a; 2021), but also
enables the design of more efficient blackbox attacks, where
the proposed PSBA is an example.

Inspired by our theoretical analysis, we design PSBA to
progressively search for the optimal scale to perform projec-
tive gradient estimation for boundary blackbox attacks. We
first consider the spatial scale (i.e., resolution of images),
and apply PSBA to search over different spatial scales. We
then extend PSBA to the frequency scale (i.e., threshold
of low-pass filter) and spectrum scale (i.e., dimensionality
of PCA). In particular, as a demonstration, we instantiate
PSBA with Progressive-GAN (PGAN), and we conduct ex-
tensive experiments to 1) justify our theoretical analysis
on key characteristics that contribute to tighter gradient es-
timation and 2) show that PSBA-PGAN consistently and
significantly outperforms existing boundary attacks such
as HSJA (Chen et al., 2020), QEBA (Li et al., 2020a),
NonLinear-BA (Li et al., 2021), EA (Dong et al., 2019), and
Sign-OPT (Cheng et al., 2019a) on various datasets includ-
ing MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky
etal., 2009), CelebA (Liu et al., 2015), and ImageNet (Deng
et al., 2009) against different models including a real-world
face recognition API.

Technical Contributions. In this paper, we take the first
step towards exploring the impacts of different projection
scales of projection space in boundary blackbox attacks. We
make contributions on both theoretical and empirical fronts.

* We propose the first theoretical framework to analyze
boundary blackbox attacks with general projection func-
tions. Using this framework, we derive tight expectation
and concentration bounds for the cosine similarity be-
tween estimated and true gradients.

* We characterize the key characteristics and trade-offs for
a good projective gradient estimator. In particular, we
theoretically prove the existence of the optimal scale of
the projection space.
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Figure 1. An overview of the progressive-scale boundary blackbox
attack (PSBA) via projective gradient estimation.
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* We propose Progressive-Scale based projective Boundary
Attack (PSBA) via progressively searching for the optimal
scale in a self-adaptive way under spatial, frequency, and
spectrum scales.

* We instantiate PSBA by PGAN for empirical evaluation.
Extensive experiments show that PSBA-PGAN outper-
forms the state-of-the-art boundary attacks on MNIST,
CIFAR-10, CelebA, and ImageNet against different black-
box models and a real-world face recognition API.

Related Work. Adversarial attacks against ML have been
conducted to explore the vulnerabilities of learning mod-
els and therefore improve their robustness (Szegedy et al.,
2013; Kurakin et al., 2016). Most existing attacks (Good-
fellow et al., 2014; Madry et al., 2018) assume the white-
box setting, where the attacker has full access to the target
model including its structure and weights. However, in prac-
tice, such as commercial face recognition APIs (MEGVII,
2020c), we cannot access the full model. Thus, several
blackbox attacks have been proposed, which mainly fall into
three categories: transfer-based, query-based, and hybrid
blackbox attacks: 1) The transfer-based attacks usually train
a surrogate model, attack the surrogate model using white-
box attacks, and exploit the adversarial transferability (Pa-
pernot et al., 2016; Tramer et al., 2017) to use the generated
adversarial examples to attack the blackbox model. 2) The
query-based attacks can be further divided into score-based
and decision-based. The score-based attacks assume that we
know the confidence score of the target model’s prediction
and therefore estimate the gradient based on the prediction
scores (Chen et al., 2017; Bhagoji et al., 2018; Tu et al.,
2019; Ilyas et al., 2018; Cheng et al., 2019b; Chen et al.,
2017; Li et al., 2020b). The decision-based attacks assume
that we only know the final decision itself which is more
practical, such as the boundary attack (Brendel et al., 2018),
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EA (Dong et al., 2019) and Sign-OPT (Cheng et al., 2019a).
HSJA (Chen et al., 2020) extends the boundary attack by
adopting a sampling-based gradient estimation component
to guide the search direction. Later on, QEBA (Li et al.,
2020a) and NonLinear-BA (Li et al., 2021) are proposed
to use a projection function to sample from a lower dimen-
sional space to improve the sampling efficiency. Our work
focuses on decision-based attacks. Specifically, our work
systematically studies the projective gradient estimation for
boundary attacks and reveals that progressive-scale enabled
projection could improve the query efficiency both theoret-
ically and empirically. 3) The hybrid attacks usually train
one or multiple surrogate models and leverage the gradient
information (Guo et al., 2019; Tashiro et al., 2020) or adver-
sarial examples (Suya et al., 2020) to guide the generation
of queries for the target model.

Progressive scaling has long been an effective methodol-
ogy for different tasks, such as pyramidal-structured objec-
tion detection (Lin et al., 2017; Zhang et al., 2020), high-
resolution generative neural networks (Karras et al., 2018;
Zhang & Khoreva, 2019; Wu et al., 2020), and deep feature
extraction (Cai et al., 2016; Ma et al., 2020). In this work,
we aim to explore whether it is possible to progressively
conduct queries from different subspaces (e.g., spatial and
frequency subspaces) against a blackbox machine learning
model to perform query efficient blackbox attacks.

2. Preliminaries

In this section, we introduce the related notations for our
projective gradient estimation. Let [n] denote the set
{1,2,...,n}. For arbitrary two vectors a and b, let (a, b)
and cos(a, b) denote their dot product and cosine similarity
respectively. For a matrix W € R™*" and a vector v € R",
we denote its projection on span(W) by projy, v.! Without
loss of generality, we focus on the adversarial attack on an
image classifier G : R” — R® where C is the number of
classes. For given x € R", GG predicts the label with highest
confidence: arg max; (- G();. As for the threat model,
we consider the practical setting where only the decision of
the classification model G is accessible for attackers.

Following the literature (Chen et al., 2020; Li et al., 2020a),
we define difference function S(-) and sign function ¢(-).

Definition 1. Let label yo be model G’s prediction for input
x*. For the targeted attack, the adversarial target is y' € [C].
Define the difference function S« : R™ — R as below:

max G(z)y — G(x)y,, (untargeted attack)
S (x) — y€[Cly#yo
* ' G(z)y — max G(x)y. (targeted attack)
ye[Cly#y’

"From linear algebra, projy,v = W(WTW) W,

The function ¢~ : R™ — {£1} is the sign function of Sy»:

+1 if Spx(z) >0,

o) ={ 1

When there is no ambiguity, we may abbreviate them as
S(z) and ¢(x) respectively. For a target image z*, the
attacker crafts an image x, ensuring that the difference func-
tion Sy« (x) > 0 to perform a success attack while minimiz-
ing the distance ||z — z*||2.

otherwise.

We call = a boundary point if Sy~ (x) = 0. We assume that
S+ is Bg-smooth. Formally, for any z, z € R"2,

[V Sex (2) — VSux(2)

[l = 2|2

l2 g, )

Note that we can only query the value of ¢,~ instead of
Sz~ according to the threat model. In boundary attack, we
estimate the gradient of S by querying ¢.

We generalize existing gradient estimators for boundary
attack in a projective form. Suppose we have a projection
f : R™ — R"™, where m < n. This projection can be
obtained in various ways, such as PCA (Li et al., 2020a),
VAE (Li et al., 2021), or just an identical projection (Chen
et al., 2020). Similar to Eq. (1), we assume f is ﬁf-smoothz.
With the projection, given an input x; that is at or close to
the boundary of S+, with pre-determined step size J;, we
can estimate gradient V.S« () as such:

Definition 2 (Boundary Gradient Estimator). On z, € R"”,
with pre-determined step size d;, let {u;}2_, be B vectors
that are uniformly sampled from the m-dimensional unit
sphere S™~!. The gradient VS, (z;) is estimated by

B
== 1
VSpe 5 () = 55 D bor (w0 + AF(Gew)) Af (Grw), (@)
b=1

where A f(z) := f(z) — £(0). When there is no ambiguity,
we may omit subscript 2* or §;. Note that each query of
¢+ is a query to the blackbox model, so computing V.S ()
requires B queries to the blackbox model.

As previous work shows, the expected cosine similarity
between the estimated and true gradients can be bounded.
For example, with identical projection f (Chen et al., 2020),

= 98267n?
vSs , VS >1—- ——.
sV, V@) 2 1 oSl

Definition 3 (Sampling Space and Projection Space). For
the given projection f : R™ — R™. We call the domain
dom(f) = R™ the sampling space, and the subspace con-
sisting of projected images the projection subspace.

3

% For any non-differentiable point of S+ or f, the assumption
generalizes to any Clarke’s generalized gradient (Clarke et al.,
2008). For simplicity, we assume S+ and f are differentiable
hereinafter. The || - ||2 operator stands for the £2 norm for vector
VS and the spectral norm for Jacobian matrix V f.
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Figure 2. PSBA with progressive scalling on spatial domain.

Remark. The definition reflects the sample-and-project pro-
cess in gradient estimation. The projection subspace is a
subspace of the original input space R™. Typically, the step
size d; is small, and A f(du) = V £(0) - (du) by linear ap-
proximation. Therefore, we can view f as a non-singular
linear projection where m is the dimensionality of the pro-
jection subspace.

3. Progressive-Scale Blackbox Attack: PSBA

In this section we will introduce the general pipeline
of proposed Progressive-Scale projective Boundary
Attack (PSBA), followed by detailed analysis of it in Sec-
tion 4. On the high level, PSBA progressively increases the
scale of projection subspace where the perturbation vectors
will be chosen from, until it reaches the “optimal” scale as
shown in Figure 2. The scales are sampled from domains
such as spatial, frequency, and spectral domain. At each
scale, PSBA is composed of two stages: training stage and
attack stage.

At the training stage, we train a generative model M (e.g.,
GAN), with gradient images obtained from any model. The
input space of M is a low-dimensional space (m). For
instance, from the spatial domain, we can sample from
different resolutions such as 7 x 7, 14 x 14, and 28 x 28.
Then we leverage M to project the sampled vectors back
to the original space with interpolation. These projected
images form the projection subspace.

At the attack stage, we adapt the boundary attack pipeline,
and first select a source image =g (drawn from images from
the adversarial target class). In each iteration ¢, the attack
reduces the distance from current adversarial sample x; to
the target image x* via three steps: (1) binary search for the
boundary point ; where S, (2¢) = 0 on the line connect-
ing 7;_1 and x*, with pre-determined precision threshold 6;
(2) estimate the gradient at z; using the boundary gradient
estimator (Definition 2) with step size J;; (3) normalize the
estimated gradient, and perform a step of gradient ascent to
get Z;. Note that in (1), the binary search for boundary point
requires O(log 1/6) queries to the blackbox model, and in
(2), the gradient estimation requries B samples and queries
to the blackbox model. In Section 4 we will analyze the
relation between B and the quality of estimated gradients
in terms of cosine similarity.

We select the optimal scale for projection subspace based on
a validation set. If with current scale, after 1,000 queries,
the average distance to the target image x* is smaller than
that of the previous scale, we try a new increased scale.
Otherwise, i.e., the average distance is larger than that of
the previous one, we select the previous scale as the optimal
scale, and use it as the scale of projection subspace. This
process can be viewed as climbing to find the maximum
point on the curve in Fig. 2 from left to right. Detailed
pseudocode can be found in Appendix D.4.

In particular, we mainly consider different scales in the spa-
tial, frequency, and spectrum domains. For spatial domain,
M on the progressively grown scale (i.e., resolution) can
be effectively trained via Progressive-GAN. The frequency
scales correspond to thresholds for the low-pass frequency
filter, and the spectrum scales correspond to dimensionali-
ties of PCA. For frequency and spectrum, M can be trained
on full-scale and trimmed to fit in the required lower scale
as discussed in Section 4.2.

4. Analysis of Gradient Estimation

In this section, we analyze the similarity between the esti-
mated and true gradients for general projective boundary
attack frameworks. These attacks all follow Definition 2 to
estimate the gradient. Our goal is to improve the gradient
similarity while reducing the number of queries (B).

In Section 4.1, we present cosine similarity bounds between
the estimated and true gradients for the gradient estimator
with general nonlinear projection function, and analyze
the key characteristics that improve such gradient estimation.
In Section 4.2, we analyze the bounds of cosine similarity
when the output of projection f is constrained on selected
projection subspace. We show how constraining on a repre-
sentative subspace improves gradient estimation compared
with performing gradient estimation on the original space,
which explains why PSBA outperforms existing methods.

4.1. General Cosine Similarity Bounds

Let Vf(0) € R™ ™ be the Jacobian matrix of the pro-
jection f at the origin. Throughout the paper, we assume
that V £(0) has full-rank since V f is non-singular in gen-
eral case. We further assume that there exists a column
vector V f(0). . that is aligned with the projected true gra-
dient projg (o) V:S(2¢), and other column vectors are or-
thogonal to it. Formally, there exists ¢ € [m], such that
Vf(0).c = kprojy ¢,V S(2:) with k # 0, and for any
i # ¢, (Vf(0).;,Vf(0)..) = 0. This assumption guar-
antees that the projection model f produces no directional
sampling bias for true gradient estimation (Lemma A.3)
following the standard setting. We remark that since vectors
tend to be orthogonal to each other in high-dimensional
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case (Fiers, 2018), this assumption holds with higher confi-
dence in high-dimensional cases. In Section 5.2, we empiri-
cally verify this assumption.

Lemma 4.1 (V f Decomposition). Under the above as-
sumption, there exists a singular value decomposition of

VF(0)=UZXVT such that

U, = Projvf(o)VS(It)/||PFOJVf(0)VS(93t)||2
or U.1 = —projy ¢(0) VS (1) /[[projy 0y VS (21)]]2

where U € R™"*"™, V€ R™*™ gre orthogonal matrices;
¥ =diag(ag, ag,...,qm) € Rgém is a rectangular diag-
onal matrix with oy > 0. Denote MaxX;¢[m] ¥ 45 Amax-

The proof can be found in Appendix A.3. Compared with
the standard SVD decomposition, now the first column vec-
tor of U can be fixed to the normalized projected true gradi-
ent vector or its opposite.

Definition of Sensitivity. In Lemma 4.1, for projection f,
we can view the resulting «v; as the sensitivity of the projec-
tion model on the (projected) true gradient direction; and
{a; }1, as the sensitivity of the projection model on direc-
tions orthogonal to the true-gradient. With higher sensitivity
on projected true gradient direction («;) and smaller sensi-
tivity on other orthogonal directions ({c; }72,), the gradient
estimation becomes better as we will show later.

MAIN THEOREMS

Here we will present our main theorems for the expecta-
tion (Theorem 1) and concentration bound (Theorem 2) of
cosine similarity between the estimated and true gradients.

Theorem 1 (Expected cosine similarity). The difference
function S and the projection f are as defined before. For
a point x; that is 8-close to the boundary, i.e., there exists
0" € [0, 0] such that S(x,+0'S(x¢)/||VS(ze)||2) = 0, let
estimated gradient ﬁ(xt) be as computed by Definition 2
with step size § and sampling size B. Over the randomness
of the sampled vectors {uy}2 |,

Iproic s o) VS @)l

cos(EV S (1), VS(z¢)) >

VS (ze)ll2
Lm0 (6y? oy [l | 1588,
8a? ai al m—1 vm—1

a9 [VS(e)ll2
a10 [[projg z0) VS (@t)|2 ’

where

Bs (max;e(m) o + 1/2085) + Bs6? /6>

. )
HPTOJVf(O)VS(-’Et)H2

v = Br +

Proof Sketch. The high-level idea is using Taylor expansion
with Lagrange remainder to control both the first-order and

higher-order errors, and plug the error terms into the dis-
tribution of dot product between V.S (z;) and V £(0) - up.
This dot product follows a linearly transformed Beta distri-
bution (Chen et al., 2020). The error terms are separately
controlled for the projected gradient direction (i.e., direc-
tion of projy (o) V:S(x+)) and other orthogonal directions.
Then the controlled directional errors are combined as an
£5-bounded error vector. The complete proof is deferred to
Appendix A.6. O

Remark. This bound characterizes the expected cosine sim-
ilarity of the boundary gradient estimator. For an identi-
cal projection f, if x; is exactly the boundary point, i.e.,
S(x;) = 0, from the theorem we get

. (n —1)%583
cos(EVS(z1),VS(a4)) > 1 — s,
2[VS(x)ll3
where we leverage the fact that 6 = O(1/n) is usually small.
This bound is of the same order as the previous work (Chen
et al., 2020) shown in Eq. (3), while containing a tighter
constant 1/2 instead of 9/8.

Suppose both the difference function S and projection
f are linear, ie, Bs = By = 0, then we have

cos(EVS (1), VS(zs)) > W From
Lemma A.1, this is the optimal cosine similarity obtainable
with the projection f. Furthermore, for identical projection,
cos(EVS(x;), VS(z;)) > 1, which verifies the optimality
of our bound over existing work (Li et al., 2020a; 2021).
Theorem 2 (Concentration of cosine similarity). Under the
same setting as Theorem 1, over the randomness of the
sampled vector {uy} 2 |, with probability 1 — p,

_ r0j VS (xt
cos(T5 (1), VS (1)) > [[Proj ¢ () VIS (@e)ll2

- IVS(@)ll2
v (57 o [Tl s,
8a? ap ar | m-—1 vm—1
2
1 g 2 m
0 IVS@l | sVZimolyEin()
18 |[projy £() VS(@e)]|2 vm—1

where v is as defined in Eq. (4).

Proof Sketch. Each u;, is sampled independently, and on
each axis the samples are averaged. Therefore, we apply Ho-
effding’s inequality on each axis, and use the union bound to
bound the total /5 length of the error vector. We propagate
this extra error term throughout the proof of Theorem 1.
The detail proof is in Appendix A.7. O

Remark. This is the first concentration bound for the bound-
ary gradient estimator to our best knowledge. From it we
quantitatively learn how increasing the number of queries
B increases the precision of the estimator, while the expec-
tation bound cannot reflect it directly.
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We note that the above two theorems are general—they pro-
vide finer-grained bounds for all existing boundary blackbox
attacks, e.g., (Chen et al., 2020; Li et al., 2021; 2020a), and
the proposed PSBA, thus these bounds provide a principled
framework to analyze boundary blackbox attacks. Next,
based on this framework we will (1) discover key character-
istics that affect the query efficiency of gradient estimation;
(2) explain why some existing attacks are more efficient than
others; (3) show why PSBA improves upon these attacks.

KEY CHARACTERISTICS OF PROJECTIVE GRADIENT
ESTIMATION

Based on these two main theorems, we draw several obser-
vations for key characteristics that would help improve the
gradient estimator. For simplification, we will leverage the
big-O notation for the above expectation and concentration
bounds (Theorems 1 and 2), as shown in Fig. 3. Compared
with the expectation bound, the concentration bound adds

a “sampling error term” that makes the bound hold with

probability at least 1 — p. In Fig. 3, we label different terms

in different colors to represent the key characteristics as
optimization goals of a good gradient estimator:

(1) Reduce the dimensionality m for the projection sub-
space: To increase the cosine similarity, we can reduce
the dimensionality 1.

(2) Increase the projected length of true gradient on the
projection subspace: To increase the cosine similarity,
we can increase the brown term |[projg 4y V.S (1) || 2,
which is the projected length of true gradient on the
projection subspace of f.

(3) Improve the sensitivity on the true gradient direction:
According to Lemma 4.1, o is the sensitivity for the
true gradient direction, and «; for ¢ # 1 is the sensi-
tivity for orthogonal directions. To increase the cosine
similarity, we can increase the blue term o1, or reduce

2
. o
the green term ==27% and o)

- max-*

m

In Section 5.2, we

empirically verify that PGAN achieves this, where o2 is
consistently and significantly larger than %ﬁfﬁ, and
therefore we leverage PGAN in our implementation.
Note that for identical projection (Chen et al., 2020)
or orthogonal projection (Li et al., 2020a), all a;;’s are
equal. The performance gain in NonLinearBA (Li et al.,
2021) can be explained by this characteristic.

We illustrate these key characteristics in Appendix B. Other
factors that can improve the cosine similarity are also re-
vealed, such as smaller step size J, and larger sampling (i.e.,
query) numbers B. However, they directly come at the cost
of more queries as discussed in (Chen et al., 2020).

To improve the precision and query efficiency of the gradient
estimation, next we consider how to optimize the estimator
on the above characteristics, especially (1) and (2), given
that (3) can be achieved by a PGAN-based projection.

Trade-Off on Dimensionality. From Fig. 3, we observe
an apparent trade-off between Key Characteristics (1) and
(2): when reducing the dimensionality m of the projec-
tion subspace (goal (1)), the preserved gradient information
[IProjg (o) VS (2+)||2 in this m-dimensional linear subspace
V £(0) becomes less, which opposes goal (2). To make a
tradeoff between (1) and (2), based on above observation,
there exists an optimal dimensionality m for the projection,
and this dimensionality depends on how much true gradient
information the projection subspace can preserve.

4.2. Optimize via Selecting Projection Subspaces

To circumvent the intrinsic trade-off, instead of hoping that
the end-to-end trained f can capture much true gradient
information in its linear subspace V f(0), we can actively
constrain the projection f on a representative subspace.

Here we focus on the linear subspace which can be repre-
sented by a linear combination of a set of basis, since the
small step size ¢ of gradient estimator implies that only the
local geometry matters and the local geometry of general
subspace can be sufficiently approximated in first-order by
linear subspace. Concretely, we select an m-dimensional
linear subspace V' C R™. Then, we train the projection f
on V,ie., im(f) C V. Finally, we estimate the gradient

with this f as: u € R™ £ Af(du) € V C R™, where
dim (V') = m. Interchangeably, we call m, the dimensional-
ity of V', as scale, since it reflects the scale of the projection
subspace V' as we will show later.

Now we can analyze the cosine similarity of this new
workflow. Since the image of projection f is in V/, and
rank(V £(0)) = dim(V') = m, we have span(V f(0)) =V
and ||projy £(o) V(@) |l2/llprojy, VS(a)|l2 = 1. Plug-
ging this into the above theorems and deriving from simple
geometry (details in Lemma A.1), we find that the cosine
similarity bound for subspace-constrained f is of the same
form as in Fig. 3, with all ||projg (o) V.S (2¢) || replaced by
[Iprojy, VS ()13

Selected Subspace Improves Gradient Estimation. The
formulation in Fig. 3 reveals that as long as we select an
m-dimensional linear subspace V' that preserves more gra-
dient information ||proj,, VS (z;)|| than the unconstrained
projection model ||projy (o) V.S(2¢)||2, the estimated gra-
dient would have higher cosine similarity. We empirically
find that the low-frequency subspace® satisfies such con-
dition (Section 5.2): for real-world images, the gradient
information of classifiers is highly concentrated on low-
frequency domain. This is also cross-validated in the litera-
ture (Yin et al., 2019). We illustrate this analysis along with
curves from numerical experiments in Fig. 4.

3Low-frequency subspace in DCT basis is a linear subspace.
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Figure 3. Cosine similarity bound in big-O notation. The “expectation” reflects the expectation bound in Theorem 1. The “sampling error’

s

is the additional term in Theorem 2 that makes the bound hold with probability at least 1 — p. When projection f is constrained in selected
linear subspace V' (see Section 4.2), the bound has the same form with all ||proj ;o) V.S (z¢) |3 replaced by ||proj,, V.S (z+)||3.

Assumed Gradient Information
Distribution across Basis Vectors

Expected Cosine Similarity of
Estimated Gradient
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Figure 4. An illustration of why selected subspace improves the
gradient estimation. Left: we assume a quadratic distribution
of gradient information for f’s basis (blue curve) and a more
concentrated exponential distribution for frequency basis (green
curve). Right: the corresponding expected cosine similarity is
numerically computed with settings n = 20, 85 = 0.5, By = 0,
a;=1,0 = m~'. The improved trade-off w.r.t. scale is revealed.

Recall that in PSBA, we train f on a smaller spatial scale
and scale up its output, which is equivalent to constraining
f on the low-frequency subspace. Since this subspace is
more representative than the subspace V f(0) of end-to-end
trained f, theoretically PSBA can estimate gradient with
higher cosine similarity within fewer queries.

Existence of Optimal Scale. From Fig. 3, we find that the
trade-off between Key Characteristics (1) and (2) in Sec-
tion 4.1 still exists for selected subspace in general. Now
it transforms to the existence of an optimal scale. This is
revealed by the green curve in Fig. 4. For spatial and fre-
quency scales, across different images from the same dataset
and model, the coefficients of gradient information on the
frequency basis vector tend to be very stable, as Section 5.2
shows. It implies that |proj,,V.S(z,)||2 in Fig. 3 across
different images tend to be stable, and the optimal scales for
gradient estimation tend to be stable too. Therefore, we can
search for the optimal scale with a validation dataset.

5. Experimental Evaluation

With the established general framework of leveraging pro-
gressive scaling to improve attack efficiency, in this section,
we take PGAN as an instantiation and conduct extensive
experiments to 1) verify our theoretical analysis; 2) show
that PSBA outperforms existing blackbox attacks by a sig-
nificantly large margin. We also present some additional
interesting findings.

5.1. Experimental Setup

Target Models. We use both offline models and a com-
mercial online API as target models. For offline models,
following (Li et al., 2020a; 2021), pretrained ResNet-18
on MNIST, CIFAR-10, CelebA and ImageNet are utilized.
We also evaluate model ResNeXt50_32x4d (Xie et al.,
2017) to demonstrate the generalization ability. On datasets
MNIST and CIFAR-10, we scale up the input images to
224 x 224 by bilinear interpolation to help explore the in-
fluence of different scales. On CelebA, the target model
is fine-tuned to perform the binary classification on the at-
tribute ‘Mouth_Slightly_Open’. The benign performance of
target models is shown in Appendix C.2. For the commer-
cial online API, the ‘Compare’ API (MEGVII, 2020a) from
MEGVII Face++ which determines whether the faces from
two images belong to the same person is used as the target
model. The compared images are chosen from CelebA. The
rationale of selecting these classification tasks and a detailed
description of target models are discussed in Appendix C.

Training Procedure of PGAN. PGAN is trained to gener-
ate gradient images of reference models with small resolu-
tion until reaching convergence, and then new layers will be
added to double the output scale. The PGAN training de-
tails could be found in Appendix D.2 and reference models’
performance are shown in Appendix D.3. For simplicity,
we will denote ‘PGAN28’ as the attack using the output of
PGAN with scale 28 x 28.

Implementation. We follow the description in Section 3 to
implement PSBA. Compared to other common attacks, we
additionally train PGAN and use an additional validation
set of ten images to search for the optimal scale. More im-
plementation details are shown in Appendices D.4 and D.5.

Baselines. We consider six state-of-the-art decision-based
attacks as the baselines. Among our baselines, QEBA (Li
et al., 2020a) and NLBA (Li et al., 2021) utilize dimen-
sion reduction to sample from low-dimensional space, while
the Sign-OPT (Cheng et al., 2020) and HSJA (Chen et al.,
2020) apply direct Monte-Carlo sampling for gradient esti-
mation. EA (Dong et al., 2019) adopts evolution algorithm
to perform the attack. Note that we directly select the op-
timal scale for EA to compare under its optimal case. In
Appendix E.4 we compare with RayS attack (Chen & Gu,
2020).
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Figure 5. The long tail distribution of the coefficients of gradients
generated from 10 images on the validation set of CIFAR-10 and
represented on DCT basis for each channel.
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Figure 6. Pairwise cosine similarity of V f(0) column vectors.

Evaluation Metrics. We adopt the standard evaluation met-
rics: 1) the Mean Squared Error (MSE) between the opti-
mized adversarial examples and target image under different
queries (this process will guarantee 100% attack success
rate); 2) attack success rate at a specific MSE perturbation
bound when the query number is constrained. Note that the
conversion between MSE and ¢5 metrics are straightforward
and order-preserving.

5.2. Verification of Theoretical Findings

Low Frequency Concentration. In order to verify the hy-
pothesis of low frequency concentration, we randomly sam-
ple 10 gradient vectors calculated on ResNet-18 model for
CIFAR-10 dataset. The gradients are normalized and trans-
formed with DCT basis for each channel. As shown in
Fig. 5, the x-axis shows the DCT basis from low to high fre-
quency, and y-axis represents the corresponding coefficients
denoised by the Savitzky-Golay filter. The three curves de-
note the three color channels respectively. The figures show
stable long tail distribution across various images, and this
implies the benefit of selecting the low-frequency subspace
as the projection subspace in gradient estimation, as well as
the existence of a stable optimal scale for the same dataset
and target model, providing strong evidence for the discus-
sion in Section 4.2. In addition, we draw a graph in a more
statistical sense in Appendix E.6.

High Sensitivity on Gradient Direction. As shown in Ap-
pendix E.7, for trained PGAN, we compare the sensitiv-
ity (Lemma 4.1) for the projected true gradient direction,
o?, and the averaged sensitivity for other orthogonal direc-
tions, .-, &?/(m —1). On all datasets, o7 is significantly
larger than ", ?/(m — 1), which implies that trained
PGAN achieves higher sensitivity on the true gradient direc-
tion. This is exactly the goal (3) in Section 4.1. In constrast,
the identical (Chen et al., 2020) and othogonal projection (Li
et al., 2020a) have identical directional sensitivity.

To what extent does orthogonality assumption hold.
Here, we compute V f(0) of PSBA on ImageNet at the opti-
mal scale and then cluster the similar column vectors (those
with cosine similarity > 0.8 or < —0.8) since they con-
tribute to the sensitivity of one direction. Next, we compute
the pairwise cosine similarity between clusters. The his-
togram of clusters based on their cosine similarity is shown
in Fig. 6. As we can see, the histogram concentrates at 0,
i.e., orthogonal pairs are most frequent. We also remark
that recent orthogonal training can also enforce the assump-
tion (Huang et al., 2020).

5.3. Attack Performance Evaluation

In this section, we show that the optimal scale indeed exists
and our method PSBA-PGAN outperforms other state-of-
the-art baselines in terms of attack effectiveness and effi-
ciency. In addition, by selecting the optimal scale, PSBA-
PGAN can also successfully and efficiently attack the online
commercial face recognition API. Here, we randomly select
50 pairs of source and target images from validation set that
are predicted by the target model as different classes for
both offline attack and online attack and the selections of
other hyperparameters are shown in Appendix E.1.

Offline Attack. The attack performance of different ap-
proaches in terms of the perturbation magnitude (MSE)
between the adversarial and target image is shown in Fig. 7
(a)-(c). As we can see from Row 1, PSBA-PGAN effectively
decrease the MSE when the number of queries is small and
outperforms all baselines. Detailed comparisons on the gra-
dient cosine similarity are in Appendix E.5. From Row 2
we can see that, interestingly, the optimal scale found by
PSBA-PGAN across four datasets is consistently 28 x 28.

In Table 1, we show the attack success rate when the query
number is constrained by 2K. This is because we can not
easily generate a large number of queries (e.g., exceeding
2K) for attacking one image, and our PSBA is designed to be
a query efficient attack with fast convergence speed. We can
see that PSBA indeed significantly outperforms other meth-
ods when attacking Face++ API under small query budgets.
On the other hand, when the query budgets get bigger, most
of the methods would converge and attack successfully, then
the comparison under this circumstance is not quite useful.
We leave the results with large query number constraints in
Appendix E.3. Besides, we also compare our method with
RaysS attack (Chen & Gu, 2020) in Appendix E.4. Detailed
discussions on the computation time and resource consump-
tion are in Appendix E.2, and the visualized results for other
target models and ImageNet are in Appendix E.3.

Online Attack. To demonstrate the generalization and prac-
ticality of PSBA-PGAN, we perform it against a real-world
online commercial API as shown in Fig. 7 (d). Although
the PGAN used here is trained on ImageNet, PSBA-PGAN
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Figure 7. Row 1: Perturbation magnitude (MSE) w.r.t. query numbers for attacks on diverse datasets/models. Row 2: Perturbation
magnitude when choosing different scales as the projection subspaces. The target model in (a)-(c) is ResNet-18, and an online commercial
API in (d).
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Table 1. Comparison of the attack success rate for different attacks at query number 2K (the perturbation magnitude under MSE for each
dataset are: MNIST: 5e — 3; CIFAR10: 5e — 4; CelebA: 1e — 4; ImageNet: le — 2).

Data Model # Queries = 2K
HSJA | EA | Sign-OPT | QEBA-S | QEBA-F | QEBA-I | NLBA-AE | NLBA-VAE | PSBA
MNIST ResNet 2% 6% 2% 60% 42% 4% 46% 58% 78 %
ResNeXt | 4% 4% 6% 76% 66% 16% 70% 80% 88%
CIFARIO ResNet 26% | 10% 10% 82% 70% 58% 76% 82% 94%
ResNeXt | 32% 0% 18% 88% 72% 64% 90% 90% 90 %
CelebA ResNet 20% 8% 2% 80% 70% 72% 20% 46% 90 %
ResNeXt | 24% 6% 6% 60% 56% 72% 20% 38% 88%
ImageNet ResNet 24% | 24% 6% 54% 52% 46% 44% 28% 54%
g ResNeXt | 20% | 22% 16% 40% 38% 36% 28% 26% 42%
g‘ """ :iJA to our theoretical findings (goal (3) in Section 4.1). (2) We
= Sign_OPT empirically study the optimal scale across model structures
& s and show that different models have their own preference,
§ 1072 ~= QEBA which we believe will lead to interesting future directions.
g e More details can be found in Appendix E.9.
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£ 2000 3000 PopATSpectrum 6. Conclusion
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Figure 8. Perturbation magnitude (MSE) under different number

of queries on MNIST for PSBA sampling from spatial, frequency,

and spectrum domains.

still outperforms other baselines and interestingly, it adopts

the optimal scale as 56 x 56.

Frequency and Spectrum Domains. In addition to the
spatial domain, we also evaluate PSBA on frequency and
spectrum domains. The results are shown in Fig. 8. PSBA
outperforms other baselines. Detailed implementations and
other ablation studies are included in Appendix E.8.

Additional Findings. (1) In Appendix E.7, we deliberately
adjust the sensitivity on different directions {c;}7, for
given projection f to study the correlation between sensitiv-
ity and empirical attack performance. The results conform

In this paper, we propose PSBA, a progressive-scale black-
box attack via projective gradient estimation. We propose a
general theoretical framework to analyze existing projective
gradient estimators, show key characteristics for improve-
ment, and justify why PSBA outperforms other blackbox
attacks. Extensive experiments verify our theoretical find-
ings and show that PSBA outperforms existing blackbox
attacks significantly against various target models including
a real-world face recognition API.
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