
FOP: Factorizing Optimal Joint Policy of Maximum-Entropy Multi-Agent Reinforcement Learning

A. Individual-Global-Optimal
Definition 1 (IGO). For an optimal joint policy π∗jt(u|τ ) : T ×U → [0, 1], where τ ∈ T is a joint trajectory, if there exist
individual optimal policies [π∗i (ui|τi) : T × U → [0, 1]]Ni=1, such that the following holds:

π∗jt(u|τ ) =

N∏
i=1

π∗i (ui|τi),

then, we say that [πi] satisfy IGO for πjt under τ .

A.1. Policy Improvement under IGO

Under the IGO constraint, if individual policies are locally updated towards optimal, the joint policy improvement will be
obtained. Formally, it can be proved by using the distance measure of KL-divergence, as shown bellowing:

DKL(πjt(u|τ )||π∗jt(u|τ )) =

∫
U
πjt(u|τ ) log

πjt(u|τ )

π∗jt(u|τ )
du

=

∫
U

N∏
i=1

πi(ui|τi)
N∑
i=1

log
πi(ui|τi)
π∗i (ui|τi)

du

=

N∑
i=1

∫
Ui

∫
U−i

πi(ui|τi)π−i(u−i|τ−i) log
πi(ui|τi)
π∗i (ui|τi)

duidu−i

=

N∑
i=1

DKL(πi(ui|τi)||π∗i (ui|τi))
∫
U−i

π−i(u−i|τ−i)du−i

=

N∑
i=1

DKL(πi(ui|τi)||π∗i (ui|τi)),

where π−i inducing action u−i represents the joint policy without agent i. This implies that, under the IGO constraint, the
distance of joint policy to the optimal joint policy can be shortened by the improvement of individual policies.

A.2. Relationship between IGO and IGM

In fact, IGO is an extension of existing Individual-Global-Maximum (IGM) (Son et al., 2019) constraint, which guarantees
the consistency between individual optimal actions and optimal joint action, i.e.,

Definition 2 (IGM). For a joint action-value function Qjt : T × U → R, where τ ∈ T is a joint trajectory, if there exist
individual action-value functions [Qi : T × U → R]Ni=1, such that the following holds

arg max
u

Qjt =
(

arg max
u1

Q1, . . . , arg max
uN

QN
)
.

then, we say that [Qi] satisfy IGM for Qjt under τ . In this case, we also say that Qjt(τ ,u) is factorized by [Qi(τi, ui)], or
that [Qi] are factors of Qjt.

When the joint policy and individual policy are as following:

πjt(u|τ ) =

{
1, u = arg max

u
Qjt(τ ,u)

0, otherwise

πi(ui|τi) =

{
1, ui = arg max

ui

Qi(τi, ui)

0, otherwise
,

the joint actionu = arg max
u

Qjt(τ ,u) if and only if the individual action ui = arg max
ui

Qi(τi, ui) for any agent i. Therefore,

we say IGM can be seen as a special case of IGO if we specialize in the greedy policy, or IGO is an extension of IGM.
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B. Factorized Soft Policy Iteration
B.1. Joint Soft Policy Evaluation

Lemma 1 (Joint Soft Policy Evaluation). Consider the soft Bellman operator Γπjt and a mapping Q0
jt : T × U → R with

|U | <∞, and define Qk+1
jt = ΓπjtQ

k
jt . Then, the sequence Qkjt will converge to the joint soft-Q-function of πjt as k →∞.

Proof. First, define the entropy augmented reward as:

rπjt(τt,ut) := r(τt,ut) + Eτt+1
[H(πjt(·|τt+1))].

Then, rewrite the update rule as:

Qjt(τt,ut)← rπjt(τt,ut) + γEτt+1,ut+1∼πjt [Qjt(τt+1,ut+1)].

Last, apply the standard convergence results for policy evaluation (Sutton & Barto, 2018).

B.2. Individual Soft Policy Improvement

We restrict the individual soft policy πi of each agent i to some set of policies Πi and update the individual soft policy
according to:

πnew
i = arg min

π′i∈Πi

DKL

(
π′i(·|τi)

∣∣∣∣ exp

(
1

αi

(
Q
πold
i
i (τi, ·)− V

πold
i

i (τi)
)))

= arg min
π′i∈Πi

Jπold
i

(π′i(·|τi)).
(12)

Lemma 2 (Individual Soft Policy Improvement). Let πold
i ∈ Πi and πnew

i be the optimizer of the minimization problem

defined in (8). Then, we have Q
πnew

jt
jt (τ t,ut) ≥ Q

πold
jt

jt (τ t,ut) for all (τ t,ut) ∈ T × U with |U | < ∞, where πold
jt =∏N

i=1 π
old
i and πnew

jt =
∏N
i=1 π

new
i .

Proof. Let Qπ
old
i
i and V π

old
i

i be the corresponding soft state-action value and soft state value of individual policy πold
i .

First, considering that Jπold
i

(πnew
i (·|τi)) ≤ Jπold

i
(πold
i (·|τi)), we have

Eui∼πnew
i

[αi log πnew
i (ui|τi)−Q

πold
i
i (τi, ui) + V

πold
i

i (τi)] ≤ Eui∼πold
i

[αi log πold
i (ui|τi)−Q

πold
i
i (τi, ui) + V

πold
i

i (τi)]. (13)

Since log partition function V π
old
i

i depends only on the state, where

V
πold
i

i (τi) = Eui∼πold
i

[Q
πold
i
i (τi, ui)− αi log πold

i (ui|τi)],

the inequality (13) can be reduced to

Eui∼πnew
i

[Q
πold
i
i (τi, ui)− αi log πnew

i (ui|τi)] ≥ V
πold
i

i (τi). (14)

Then, according to Section 4.1, for πold
i , the individual soft Q-values and the joint soft Q-value satisfy:

Qjt(τ ,u) =

N∑
i=1

α

αi

[
Qi(τi, ui)− Vi(τi)

]
+ Vjt(τ ),

where Vjt(τ ) := α

∫
U

exp(
1

α
Qjt(τ ,u))du

Vi(τi) := αi log

∫
Ui

exp(
1

αi
Qi(τi, u))du.

(15)
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Considering πnew
jt =

∏n
i=1 π

new
i , we have:

Eu∼πnew
jt

[
Q
πold

jt
jt (τ ,u)− α log πnew

jt (u|τ )

]
= Eu∼πnew

jt

[ N∑
i=1

α

αi

[
Q
πold
i
i (τi, ui)− V

πold
i

i (τi)
]

+ V
πold

jt
jt (τ )− α log πnew

jt (u|τ )

]
(plugging in (15))

=

N∑
i=1

Eui∼πnew
i

[
α

αi

(
Q
πold
i
i (τi, ui)− V

πold
i

i (τi)− αi log πnew
i (ui|τi)

)]
+ V

πold
jt

jt (τ )

≥ V π
old
jt

jt (τ ) (plugging in (14)). (16)

Last, considering the soft Bellman equation, the following holds:

Q
πold

jt
jt (τt,ut) = rt + γEτt+1 [V π

old
jt (τt+1)]

≤ rt + γEτt+1

[
Eut+1∼πnew

jt

[
Q
πold

jt
jt (τt+1,ut+1)− α log πnew

jt (ut+1|τt+1)
]]

(plugging in (16))

...

≤ Qπ
new
jt

jt (τt,ut),

where we have repeatedly expanded Q
πold

jt
jt on the RHS by applying the soft Bellman equation and the bound in (16).

Convergence to Q
πnew

jt
jt follows from Lemma 1.

B.3. Factorized Soft Policy Iteration

Factorized soft policy iteration alternates between joint soft policy evaluation and individual soft policy improvement, and
provably converges to the global optimum among the policies in [Πi]

N
i=1.

Theorem 1 (Factorized Soft Policy Iteration). Considering joint soft policy can be factorized as πjt =
∏N
i=1 πi, repeated

application of joint soft policy evaluation and individual soft policy improvement from πi ∈ Πi,∀i ∈ N converges to a
policy π∗jt such that Q

π∗jt
jt (τ ,u) ≥ Qπjt

jt (τ ,u) for all [πi ∈ Πi]
N
i=1 and (τ ,u) ∈ T × U , assuming |U | <∞.

Proof. Let πkjt be the soft joint policy at iteration k.

First, by Lemma 2, the sequence Q
πk

jt
jt is monotonically increases. Since Qπjt

jt is bounded above for all πjt =
∏N
i=1 πi, where

[πi ∈ Πi]
N
i=1, that is, both the reward and entropy are bounded, the sequence converges to some π∗jt .

Then, at convergence, it must be the case that

Jπ∗jt (π
∗
jt(·|τ )) ≤ Jπ∗jt (πjt(·|τ )),∀πjt 6= π∗jt .

Using the same iterative argument as in the proof of Lemma 2, we get Q
π∗jt
jt (τ ,u)>Q

πjt
jt (τ ,u) for all (τ ,u) ∈ T ×U . That

is, the soft value of any other policy πjt is lower than that of converged policy π∗jt . Therefore, π∗jt is optimal in [Πi]
N
i=1.

C. Temperature Adjustment
In experiments, unless otherwise specified, the team temperature α is adjusted through automating entropy adjustment in
Haarnoja et al. (2018b), i.e.,

Jα = Eu∼πjt [−α log πjt(u|τ )− αH̄],

where H̄ is the target entropy.
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For the adjustment of individual temperature parameter αi, as each agent’s specific contribution to the team is unknown, we
introduce a weight network λΨ(τ ,u), parameterized by Ψ to learn [α/αi]

N
i=1, i.e.,

αi = α
Eui∼πi [Qi(τi, ui)− Vi(τi)]

Eu∼πjt [λ
Ψ
i (τ ,u)

(
Qi(τi, ui)− Vi(τi)

)
]
. (17)

In this case, (15) can be rewritten as

Qjt(τ ,u) =

N∑
i=1

λi(τ ,u)
[
Qi(τi, ui)− Vi(τi)

]
+ Vjt(τ ), (18)

where Vjt(τ ) and Vi(τi) are the same as in (15).

Next, we will analyze the convergence of individual policy with λi. Considering that αi is related only to τ in (17),
the inequality (13) and (14) still holds since the expectation in (13) and (14) is only related to actions. Considering
πnew

jt =
∏N
i=1 π

new
i , we have:

Eu∼πnew
jt

[
Q
πold

jt
jt (τ ,u)− α log πnew

jt (u|τ )

]
= Eu∼πnew

jt

[ N∑
i=1

λi(τ ,u)
[
Q
πold
i
i (τi, ui)− V

πold
i

i (τi)
]

+ V
πold

jt
jt (τ )− α log πnew

jt (u|τ )

]
(plugging (18))

= Eu∼πnew
jt

[ N∑
i=1

λi(τ ,u)
[
Q
πold
i
i (τi, ui)− V

πold
i

i (τi)
]

+ V
πold

jt
jt (τ )−

N∑
i=1

α log πnew
i (ui|τi)

]

=

N∑
i=1

Eui∼πnew
i

[
α

αi

(
Q
πold
i
i (τi, ui)− V

πold
i

i (τi)− αi log πnew
i (ui|τi)

)]
+ V

πold
jt

jt (τ ) (plugging (17))

≥ V π
old
jt

jt (τ ) (plugging (14)).

(19)

Therefore, λΨ
i (τ ,u) dose not violate the convergence of the factorized soft policy iteration theorem.

The objective of αi can be written as
J(αi) = Eu∼πjt [αi − α/λi(τ ,u)]2

In practice, we can also adjust αi smoothly, i.e.,

αi ← (1− ε) · αi + ε · α Eui∼πi
[Qi(τi, ui)− Vi(τi)]

Eu∼πjt [λi(τ ,u)(Qi(τi, ui)− Vi(τi))]
,

where ε = 1× 10−4.

D. Experiment Settings and Implementation Details
In the well-known matrix game (Son et al., 2019) and differential game (Wei et al., 2018), FOP can converge to the global
optimum for both discrete and continuous action space. We also evaluate FOP on a set of StarCraft II micromanagement tasks
(Samvelyan et al., 2019), and show that FOP substantially outperforms existing decomposed value-based and actor-critic
methods.

D.1. Matrix Game and Differential Game

In matrix game and differential game, we use a replay buffer of size 106. The learning rate of all experiments are 3× 10−4.
All the networks in FOP consist of two hidden layers of 64 units with ReLU non-linearity. The last layer of the weight
network has absolute activation while that of other networks has no activation function.

The decomposed actor-critic methods including DOP (Wang et al., 2020) and FacMADDPG (de Witt et al., 2020) are also
evaluated in both the matrix and differential game for comparison. The network producing weight k and bias b of DOP
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Table 3. The non-monotonic cooperative matrix game. Boldface means the optimal action from individual policies.

(a) VDN: Q1, Q2, Qjt

Q1

Q2 -6.7(A) -0.2(B) -0.8(C)

-6.5(A) -13.2 -6.7 -7.3
-0.2(B) -6.9 -0.4 -1.0
-0.7(C) -7.4 -0.9 -1.5

(b) QMIX: Q1, Q2, Qjt

Q1

Q2 -5.6(A) 0.1(B) 0.0(C)

-6.6(A) -8.1 -8.1 -8.1
0.2(B) -8.1 0.0 0.0
0.1(C) -8.1 0.0 0.0

(c) QTRAN-alt: Q1, Q2, Qjt

u1

u2 3.3(A) 0.1(B) 0.1(C)

4.7(A) 8.0 -12.0 -12.0
-0.1(B) -12.0 0.0 0.0
-0.1(C) -12.0 0.0 0.0

(d) QPLEX: Q1, Q2, Qjt

Q1

Q2 5.5(A) 0.7(B) -0.1(C)

2.4(A) 8.0 -12.1 -12.1
0.1(B) -12.2 0.0 0.0
0.2(C) -12.2 0.0 0.0

consists of two hidden layers of 64 units with ReLU non-linearity. The mixing network in FacMADDPG consists of a single
hidden layer of 32 units, utilizing an ELU non-linearity. The hyper-networks consist of a feed-forward network with a single
hidden layer of 64 units with the ReLU non-linearity.

MATRIX GAME

In the matrix game, the team temperature parameter α is adjusted by linearly annealing from 1 to 0.01 over 10k learning
steps. As shown in Section 5.1, FOP achieves the optimal, while FacMADDPG and DOP fail into the sub-optimal.

We additionally evaluate the performance of decomposed value-based methods including VDN (Sunehag et al., 2018),
QMIX (Rashid et al., 2018), QTRAN (Son et al., 2019), and QPLEX (Wang et al., 2021), with linearly decayed ε-greedy
from 1 to 0.01 over 10k learning steps. Results are shown in Table 3. Obviously, FOP, QPLEX, and QTRAN are the only
three algorithms that can successfully converge to the optimal, and FOP is the first decomposed actor-critic method.

Since the state and action space of the matrix game is quite small, each state-action pair can be easily explored. Thus, the
learning mainly replies on the expressive ability. Since the decomposition structure of the centralized critic in FacMADDPG
and DOP is QMIX and Qatten, respectively, which has limited expressive ability (Wang et al., 2021), they cannot find the
optimal solution.

DIFFERENTIAL GAME

We also include the classic multi-agent actor-critic methods, MADDPG (Lowe et al., 2017) and MAAC (Iqbal & Sha, 2019),
as the baselines for comparison. We show the learning paths where the scattered red dots are the exploration trails before
convergence in Figure 2. By comparing the Figure 2d with Figure 2e, we can see that MAAC with the maximum-entropy
objective has a wider range of exploration trails than MADDPG. More interestingly, by comparing the Figure 2f with Figure
2d, we can see that FacMADDPG (de Witt et al., 2020) also has a wider range of exploration trails than MADDPG.

DOP (Wang et al., 2020) analyzes that classic multi-agent actor-critic methods suffer from the exploration or sub-optimality
of other agents’ policies, causing a large variance of policy gradients. Considering that both MAAC and FOP utilize the
maximum-entropy reinforcement learning, MAAC updates individual policies based on the centralized critic while FOP is
based on the decomposed critic. Thus, we show the gradient variance of MAAC and FOP in the differential game. From
Figure 5, we can see that the variance of FOP is smaller than MAAC, and all the decomposed actor-critic methods have a
smaller gradient than the classic multi-agent actor-critic methods.

Although the decomposed critic can reduce the gradient variance, both FacMADDPG and DOP cannot converge to the
global optimum. In both the matrix game and the differential game, we show that FacMADDPG and DOP cannot estimate
the centralized critic accurately. We claim that the imprecise estimate may mislead individual policies. However, we cannot
conclude that an accurate estimate of the centralized critic is a necessary and sufficient condition for the global optimal
convergence of individual policies since the MADDPG and MAAC with the accurate estimate cannot converge to the global
optimum. The pathology of finding a sub-optimal solution is also called relative overgeneralization, which is discussed in
the next.

D.2. Relative Overgeneralization

The matrix game and the differential game are dramatically challenging since they face the game-theoretic pathology called
relative overgeneralization (RO): during exploration, other agents act randomly, and punishment caused by uncooperative
agents may outweigh rewards that would be achievable with coordinated actions, leading to policies sub-optimal (Wei &
Luke, 2016; Castellini et al., 2019).
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Figure 5. Gradient variance in the differential game.

Relative overgeneralization occurs when a sub-optimal solution in the joint space of actions is preferred over a global
optimal solution. For instance, consider the matrix game in Section 5.1. During the random exploration, the expected return
of action A (related to the global optimal solution (A, A)) is −16/3 while the expected return of action B and C is −12/3.
Thus, the sub-optimal solution is more attractive than the global optimal solution. Similarly, in the differential game, the
sub-optimal solution is more attractive than the global optimal solution. Thus, even if the classic multi-agent actor-critic
including MADDPG (Lowe et al., 2017) and MAAC (Iqbal & Sha, 2019) estimate the centralized critic accurately, they
never converge to the global optimum.

Considering that RO occurs when the largest average return weighted by exploration comes from sub-optimal, the policy’s
exploration ability makes sense to solve the RO. MAVEN (Mahajan et al., 2019) introduces a hierarchical model to coordinate
diverse ε explorations among agents. In this way, MAVEN helps QMIX find the global optimal solution in matrix game
(Mahajan et al., 2019). Unfortunately, such an approach limits to discrete actions due to the intractability of latent variables.

Some studies utilize the Boltzmann exploration policy for a more exploration ability than ε-greedy policy (Wei & Luke,
2016). FMQ (Rashid et al., 2020) with Boltzmann exploration policy in Q-learning converges almost always to the global
optimum in the nonmonotonic matrix game. Using the Boltzmann policy with the maximum-entropy objective, MASQL
(Wei et al., 2018) improves the global convergence of MADDPG in the differential game from 0% to 72% of the time, which
shows that the maximum-entropy objective is helpful to solve the dramatic challenge, i.e., relative overgeneralization.

Therefore, in this paper, we chose to factorize the maximum-entropy MARL under the IGO constraint. Empirical experiments
show that our proposed method solves the relative overgeneralization problem in the two games for discrete and continuous
action spaces.

D.3. Ablation Study

Castellini et al. (2019) illustrates that the learning outcomes of MASQL are extremely sensitive to the way of temperature
annealing, i.e., when and how to anneal the temperature to a small value during training is non-trivial. Therefore, we
launched ablation experiments to explore the sensitivity of FOP to the temperature parameter.

Since the state-action space is small in the matrix game, we utilized the simple approach to adjust, i.e., linearly anneal
α form 1 to different α̂ over 10k steps. Results are shown in Table 2. We can see that, FOP can always find the optimal
solution, even if the policy is not greedy (α̂ is not 0).

In the differential game, we utilized the different annealing approaches and different annealing rates. Learning curves are
shown in Figure 3a. The annealing approaches are as:

(purple line) logα←− logα− 1× 10−3

(red line) logα←− logα− 5× 10−4

(light blue line) α←− α− 1× 10−4

(orange line) α←− α− 5× 10−5

(dark blue line) Automating Entropy Adjustment.
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Table 4. The brief introduction of three typical scenarios in SMAC.

Map Name Ally Units Enemy Units

2c vs 64zg 2 Colossi 64 Zerglings
3s vs 3z 3 Stalkers 3 Zealots
MMM 1 Medivac, 2 Marauders & 7 Marines 1 Medivac, 2 Marauders & 7 Marines

MMM2 1 Medivac, 2 Marauders & 7 Marines 1 Medivac, 2 Marauders & 8 Marines

(a) 2c vs 64zg (b) 3s vs 3z (c) MMM (d) MMM2

Figure 6. Visualization of four maps of StarCraft II

We can see that FOP always converges to the optimal, and the only difference under these approaches is the convergence
rate. Therefore, we say that FOP is robust with the temperature parameter adjustment.

Next, we changed FOP’s factorization to DOP’s linear decomposition to analyze the importance of IGO constraint. Figure
3b shows that, without the factorization based on the IGO constraint, even if the joint action space is well explored, the
biased estimate of the joint Q-value leads the individual policies to the sub-optimal, which reveals the significance of the
consistency of optimal joint policy and individual policies. Even if we changed the way of temperature annealing, FOP with
DOP’s decomposition cannot converge to the global optimum.

Last, we changed FOP’s Boltzmann policy to the greedy policy by fixing α and αi to 0. Note that the λ(τ ,u) in (18) still
exists. Figure 3c illustrates that the lack of effective exploration biases the estimate of the joint Q-value and leads the
policies to the sub-optimal, which reveals the importance of the soft policy.

D.4. StarCraft II

In StarCraft II, we utilized the default settings of the baselines including VDN, QMIX, QPLEX, and DOP. The network
of FOP consists of three layers, a fully-connected layer with 64 units activated by ReLU, followed by a 64 bit GRU, and
followed by another fully-connected layer. We adopt the multi-head attention module to construct the weight network with 4
heads. The temperature parameters α and αi are annealed from 0.5 to 0.05 over 200k time steps. The learning rate is set to
5× 10−4. The target networks are updated after every 200 training episodes.

We considered four maps including the 2c vs 64zg, 3s vs 3z, MMM and the MMM2, whose brief introduction is illustrated
in Table 4. The Visualization of the four scenarios are shown in Figure 6. The enemy units are controlled by the built-in AI,
and each ally unit is controlled by the reinforcement learning agent. The units of the two groups in 2c vs 64zg, 3s vs 3z and
MMM2 scenarios are asymmetric. All experiments on StarCraft II utilize the default reward and observation settings of the
SMAC benchmark (Samvelyan et al., 2019). We pause the training every episode and evaluate 32 episodes with individual
policies to measure win rate of each algorithm.


