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Abstract

Many weakly supervised classification methods
employ a noise transition matrix to capture the
class-conditional label corruption. To estimate
the transition matrix from noisy data, existing
methods often need to estimate the noisy class-
posterior, which could be unreliable due to the
overconfidence of neural networks. In this work,
we propose a theoretically grounded method that
can estimate the noise transition matrix and learn
a classifier simultaneously, without relying on
the error-prone noisy class-posterior estimation.
Concretely, inspired by the characteristics of the
stochastic label corruption process, we propose
total variation regularization, which encourages
the predicted probabilities to be more distinguish-
able from each other. Under mild assumptions,
the proposed method yields a consistent estimator
of the transition matrix. We show the effective-
ness of the proposed method through experiments
on benchmark and real-world datasets.

1. Introduction

Can we learn a correct classifier based on possibly incorrect
examples? The study of classification in the presence of
label noise has been of interest for decades (Angluin &
Laird, 1988) and is becoming more important in the era of
deep learning (Goodfellow et al., 2016). This issue can be
caused by the use of imperfect surrogates of clean labels
produced by annotation techniques for large-scale datasets
such as crowdsourcing and web crawling (Fergus et al.,
2005; Jiang et al., 2020). Unfortunately, without proper
regularization, deep models could be more vulnerable to
overfitting the label noise in the training data (Arpit et al.,
2017; Zhang et al., 2017), which affects the classification
performance adversely.
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Background. Early studies on learning from noisy labels
can be traced back to the random classification noise (RCN)
model for binary classification (Angluin & Laird, 1988;
Long & Servedio, 2010; Van Rooyen et al., 2015). Then,
RCN has been extended to the case where the noise rate
depends on the classes, called the class-conditional noise
(CCN) model (Natarajan et al., 2013). The multiclass case
is of central interest in recent years (Patrini et al., 2017;
Goldberger & Ben-Reuven, 2017; Han et al., 2018a; Xia
etal., 2019; Yao et al., 2020), where multiclass labels Y flip
into other categories Y according to probabilities described
by a fixed but unknown noise transition matrix T', where
T,; = p(Y = j|Y = i). In this work, we focus on the
multiclass CCN model. Other noise models are discussed
in Appendix A.

Methodology. The unknown noise transition matrix in
CCN has become a hurdle. In this work, we focus on a line
of research that aims to estimate the transition matrix from
noisy data. With a consistently estimated transition matrix,
consistent estimation of the clean class-posterior is possible
(Patrini et al., 2017). To estimate the transition matrix,
earlier work mainly relies on a given set of anchor points
(Liu & Tao, 2015; Patrini et al., 2017; Yu et al., 2018), i.e.,
instances belonging to the true class deterministically. With
anchor points, the transition matrix becomes identifiable
based on the noisy class-posterior. Further, recent work has
attempted to detect anchor points in noisy data to mitigate
the lack of anchor points in real-world settings (Xia et al.,
2019; Yao et al., 2020).

Nevertheless, even with a given anchor point set, these two-
step methods of first estimating the transition matrix and
then using it in neural network training face an inevitable
problem — the estimation of the noisy class-posterior. The
estimation error could be high due to the overconfidence of
neural networks (Guo et al., 2017; Hein et al., 2019; Rahimi
et al., 2020) (see also Appendix B).

In this work, we present an alternative methodology that
does not rely on the error-prone estimation of the noisy class-
posterior. The key idea is as follows: Note the fact that the
noisy class-posterior vector p is given by the product of
the noise transition matrix 1" and the clean class-posterior
vector p: p = T"p. However, in the reverse direction, the
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Figure 1. An illustration of the proposed method. Our model has
two modules: (a) a neural network for predicting p(Y'|X); and
(b) a Dirichlet posterior for the noise transition matrix 7", whose
concentration parameters are updated using the confusion matrix
obtained during training. The learning objective in Eq. (12) also
contains two parts: (i) the usual cross entropy loss for classification
from noisy labels in Eq. (5); and (ii) a total variation regularization
term for the predicted probability in Eq. (10).

decomposition of the product is not always unique, so T'
and p are not identifiable from p. Thus, without additional
assumption, existing methods for estimating 7" from p could
be unreliable. However, if p has some characteristics, e.g.,
p is the “cleanest” among all the possibilities, then 7" and p
become identifiable and it is possible to construct consistent
estimators. Concretely, we assume that anchor points exist
in the dataset to guarantee the identifiability, but we do not
need to explicitly model or detect them (Theorem 1).

Further, note that the mapping p — T'" p is a contraction
over the probability simplex relative to the fotal variation
distance (Del Moral et al., 2003). That is, the “cleanest” p
has the property that pairs of p are more distinguishable
from each other. Based on this motivation, we propose
total variation regularization to find the “cleanest” p and
consistently estimate 1" simultaneously (Theorem 2).

Our contribution. In this paper, we study the class-
conditional noise (CCN) problem and propose a method
that can estimate the noise transition matrix and learn a
classifier simultaneously, given only noisy data. The key
idea is to regularize the predicted probabilities to be more
distinguishable from each other using the pairwise total
variation distance. Under mild conditions, the transition
matrix becomes identifiable and a consistent estimator can
be constructed.

Specifically, we study the characteristics of the class-
conditional label corruption process and construct a partial
order within the equivalence class of transition matrices in
terms of the total variation distance in Section 3, which
motivates our proposed method. In Section 4.1, we present
the proposed total variation regularization and the theorem
of consistency (Theorem 2). In Section 4.2, we propose a
conceptually novel method based on Dirichlet distributions
for estimating the transition matrix. Overall, the proposed
method is illustrated in Fig. 1.

2. Problem: Class-Conditional Noise

In this section, we review the notation, assumption, and
related work in learning with class-conditional noise (CCN).

2.1. Noisy Labels

Let X € X be the input feature, and Y € {1,..., K}
the true label, where K is the number of classes. In fully
supervised learning, we can fit a discriminative model for
the conditional probability p(Y'|X') using an i.i.d. sample of
(X, Y)-pairs. However, observed labels may be corrupted in
many real-world applications. Treating the corrupted label
as correct usually leads to poor performance (Arpit et al.,
2017; Zhang et al., 2017). In this work, we explicitly model
this label corruption process. We denote the noisy label by
Y € {1,...,K}. The goal is to predict Y from X based on
an i.i.d. sample of (X, Y)-pairs.

2.2. Class-Conditional Noise (CCN)

Next, we formulate the class-conditional noise (CCN)
model (Natarajan et al., 2013; Patrini et al., 2017).

In CCN, we have the following assumption:
p(Y[Y, X) = p(Y]Y). (D)

That is, the noisy label Y only depends on the true label Y
but not on X. Then, we can relate the noisy class-posterior
p(Y'|X) and the clean class-posterior p(Y|X) by

p(Y|X) = Sy, p(Y[Y)p(Y]X). ©)

Note that the clean class-posterior p(Y|X') can be seen as
a vector-valued function p(Y|X = z) : X — AKX~ =
p(Y =1X =2),...,p(Y = K|X = 2)]", and so can
the noisy class-posterior p(Y|X).! Also, p(Y|Y) can be
written in matrix form: T € T C [0, 1]5*% with elements
T, :p(f/ =jlY =4)fori,j € {1,..., K}, where T is
the set of all full-rank row stochastic matrices. Here, T is
called a noise transition matrix. Then, with the vector and
matrix notation, Eq. (2) can be rewritten as

p(Y|X) =T p(Y]X). 3)

Note that multiplying T is a linear transformation from the
simplex A to the convex hull Conv(T') induced by rows of
T, which is illustrated in Fig. 2.

In the context of learning from noisy labels, we further
assume 7' to be diagonally dominant in the sense that T;; >
T;; for i # j. Although this formulation can be also used
for learning from complementary labels, where T;; = 0 or
Ti; < T;; fori # j (Ishida et al., 2017; Yu et al., 2018).

'AK=1 denotes the (K — 1)-dimensional probability simplex.
The superscript in AKX~ is omitted hereafter.

Here, Conv(T) is a shorthand for the convex hull of the set of
vectors {T3|i = 1,..., K} within the simplex A.
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Figure 2. Tllustrations of the noise transition matrix as a linear transformation A — Conv(7T') when K = 3, including symmetric, pair
flipping, and general noises. The outer black triangle is the simplex A and the inner colored triangle is the convex hull Conv(T"). Solid
lines are the decision boundaries of argmax and dotted lines are the ones after the transformation. Note that different transition matrices
affect the decision boundary differently. Adding symmetric noise does not change the decision boundary.

2.3. Learning with Known Noise Transition Matrix

If the ground-truth noise transition matrix T' is known,
p(Y'|X) is identifiable based on observations of p(Y|X),
which means that different p(Y'| X') must generate distinct
p(Y|X). Therefore, we can consistently recover p(Y|X)
by estimating p(?|X ) using the relation in Eq. (3) (Patrini
et al., 2017; Yu et al., 2018). However, if T and p(Y|X)
are both unknown, then they are both partially identifiable
because there could be multiple observationally equivalent
T and p(Y'|X') whose product equals p(Y'|X). Thus, it is
impossible to estimate both T and p(Y'|X) from p(Y|X)
without any additional assumption.

Concretely, let p(Y'|X; W) parameterized by W € W be
a differentiable model for the true label,’ and T € T be
an estimator for the noise transition matrix. We consider a
sufficiently large function class of p(Y'|X'; W) that contains
the ground-truth p(Y'|X), i.e.,, IW* e W, p(YV|X; W*) =
p(Y'|X) a.e. In practice, we use an expressive deep neural
network (Goodfellow et al., 2016) as p(Y'|X; W).

Then, let us consider the expected Kullback—Leibler (KL)
divergence as the learning objective:

LoW.T) = E [ D (p(V1X) || TR0V LX) )]
4)

which is related to the expected negative log-likelihood or
the cross-entropy loss in the following way:

LW, D)= _E__[“log@Ip(YIX:W)] )
X,YNp(X,Y)
= Lo(W,T) + H(Y|X), 6)

where the second term H (Y| X) is the conditional entropy

of Y given X, which is a constant w.r.t. W and T'. Note
that L(W, T') is minimized if and only if Lo(W,T) = 0.

3W is sometimes omitted to keep the notation uncluttered.

When L(W, f‘) is empirically eitimated and optimized
based on a finite sample of (X, Y')-pairs, we can ensure
that fTﬁ(Y|X)i>TTp(Y|X) as the sample size increases,
but we can not guarantee that ﬁ(Y\X)i>p(Y|X) due to

non-identiﬁability,“AThe latter holds only when the ground-
truth 7" is used as 1" (Patrini et al., 2017).

2.4. Learning with Unknown Noise Transition Matrix

In real-world applications, the ground-truth T is usually
unknown. Some existing two-step methods attempted to
transform this problem to the previously solved one by first
estimating the noise transition matrix and then using it in
neural network training. Since it is rare to have both clean
labels Y and noisy labels Y for the same instance X, several
methods are proposed to estimate 7" from only noisy data.

Existing methods usually rely on a separate set of anchor
points (Liu & Tao, 2015; Patrini et al., 2017; Yu et al., 2018;
Xia et al., 2019; Yao et al., 2020), which are defined as
follows:

Definition 1 (Anchor point). An instance x is called an
anchor point for class 7 if p(Y = i|X = z) = 1.

Based on an anchor point z for class i, we have
pY|X =2)=T"p(Y|X =) =T, (7)

Thus, we can first estimate p(Y| X ) and then calculate the
value on anchor points to obtain an estimate of T". However,
if we cannot find such anchor points in real-world datasets
easily, the aforementioned method can not be applied.

A workaround is to detect anchor points from all noisy data,
assuming that they exist in the dataset. Further revision of
the transition matrix before (Yao et al., 2020) or during (Xia
et al., 2019) the second stage of training can be adopted to
improve the performance.

d s
455 denotes the convergence in distribution.
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Figure 3. An example of overconfident predictions yield from neural networks. Notation: ¢ Shape: true labels; * Color: observed labels;
* Location in the simplex: ground-truth/estimated probabilities; * Solid triangle: convex hull Conv(T'); * Dashed triangle: convex hull of
an estimated transition matrix; ¢ Vertices of the triangle: anchor points. Without knowing T" and the constraint that p(f/|X ) should be
within Conv(T'), a neural network trained with noisy labels tends to output high-confident (low-entropy) predictions outside of Conv(T').
Therefore, T' may be poorly estimated based on the overconfident noisy class-posterior.

Nevertheless, such two-step methods based on anchor points
face an inevitable problem — the estimation of the noisy
class-posterior p(Y'|X) using possibly over-parameterized
neural networks trained with noisy labels. We point out that
the estimation error could be high in this step because of the
overconfidence problem of deep neural networks (Guo et al.,
2017; Hein et al., 2019). If no revision is made, errors in
the first stage may lead to major errors in the second stage.

Figure 3 illustrates an example of the overconfidence. As
discussed in Section 2.2, p(Y|X) should be within the
convex hull Conv(T'). However, without knowing T" and
this constraint, a neural network trained with noisy labels
tends to output overconfident probabilities that are outside
of Conv(T'). Note that over-parameterized neural networks
trained with clean labels could also be overconfident and
several re-calibration methods are developed to alleviate
this issue (Guo et al., 2017; Kull et al., 2019; Hein et al.,
2019; Rahimi et al., 2020). However, in Appendix B we
demonstrate that estimating the noise class-posterior causes
a significantly worse overconfidence issue than estimating
the clean one. Consequently, transition matrix estimation
may suffer from poorly estimated noisy class-posteriors,
which leads to performance degradation.

In contrast to existing methods, our proposed method only
uses the product TTp(Y'| X) as an estimate of p(Y|X) and
never estimates p(Y'| X)) directly using neural networks.

3. Motivation

In this section, we take a closer look at the class-conditional
label corruption process and construct an equivalence class
and a partial order for the noise transition matrix, which
motivates our proposed method. Concretely, we show that
the contraction property of the stochastic matrices leads to
a partial order of the transition matrices, which can be used
to find the “cleanest” clean class-posterior.

3.1. Transition Matrix Equivalence

Recall that 7 is the set of full-rank row stochastic matrices,
which is closed under multiplication. Based on this, we
first define an equivalence relation of an ordered pair of
transition matrices induced by the product:

Definition 2 (Transition matrix equivalence).

U, V)~ (U, V)sUV=UV"

The corresponding equivalence class with a product W
is denoted by [W]. Specially, for the identity matrix I,
[I] contains pairs of permutation matrices (P, P~1); for a
non-identity matrix W, [W] contains at least two distinct
elements (W, I') and (I, W) and possibly infinitely many
other elements.

Now, consider the equivalence class [T'] for the ground-truth
noise transition matrix 7" in our problem. Then, any element
(U, V) € [T] corresponds to a possible optimal solution of
Eq.(5): T = Vand p(Y|X; W) = UTp(Y | X), given that
such a parameter W exists. Among possibly infinitely many
possibilities, only (I, T") is of our central interest. However,
it is possible to get infinitely many other wrong ones, such
as (T, I), which corresponds to a model that predicts the
noisy class-posterior and chooses the transition matrix to be
the identity matrix I.

3.2. Transition Matrix Decomposition

Next, consider the reverse direction: if we obtain an optimal
solution of Eq. (5), T and p(Y'|X), is there a U such that
p(Y|X) = UTp(Y|X)? The answer is yes if there are
anchor points for each class in the dataset, which can be
proved using the following theorem:

Theorem 1 (Transition matrix decomposition). For two
row stochastic matrices W,V € T,ifVp € A, Jq € A,
s.t. WTp = VTq, then 3 a row stochastic matrix U € T,
st. W =UVandVpe A, qg=U"p.
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Proof. Let p be e; and denote the corresponding g by g;
fori=1,...,K.ThenU = [qi,...,qx]". O

Here, e; is the i-th standard basis and p(Y|X = z) = e;
means that x is an anchor point for the class . Consequently,
we can derive that if there are anchor points for each class
in the dataset, given an estimated transition matrix 7" and
an estimated clean class-posterior p(Y'|X) from an optimal
solution of Eq. (5), we know that there is an implicit row
stochastic matrix U such that p(Y|X) = UTp(Y|X). In
other words, the estimate p(Y | X)) may still contain class-
conditional label noise, which is described by U'.

We point out that the existence of anchor points is a sufficient
but not necessary condition for the existence of the U above.
If anchor points do not exist, we may or may not find such
a U. Also note that we will not try to detect anchor points
from noisy data.

More importantly, we have no intention of estimating U
explicitly. In this work, we only use the fact that there is
a one-to-one correspondence between optimal solutions of
Eqg. (5) and elements in the equivalence class [T'] under the
above assumption. Based on this fact, we can study the
equivalence class [T] or the properties of the implicit U
instead, which is easier to deal with.

3.3. Transition Matrix as a Contraction Mapping

Next, we attempt to break the equivalence introduced above
by examining the characteristics of this consecutive class-
conditional label corruption process.

We start with the definition of the fotal variation distance
drv (-, -) between pairs of categorical probabilities:

1
drv(p,q) = §||P—(IH17 (®)

where ||-||; denotes the ¢ norm. Then, from the theory of
Markov chains, we know that the mapping A — Conv(U)
defined by p — U p is a contraction mapping over the
simplex A relative to the total variation distance (Del Moral
et al., 2003), which means that VU € T,Vp,q € A,

drv(UTp,U"q) < drv(p, q). 9)

3.4. Transition Matrix Partial Order

Finally, based on this contraction property of the stochastic
matrices, we can introduce a partial order induced by the
total variation distance within the equivalence class [T]:

Definition 3 (Transition matrix partial order).
U,v)=z U,V &
Vp,q € A, drv(UTp,UTq) < drv(Up,Uq).

Note that (I, T) is the unique greatest element because of
Eq. (9). Despite the fact that there could be incomparable
elements, we may gradually increase the total variation to
find (I,T). Then, with the help of this partial order, it is
possible to estimate both p(Y|X) and T simultaneously,
which is discussed in the following section.

4. Proposed Method

In this section, we present our proposed method. Overall,
the proposed method is illustrated in Fig. 1.

Summarizing our motivation discussed in Section 3, we
found that if anchor points exist in the dataset, estimating
both the transition matrix 7" and the clean class-posterior
p(Y|X) by training with the cross-entropy loss in Eq. (5)
results in a solution in the form p(Y|X) = UTp(Y|X),
where U is an unknown transition matrix (Theorem 1).
Then, we pointed out that the stochastic matrices have the
contraction property shown in Eq. (9) so that the “cleanest”
clean class-posterior has the highest pairwise total variation
defined in Eq. (8). Based on this fact, we can regularize the
predicted probabilities to be more distinguishable from each
other to find the optimal solution, as discussed below.

4.1. Total Variation Regularization

First, we discuss how to enforce our preference of more
distinguishable predictions in terms of the total variation
distance. We start with defining the expected pairwise total
variation distance:

R(W) ' 11NIE(X) ZI?ZNH;;(X)[dTV(pl’pZ)]’ (10)
where p; ;== p(Y|X =2; W), i=1,2.

Note that this data-dependent term depends on X but not
onY noronY.

Then, we adopt the learning objective in the KL-divergence
form in Eq. (4), combine it with the expected pairwise total
variation distance in Eq. (10), and formulate our approach
in the form of constrained optimization, as stated in the
following theorem:

Theorem 2 (Consistency). Given a finite i.i.d. sample of
(X,Y)-pairs of size N, where anchor points (Definition 1)
for each class exist in the sample, let Lo (W, f‘) and R(W)
be the empirical estimates of Lo (W, IA”) in Eq. (4) and R(W)
in Eq. (10), respectively. Assume that the parameter space
W is compact. Let (W°, T°) be an optimal solution of the
following constrained optimization problem:

mma}XR(W) st. Lo(W,T) = 0. (11)

Then, T® is a consistent estimator of the transition matrix
. d
T;and p(Y|X; W°)=p(Y|X) ae. as N — oc.
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The proof is given in Appendix C. Informally, we make use
of Theorem 1, the property of the KL-divergence, and the
contraction property of the transition matrix.

In practice, the constrained optimization in Eq. (11) can be
solved via the following Lagrangian (Kuhn et al., 1951):

L(W,T) := Lo(W,T) — yR(W), (12)

where 7 € R+ is a parameter controlling the importance of
the regularization term. We call such a regularization term a
total variation regularization. This Lagrangian technique
has been widely used in the literature (Cortes & Vapnik,
1995; Kloft et al., 2009; Higgins et al., 2017; Li et al., 2021).
When the total variation regularization term is empirically
estimated and optimized, we can sample a fixed number of
pairs to reduce the additional computational cost.

4.2. Transition Matrix Estimation

Next, we discuss the estimation of the transition matrix 7.
In contrast to existing methods (Patrini et al., 2017; Xia
etal., 2019; Yao et al., 2020), we adoptA a one-step training
procedure to obtain both p(Y'|X) and T simultaneously.

Gradient-based estimation. First, note Athat the learning
objective Eq. (12) is differentiable w.r.t. T'. As a baseline,
it is sufficient to use gradient-based optimization for T .
In practice, we apply softmax to an unconstrained matrix
in REXX (o ensure that T' € T. Then, T is estimated
by optimizing £(W,T') using stochastic gradient descent
(SGD) or its variants (e.g., Kingma & Ba (2015)).

Dirichlet posterior update. The additional total variation
regularization term Eq. (10) is irrelevant to T so we are free
to use other optimization methods besides gradient-based
methods. To capture the uncertainty of the estimation of T°
during different stages of training, we propose an alternative
derivative-free approach that uses Dirichlet distributions to
model T'. Concretely, let the posterior of 1" be

T, ~ Dirichlet(A;) (i=1,...,K), (13)
where A; € RE is the concentration parameter. Denote
the confusion matrixby C € N IE{OX K where its element Cij
is the number of instances that are predicted to be Y =ivia
sampling Y ~ p(Y'|X; W) but are labeled as Y = j in the
noisy dataset. In other words, we use a posterior of p(Y'|Y)
to approximate p(Y'|Y") during training.
Then, inspired by the closed-form posterior update rule for

the Dirichlet-multinomial conjugate (Diaconis & Ylvisaker,
1979):

A(posterior) — A(prior) + Cr(observeution)7 (14)

we update the concentration parameters A during training
using the confusion matrix C' via the following update rule:

A(*61A+BQC, (15)

where 3 = (1, B2) are fixed hyperparameters that control
the convergence of A. We initialize A with an appropriate
diagonally dominant matrix to reflect our prior knowledge
of noisy labels. FoAr each batch of data, we sample a noise
transition matrix 7" from the Dirichlet posterior and use it
in our learning objective in Eq. (12).

The idea is that the confusion matrix C' at any stage during
training is a crude estimator of the true noise transition
matrix 7', then we can improve this estimator based on
information obtained during training. Because at earlier
stage of training, this estimator is very crude and may be
deviated from the true one significantly, we use a decaying
factor 3 close to 1 (e.g., 0.999) to let the model gradually
“forget” earlier information. Meanwhile, 32 controls the
variance of the Dirichlet posterior during training, which is
related to the learning rate and batch size. At early stages,
the variance is high so the model is free to explore various
transition matrices; as the model converges, the estimation
of the transition matrix also becomes more precise so the
posterior would concentrate around the true one.

5. Related Work

In addition to methods using the noise transition matrix
explicitly and two-step methods detecting anchor points
from noisy data (Patrini et al., 2017; Yu et al., 2018; Xia
etal., 2019; Yao et al., 2020) introduced in Sections 1 and 2,
in this section we review related work in learning from noisy
labels in a broader sense.

First, in CCN, is it possible to learn a correct classifier
without the noise transition matrix? Existing studies in
robust loss functions (Ghosh et al., 2017; Zhang & Sabuncu,
2018; Wang et al., 2019; Charoenphakdee et al., 2019; Ma
et al., 2020; Feng et al., 2020; Lyu & Tsang, 2020; Liu &
Guo, 2020) showed that it is possible to alleviate the label
noise issue even without estimating the noise rate/transition
matrix, under various conditions such as the noise being
symmetric (the RCN model in binary classification (Angluin
& Laird, 1988)). Further, it is proven that the accuracy
metric itself can be robust (Chen et al., 2021). However, if
the noise is heavy and complex, robust losses may perform
poorly. This motivates us to evaluate our method under
various types of label noises beyond the symmetric noise.

Another direction is to learn a classifier that is robust against
label noise, including training sample selection (Malach &
Shalev-Shwartz, 2017; Jiang et al., 2018; Han et al., 2018b;
Wang et al., 2018; Yu et al., 2019; Wei et al., 2020; Mirza-
soleiman et al., 2020; Wu et al., 2020) that selects training
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Table 1. Accuracy (%) on the MNIST, CIFAR-10, and CIFAR-100 datasets. We reported “mean (standard deviation)” of 10 trials.

(a) Clean (b) Symm. (c) Pair (d) Pair? (e) Trid. (f) Rand.
MAE 98.72(0.09) 98.00(0.14) 91.46(7.40) 89.79(6.11) 96.22(3.87)  34.07(31.98)
CCE 99.21(0.04) 98.13(0.16) 94.70(0.64) 94.86(0.67) 96.78(0.22) 95.68(1.31)
. GCE 99.12(0.06) 98.41(0.12) 93.79(1.04) 94.06(0.63) 96.60(0.14) 96.28(0.93)
»v2  Forward  99.18(0.05) 98.00(0.24) 94.37(1.00) 94.84(0.53) 96.54(0.29) 95.95(1.49)
§ T-Revision 99.20(0.06) 98.01(0.14) 94.19(0.78) 95.24(0.74) 96.76(0.15) 96.62(0.70)
Dual-T 99.16(0.05) 98.58(0.12) 99.06(0.07) 99.03(0.06) 99.04(0.05) 98.79(0.17)
TVG 99.16(0.06) 98.55(0.09) 94.26(0.59) 95.42(0.44) 97.78(0.56) 97.67(0.84)
TVD 99.18(0.07) 98.56(0.08) 99.09(0.08) 99.00(0.07) 99.03(0.08) 98.82(0.11)
MAE 66.47(4.76) 57.23(4.15) 44.29(2.23) 42.43(1.66) 43.43(2.69) 26.95(5.45)
CCE 91.87(0.19) 75.71(0.57) 65.54(0.66) 65.23(0.85) 76.07(0.61) 70.44(1.98)
o GCE 89.25(0.17) 83.68(0.29) 71.49(1.18) 69.66(0.57) 82.14(0.41) 78.07(2.16)
&  Forward 91.87(0.15) 76.18(0.63) 65.42(0.92) 65.65(1.11) 76.41(0.50) 70.86(2.19)
é T-Revision  91.72(0.18) 75.51(0.59) 65.49(0.97) 65.70(0.66) 76.18(0.80) 71.22(1.62)
©) Dual-T 91.75(0.18) 82.85(0.42) 80.86(1.03) 79.61(1.20) 88.11(0.28) 84.33(2.11)
TVG 91.61(0.14) 82.60(0.38) 89.78(0.16) 88.36(0.24) 88.07(0.25) 86.19(0.52)
TVD 91.00(0.13) 83.03(0.24) 88.47(0.29) 86.96(0.35) 87.44(0.16) 85.86(0.46)
MAE 11.23(1.02) 7.89(0.67) 6.94(1.11) 6.60(0.74) 7.45(0.55) 7.15(0.98)
CCE 70.58(0.29)  42.94(0.47) 44.00(0.71) 41.37(0.27) 46.55(0.54) 42.41(0.48)
S GCE 57.10(0.85) 48.66(0.58) 45.27(0.85) 43.67(0.94) 50.98(0.33) 48.66(0.63)
r~ Forward 70.58(0.28) 44.32(0.64) 44.17(0.57) 42.07(0.55) 47.48(0.40) 43.15(0.53)
é T-Revision 70.47(0.26)  46.52(0.57) 44.08(0.42) 42.01(0.52) 47.59(0.60) 45.33(0.40)
@) Dual-T 70.56(0.28)  55.92(0.60) 46.22(0.72) 44.74(0.65) 61.68(0.51) 57.92(0.50)
TVG 70.02(0.30) 57.33(0.42)  45.68(0.85) 44.38(0.72) 54.23(0.53) 59.85(0.61)
TVD 69.93(0.21) 52.54(0.45) 56.02(0.82) 49.18(0.53) 62.45(0.44) 53.95(0.47)

examples during training, learning with rejection (El-Yaniv
& Wiener, 2010; Thulasidasan et al., 2019; Mozannar & Son-
tag, 2020; Charoenphakdee et al., 2021) that abstains from
using confusing instances, meta-learning (Shu et al., 2019;
Lietal., 2019), and semi-supervised learning (Nguyen et al.,
2020; Li et al., 2020). These methods exploit the training
dynamics, characteristics of loss distribution, or information
of data itself instead of the class-posteriors. Then, the CCN
assumption in Eq. (1) might not be needed but accordingly
these methods usually have limited consistency guarantees.
Moreover, the computational cost and model complexity of
these methods could be higher.

For the CCN model and noise transition matrix estimation,
recently, the idea of solving the class-conditional label noise
problem using a one-step method was concurrently used by
Lietal. (2021), aiming to relax the anchor point assumption.
They adopt a different approach based on the characteristics
of the noise transition matrix, instead of the properties of
the clean class-posterior used in our work. Li et al. (2021)
has the advantage that their assumption is weaker than ours.
However, the additional term on the transition matrix might
be incompatible with derivative-free optimization, such as
the Dirichlet posterior update method proposed in our work.

6. Experiments

In this section, we present experimental results to show that
the proposed method achieves lower estimation error of
the transition matrix and consequently better classification
accuracy for the true labels, confirming Theorem 2.

6.1. Benchmark Datasets

We evaluated our method on three image classification
datasets, namely MNIST (LeCun et al., 1998), CIFAR-
10, and CIFAR-100 (Krizhevsky, 2009). We used various
noise types besides the common symmetric noise and pair
flipping noise.

Concretely, noise types include: (a) (Clean) no additional
synthetic noise, which serves as a baseline for the dataset
and model; (b) (Symm.) symmetric noise 50% (Patrini et al.,
2017); (c) (Pair) pair flipping noise 40% (Han et al., 2018b);
(d) (Pair?) a product of two pair flipping noise matrices with
noise rates 30% and 20%. Because the multiplication of
pair flipping noise matrices is commutative, it is guaranteed
to have multiple ways of decomposition of the transition
matrix; (e) (Trid.) tridiagonal noise (see also Han et al.,
2018a), which corresponds to a spectral of classes where
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Table 2. Average total variation (x100) on the MNIST, CIFAR-10, and CIFAR-100 datasets. We reported “mean (standard deviation)”
of 10 trials.

(a) Clean (b) Symm. (c) Pair (d) Pair? (e) Trid. (f) Rand.
Forward 0.00(0.00) 34.14(3.03) 39.71(0.15) 41.98(0.82) 38.33(0.93) 30.45(2.16)
; T-Revision  0.03(0.02) 32.94(3.22) 39.87(0.08) 41.50(0.50) 38.39(1.34) 29.35(1.85)
Z Dual-T 0.12(0.02) 7.12(0.99) 3.90(0.66) 3.59(0.58) 3.11(0.88) 10.63(0.90)
= TVG 2.36(0.01) 1.47(0.13) 39.29(0.03) 32.17(0.93) 14.11(5.21) 7.33(4.25)
TVD 2.06(0.12) 1.96(0.17) 2.12(0.21) 2.12(0.10) 1.92(0.11) 2.13(0.22)
- Forward 0.00(0.00)  47.63(0.35) 39.09(0.28) 41.70(0.32) 35.63(0.81) 45.52(0.65)
— T-Revision  0.03(0.03) 43.05(0.36) 39.13(0.22) 40.80(0.30) 34.82(0.67) 43.05(0.52)
% Dual-T 0.81(0.04) 2.99(0.23) 19.37(0.45) 16.84(0.61) 4.60(0.31) 8.80(1.57)
= TVG 0.64(0.01) 3.17(0.19) 1.56(0.13) 2.16(0.22) 1.94(0.18) 2.24(0.26)
© TVD 7.87(0.10) 6.90(0.18) 8.46(0.17) 8.70(0.24) 7.06(0.14) 7.98(0.38)
o  Forward 0.00(0.00) 48.62(0.11) 39.81(0.03) 43.57(0.04) 40.92(0.07) 49.06(0.10)
Sl’ T-Revision  0.46(0.05) 31.58(0.46) 39.45(0.03) 42.77(0.06) 40.01(0.09) 39.49(0.26)
% Dual-T 3.10(0.08) 17.10(0.18) 33.26(0.20) 33.79(0.26) 23.56(0.43) 22.59(0.23)
o) TVG 1.59(0.02) 13.11(0.10) 37.79(0.30) 38.83(0.34) 30.80(0.51) 16.47(0.18)
o TVD 21.98(0.11)  26.46(0.15) 29.47(0.26) 31.34(0.30) 23.86(0.22) 35.37(0.30)

adjacent classes are easier to be mutually mislabeled, unlike
the unidirectional pair flipping; and (f) (Rand.) random
noise constructed by sampling a Dirichlet distribution and
mixing with the identity matrix to a specified noise rate. See
Appendix E for details.

Methods. We compared the following methods:
(1) (MAE) mean absolute error (Ghosh et al., 2017)
as a robust loss; (2) (CCE) categorical cross-entropy
loss; (3) (GCE) generalized cross-entropy loss (Zhang
& Sabuncu, 2018); (4) (Forward) forward correction
(Patrini et al., 2017) based on anchor points detection;
(5) (T-Revision) transition-revision (Xia et al., 2019) where
the transition matrix is further revised during the second
stage of training; (6) (Dual-T) dual-T estimator (Yao
et al., 2020) that uses the normalized confusion matrix
to correct the transition matrix; (7) (TVG) total variation
regularization with the gradient-based estimation of 7'; and
(8) (TVD) the one with the Dirichlet posterior update.

Models. For MNIST, we used a sequential convolutional
neural network (CNN) and an Adam optimizer (Kingma
& Ba, 2015). For both CIFAR-10 and CIFAR-100, we
used a residual network model ResNet-18 (He et al., 2016)
and a stochastic gradient descent (SGD) optimizer with
momentum (Sutskever et al., 2013).

Hyperparameters. For the gradient-based estimation, we
initialized the unconstrained matrix with diagonal elements
of log(0.5) and off-diagonal elements of log(0.5/(K — 1)),
so after applying softmax the diagonal elements are 0.5.
For the Dirichlet posterior update method, we initialized

the concentration matrix with diagonal elements of 10 for
MNIST and 100 otherwise and off-diagonal elements of 0.
We set 3 = (0.999,0.01) and v = 0.1. We sampled 512
(the same as the batch size) pairs in each batch to calculate
the pairwise total variation distance. Other hyperparameters
are provided in Appendix E.

Evaluation metrics. In addition to the test accuracy, we
reported the average total variation to evaluate the transition
matrix estimation, which is defined as follows:

1« 1 a1l
22 (T T) = 22> o> | Ty — Ty €[0,1]
i=1 =1 j=1
Results. We ran 10 trials for each experimental setting

and reported “mean (standard deviation)” of the accuracy
and average total variation in Tables 1 and 2, respectively.
Outperforming methods are highlighted in boldface using
one-tailed t-tests with a significance level of 0.05.

In Table 1, we observed that the proposed methods performs
well in terms of accuracy. Note that a baseline method
Dual-T also showed superiority in some settings, which
sheds light on the benefits of using the confusion matrix.
However, as a two-step method, their computational cost
is at least twice ours. In Table 2, we can confirm that in
most settings, our methods have lower estimation error of
the transition matrix than baselines, sometimes by a large
margin. For better reusability, we fixed the initial transition
matrix/concentration parameters across all different noise
types. If we have more prior knowledge about the noise, a
better initialization may further improve the performance.
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Table 3. Accuracy (%) on the Clothing1M dataset.

CCE Forward T-Revision Dual-T TVD
69.91 69.96 69.97 70.67 71.65
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Figure 4. Estimated transition matrix (x100) on Clothing1 M.

6.2. Real-World Dataset

We also evaluated our method on a real-world noisy label
dataset, ClothingIM (Xiao et al., 2015). Unlike some pre-
vious work that also used a small set of clean training data
(Patrini et al., 2017; Xia et al., 2019), we only used the 1M/
noisy training data. We followed previous work for other set-
tings such as the model and optimization. We implemented
data-parallel distributed training on 64 NVIDIA Tesla P100
GPUs by PyTorch (Paszke et al., 2019). See Appendix E
for details.

Results. In Table 3, we reported the test accuracy. The
transition matrix estimated by our proposed method was
plotted in Fig. 4.

We can see that our method outperformed the baselines in
terms of accuracy, which demonstrated the effectiveness
of our method in real-world settings. Although there is
no ground-truth transition matrix for evaluation, we can
observe the similarity relationship between categories from
the estimated transition matrix, which itself could be of great
interest. For example, if two categories are relatively easy
to be mutually mislabeled, they may be visually similar;
if one category can be mislabeled as another, but not vice
versa, we may get a semantically meaningful hierarchy of
categories. Further investigation is left for future work.

7. Conclusion

We have introduced a novel method for estimating the noise
transition matrix and learning a classifier simultaneously,
given only noisy data. In this problem, the supervision
is insufficient to identify the true model, i.e., we have a
class of observationally equivalent models. We address
this issue by finding characteristics of the true model under
realistic assumptions and introducing a partial order as a
regularization. As a result, the proposed total variation
regularization is theoretically guaranteed to find the optimal
transition matrix under mild conditions, which is reflected
in experimental results on benchmark datasets.
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A. Beyond Class-Conditional Noise
In this section, we provide an overview of several selected noise models.

As introduced in Section 1, early studies focused on the most simple case — the random classification noise (RCN) model
for binary classification (Angluin & Laird, 1988; Long & Servedio, 2010;~Van Rooyen et al., 2015~), where binary labels
are flipped independently with a fixed noise rate p € [0,0.5). Here, Y)Y € {£1l}and p = p(Y = —-1]Y = +1) =
p(Y = —1|Y = +1). Then, still for binary classification, the class-conditional noise (CCN) model (Natarajan et al.,
2013) extended the RCN model to the case where the noise rate depends on the class: py1 = p(f’ = —1Y = +1),
p_1=p(Y = +1|Y = —1), p41 + p—1 < 1. These noise models are special cases of the multiclass CCN model (Patrini
et al., 2017; Goldberger & Ben-Reuven, 2017; Han et al., 2018a; Xia et al., 2019; Yao et al., 2020), which is the main focus
of our work.

A more general framework for learning with label noise is the mutual contamination (MC) model (Scott et al., 2013;
Blanchard & Scott, 2014; du Plessis et al., 2014; Menon et al., 2015; Lu et al., 2019), where examples of each class are
drawn separately. That is, p(X|Y") is corrupted but not p(Y'| X'). Consequently, the marginal distribution of data may not
match the true marginal distribution. It is known that CCN is a special case of MC (Menon et al., 2015). For the binary case,
there is a related problem of the transition matrix estimation, called mixture proportion estimation (MPE) (du Plessis et al.,
2014; Scott, 2015; Ramaswamy et al., 2016), which has more technical difficulties. Our method may not work well in the
MC setting because it explicitly relies on the i.i.d. assumption.

Further, the instance-dependent noise (IDN) model (Menon et al., 2018; Cheng et al., 2020; Berthon et al., 2021) has been
assessed to only a limited extent but is of great interest recently. IDN still explicitly models the label corruption process
as CCN bu removes the CCN assumption in Eq. (1). Therefore, the noise transition matrix could be instance-dependent
and thus harder to estimate. In other words, 7" is not a fixed matrix anymore but a matrix-valued function of the instance
T(X): X — T.Owing to its complexity, IDN has not been investigated extensively.

One simple way is to estimate the matrix-valued function T'(X') and the clean class-posterior p(Y'|X) directly, assuming a
certain level of smoothness of T'(X') (Goldberger & Ben-Reuven, 2017). However, there is no theoretical guarantee and
the estimation error could be very high. Another direction is to restrict the problem so we could provide some theoretical
guarantees under certain conditions (Menon et al., 2018; Cheng et al., 2020). It is also a promising way to approximate IDN
using a simpler dependency structure (Xiao et al., 2015; Xia et al., 2020), which works well in practice. Our method may
also serve as a practical approximation of IDN without theoretical guarantee, which is reflected in the experiment on the
Clothing1M dataset (Section 6). The use of regularization techniques in our work may inspire practical algorithm design for
IDN.

Learning from noisy labels has a rich literature and there are several other noise models, e.g., capturing the uncertainty of
labels without explicitly modeling the label corruption process. Although they are out of scope of our discussion.
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Figure 5. An example of overconfident predictions yield from neural networks, comparing the clean/noisy class-posterior estimation.
See Fig. 3 for the notation.

B. Overconfidence in Neural Networks
In this section, we discuss the overconfidence phenomenon in neural networks, which is partially presented in Section 2.4.

In neural network training, if we only care the classification accuracy, the overconfidence is not a problem. We could use
any classification-calibrated loss (Bartlett et al., 2006; Tewari & Bartlett, 2007), which only guarantees that the accuracy
(0-1 risk) is asymptotically optimal. The class-posterior might not be recovered from the output of the classifier.

However, the transition matrix estimation based on anchor points (Patrini et al., 2017; Xia et al., 2019) — the method shown
in Section 2.4 — heavily relies on a confidence-calibrated estimation of the noisy class-posterior using neural networks.
The overconfidence issue of possibly over-parameterized neural networks has been discovered, and several re-calibration
methods are developed to alleviate this issue (Guo et al., 2017; Kull et al., 2019; Hein et al., 2019; Rahimi et al., 2020).

In learning with class-conditional label noise, we can demonstrate that estimating the noise class-posterior causes a
significantly worse overconfidence issue than estimating the clean class-posterior. Fig. 5 shows a comparison between
the clean class-posterior estimation and the noisy class-posterior estimation (also shown in Fig. 3). We used a Gaussian
mixture with 3 components as the training data, a 3-layer multilayer perceptron (MLP) with hidden layer size of 32 and
rectified linear unit (ReLU) activations as the model, and an Adam optimizer (Kingma & Ba, 2015) with batch size of 64
and learning rate of 1 x 1075,

As discussed in Section 2.2, p(Y'| X) should be within the convex hull Conv(T'). However, without knowing T and this
constraint, a neural network trained with noisy labels tends to output overconfident probabilities that are outside of Conv(T").
The lack of the constraint Conv(71") aggravates the overconfidence problem and might make it harder to re-calibrate the
confidence. Consequently, transition matrix estimation may suffer from poorly estimated noisy class-posteriors, which leads
to performance degradation of the aforementioned two-step methods.

This is the motivation of using the product 7 p(Y | X) as an estimate of p(Y|X) and avoiding estimating p(Y | X) directly
using neural networks. However, it is important to note that the neural network may still suffer from the overconfidence issue,
especially after we enforce the predicted probabilities to be more distinguishable from each other in terms of the pairwise
total variation distance. In such a case, if the confidence of p(Y'| X) is needed to make decisions, post-hoc re-calibration
methods can be applied (Guo et al., 2017; Kull et al., 2019; Hein et al., 2019; Rahimi et al., 2020). Nevertheless, if we
only use the accuracy as the evaluation metric, the overconfidence issue in the clean class-posterior estimation is much less
harmful than it in the noisy class-posterior estimation, which affects the transition matrix estimation significantly.
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C. Proof

In this section, we provide the proof of Theorem 2:

Theorem 2 (Consistency). Given a finite i.i.d. sample of (X, Y) -pairs of size N, where anchor points (Definition 1) for
each class exist in the sample, let Lo (W, T') and R(W) be the empirical estimates of Lo(W, T) in Eq. (4) and R(W) in

Eq. (10), respectively. Assume that the parameter space WV is compact. Let (WW°, T°) be an optimal solution of the following
constrained optimization problem: _ _ R
max R(W) s.t. Lo(W,T) = 0. (11)

Then, T° is a consistent estimator of the transition matrix T'; and p(Y | X; Wo)i>p(Y|X) a.e.as N — oo.

First, recall Theorem 1:

Theorem 1 (Transition matrix decomposition). For two row stochastic matrices W,V € T, if Vp € A, dq € A,
s.t. WTp =V Tq, then 3 a row stochastic matrix U € T,s.t. W = UV andVp € A, q = U "p.

Proof. Let p be e; and denote the corresponding g by q; fori =1,..., K. ThenU = [q1,...,qx]". O

and the definitions of Lo (W, T') and R(W):

LW D)= E [Di(p(V1X) | TRV 1X:W) )| @
R(W) = E E [dTV(ﬁ17ﬁ2)]> where ﬁz = ﬁ(YIX = X;; W), 1= 1, 2. (10)

z1~p(X) z2~p(X)

Also, recall that we considered a sufficiently large function class of p(Y'|X; W) that contains the ground-truth p(Y'|X), i.e.,
I e W, p(Y|X; W*) = p(Y|X) a.e. Although there could be a set of W* satisfying this condition, without loss of
generality, we assume that W™ is unique.

Denote the set of W and T s.t. Lo(W, T) = 0 by (W x T)o C W x T. By definition, (W*,T) € (W x T)o.

Then, we have the following lemmas:

Lemma L. (W, T) € (W x T)o, 3U € T, p(Y|X) = TTp(Y|X) = TTH(Y|X; W) = TT (U p(¥|X)) ac.

Proof. This is the due to the identity of indiscernibles property of the KL-divergence and Theorem 1. O
Lemma 2. V(W,T) € (W x T)o, R(W) < R(W™).

Proof. This is a direct consequence of Lemma 1, the contraction Eq. (9), and our assumption of the existence of W*:

RW)= E E ldov(@(Y X =2 W), p(Y|X =2, W))] (16)
@1 ~p(X) za~p(X)
= E E [drv(U p(Y|X =21), U p(Y|X = 23))] (17)
@1 ~p(X) za~p(X)
< E E [d Y X =21),pY|X =2 18
< E_ B lry(p(Y[X =m).p(Y|X = 1)) as)
= E E [div@Y|X =21, W), pY|X = 29, W™))] = R(W™). (19)
z1~p(X) z2~p(X)
O
Lemma3. sup |[R(W) — R(W)|20and sup |Lo(W,T) — Lo(W, :F)‘Em as N — oo,
wew Wew
TeT
Proof. This is due to the i.i.d. assumption, the compactness of YW and T, the continuity of R(W) and Lo (W, fIA"), and the
uniform law of large numbers. O

Finally, by the definition and Lemma 3, we have P [LO(WO, fo) = 0} — 1, and by Lemmas 2 and 3, we have W° — W*

as N — oo. Therefore, p(Y|X; Wo)i>p(Y|X) a.e., which means that the corresponding U—1T and thus T°—T as
N — oo. ]
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Th=V(UTp) =TTp TIp = TIp=T'p

Figure 6. The intuition behind the theoretical results.

D. Intuition
In this section, we discuss the intuition behind our theoretical results.

Given the only constraint of p(Y|X) = TTp(Y|X ), a feasible T can be any matrix that satisfies
Vo € X,p(Y|X = z) € Conv(T), (20)

and we can find p(Y'|X) accordingly, if the function class is sufficiently large. This is the partial identifiability problem. On
the other hand, in real-world problems, we hope that the clean class-posterior p(Y|X) is the “cleannest”, so at least

IS T, st.p(Y|X)=STp(Y|X). 1)

Otherwise, p(Y|X) = (ST)Tp/(Y|X) also holds and p’(Y | X) might be a better solution. Thus, we become less ambitious,
ignore all intermediate possible solutions and only aim to find the “cleannest” one.

However, there could be multiple “cleannest” ones in this sense. An example is illustrated in Fig. 6. There could be ﬁ, fg,
and p1 (Y| X), p2(Y'|X), such that
p(Y|X) = Tp1(Y|X) = T, (Y |X), (22)

and both p; (Y| X) and p2(Y'|X) satisfy the condition above. In this sense, we still cannot distinguish p; (Y| X) and
P2(Y'|X). Either of them can be the true clean class-posterior.

To avoid such cases, in this work, we made the assumption that anchor points exist, i.e., there are instances for each class
that we are absolutely sure which class they belong to. Such instances are considered prototypes of each class, and we
believe that they exist in many real-world noisy datasets. In this way, we can guarantee the uniqueness of the “cleannest”
clean class-posterior and the transition matrix, and consequently construct consistent estimators to find them, as explained in
this paper.

If anchor points for all classes do not exist, the proposed algorithm may still work in practice but there is no theoretical
guarantee yet. As mentioned in Section 5, Li et al. (2021) aims to relax the anchor point assumption. From the perspective of
the geometric property of the transition matrix, it is possible to solve this problem in a weaker condition, which is, however,
not the focus of this work.
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Figure 7. Synthetic transition matrices (x100) used in our experiments when K = 10 (MNIST and CIFAR-10). The random noise
matrix (Rand.) is an example while other matrices are fixed.

E. Experiments

In this section, we provide missing details of the experimental settings used in Section 6.

E.1. Benchmark Datasets

Data. We used the MNIST,” CIFAR-10, and CIFAR-100° datasets. The MNIST dataset contains 28 x 28 grayscale images
in 10 classes. The size of the training set is 60000 and the size of the test set is 10000. The CIFAR-10 and CIFAR-100
datasets contain 32 x 32 colour images in 10 classes and in 100 classes, respectively. The size of the training set is 50000
and the size of the test set is 10000.

Data preprocessing. For MNIST, We did not use any data augmentation. For CIFAR-10 and CIFAR-100, we used random
crop and random horizontal flip. We added synthetic label noise into the training sets. The test sets were not modified.
Overall, the transition matrices are plotted in Fig. 7. More specifically, we used:

1. (Clean) no additional synthetic noise, which serves as a baseline for the dataset and model.
2. (Symm.) symmetric noise with noise rate 50% (Patrini et al., 2017).

3. (Pair) pair flipping noise with noise rate 40% (Han et al., 2018b).
4

. (Pair?) a product of two pair flipping noise matrices with noise rates 30% and 20%. Because the multiplication of
pair flipping noise matrices is commutative, it is guaranteed to have multiple ways of decomposition of the transition
matrix, e.g., Tpair (30%) Tpair (20%) = Tpair (20%) Tpair (30%). The overall noise rate is 44%.

5. (Trid.) tridiagonal noise (see also Han et al., 2018a), which corresponds to a spectral of classes where adjacent classes
are easier to be mutually mislabeled, unlike the unidirectional pair flipping. It can be implemented by two consecutive

SMNIST (LeCun et al., 1998) http://yann.lecun.com/exdb/mnist/
SCIFAR-10, CIFAR-100 (Krizhevsky, 2009) https://www.cs.toronto.edu/~kriz/cifar.html


http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
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pair flipping transformations in the opposite direction. We used T}yair (30%) Tprair (30%) T in the experiment. The overall
noise rate is 42%. Strictly, the matrix is not a tridiagonal matrix in the conventional sense because T} g and Tk 1 are
non-zero.

6. (Rand.) random noise constructed by sampling a Dirichlet distribution and mixing with the identity matrix to a
specified noise rate. The higher the concentration parameter of the Dirichlet distribution is, the more uniform the
off-diagonal elements of the transition matrix are. We used 0.5 in the experiment. Then, we mixed the sampled matrix
with the identity matrix linearly to make the overall noise rate 50%. The transition matrix is sampled for each trial.

Models. For MNIST, we used a sequential convolutional neural network with the following structure:
Conv2d(channel=32) x2, Conv2d(channel=64) x2, MaxPool2d(size=2), Linear(dim=128), Dropout(p=0.5),
Linear(dim=10). The kernel size of convolutional layers is 3, and rectified linear unit (ReLU) is applied after the
convolutional layers and linear layers except the last one. For both CIFAR-10 and CIFAR-100, we used a ResNet-18 model
(He et al., 2016).

Optimization. For MNIST, we used an Adam optimizer (Kingma & Ba, 2015) with batch size of 512 and learning rate
of 1 x 1072, The model was trained for 2000 iterations (17.07 epochs) and the learning rate decayed exponentially to
1 x 10™%. For CIFAR-10 and CIFAR-100, we used a stochastic gradient descent (SGD) optimizer with batch size of 512,
momentum of 0.9, and weight decay of 1 x 10~*. The learning rate increased from 0 to 0.1 linearly for 400 iterations and
decreased to 0 linearly for 3600 iterations (4000 iterations/40.96 epochs in total).

For the gradient-based estimation, we used an Adam optimizer (Kingma & Ba, 2015). The learning rate increased from 0 to
5 x 1073 linearly for 400 iterations and creased to 0 linearly for the rest iterations. This is helpful because at earlier stage,
the model was not sufficiently trained yet and changing the transition matrix too much may destabilize the training of the
model.

We tuned hyperparameters using grid search on a small experiment and fixed them in all experimental settings. For better
reusability, we assumed that we are noise-agnostic and did not fine-tune hyperparameters for each noise type. If we have
more prior knowledge about the noise, a better initialization may further improve the performance.

Infrastructure. The experiments were conducted on NVIDIA Tesla P100 GPUs. We used a single GPU for MNIST and
data-parallel on 2 GPUs for CIFAR-10 and CIFAR-100.

Results. In addition to the accuracy and average total variation presented in Tables 1 and 2, we also provide the heat maps
of the estimated transition matrices in Figs. 8 to 10. Extremely small numbers are hided for better demonstration.

We can observe that our proposed method, especially the Dirichlet posterior update method, usually has better estimation of
the transition matrix under various noise types. Dual-T (Yao et al., 2020) also performs well in some settings, which is also
reflected in Table 2.

E.2. ClothinglM

Data. ClothinglM (Xiao et al., 2015) is a real-world noisy label dataset. It contains 47570 clean training images, 1 x 10°
(1M) noisy training images, 14313 clean validation images, and 10526 clean test images in 14 classes. We only used the
noisy training data and clean test data.

Model and optimization. We followed previous work (Patrini et al., 2017; Xia et al., 2019). We used a ResNet-50 model
(He et al., 2016) pretrained on ImageNet and a SGD optimizer with momentum of 0.9, weight decay of 1 x 103, and batch
size of 32. We trained the model on 64 GPUs for 5000 iterations (10.24 epochs in total). The learning rate was 1 x 1073
for the first half and 1 x 10~ for the second half.

Other hyperparameters. We initialized the concentration matrix with diagonal elements of 1 and off-diagonal elements
of 0. We set 3 = (0.999,0.01) and v = 0.1.

Infrastructure. We implemented data-parallel distributed training on 64 NVIDIA Tesla P100 GPUs by PyTorch (Paszke
et al., 2019). The average runtime is about 15 (without SyncBatchNorm) to 25 (with SyncBatchNorm) minutes.
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4 110 23] |5 2 36 |5 1 2 1 14 48 28
25 4 18 37 6 34 5 1211 3
20 1 1 18 20 20 201 1 2 1 1 19
19 018 1 1| |20 20 2120 1 1
120 191 20 20 120 221
120 20 1 20 ) 21 1121 20
118/ 19 2 21 [ 20 11 18 213 2 2 1
118/ 19 2 20 20 1 120 22 2 2
118/ 20 1 20 20 1 220 212
117 19 2 19 20 1 1 1 2 2 1848 23 4
2 2 20 18 1200 19| |1 1 1 1 4 2549 18
21 1 1 20 20 20 19 11 1 221
5 7 4 55 6 7 2 3| (503 9 4966 2 4 6| (435 9 5107 6 3 4 7
8 6 6 4 3 65 4 6 3 6 55 6 3 7 85 5487 6 5 7 3 7 75
6 6485 6 9 5 4 4 6 3 9 4 5 46 6 6 6 3 9486 55 6 6 6 6
6 8 6 6 6 52 5 4 3 2 8 76 6 6 4 7 3 394 7 6 6 6 4 7
4 53 555 6 8 7 7 9 2 3 4 5 55 3 7| (103 4 54 7 6 7 4 7
4 46 7 5 756 5 5 9 7 4 6504 6 3 6 6 8 7 5 842 5 8 4 7
6 55 4 7 7495 4 8 5 4 5 2 6 7 1 3 6 5 45 3 7 84512 4 6
5 55 36 45 8 6 4 54 7 5 7 55 6 6 5 55 7 7 8 73810 7
6 4 6 4 56 6 9 48 7 5 2 2125 4 3 5 3 2116 6 6 1342 5
5 54 6 85 6 6 549 |4 2 8 9 4 5 350 [5 3 8 9 5 7 4105 44

Figure 9.

Estimated transition matrices (x 100) on CIFAR10.
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Clean

Symm.

Pair

Pair?

Trid.

Rand.

Forward
6 3
1 2 1 7 1
6 1 9 1
3 1 8 11 1
10 1 2 1 4
1
1 75 ] 1
11 2 5 6 1
8 2 1 6 2
1 21 3
17 1 3 2 11 1 1
1251 2 11 2 5 1
3 2 13 4 11 11 1
2 2 4 14 11 2 2 1
1 6 2 2 111 3 1
11 1 1 11 1 1
11 1 1 1223 1 1
1 2 1 2 1 322 4 1
1 5 1 1 1 1 4 20 2
11 1 1 1 1 1 2 29
13 2 3
6 44 20 4 1 3 2
3 9 3515 1 2 1
2 3 11 37 1 1
6 7 7 1 3 1
11 1 211 1 1
1 17 2 1
1 1 12 49 17 2
4 3 2 1 10 45 15
1 1 1 2 9
47 13 3 2
7 40 20 6 11 3 2
3 10 33 15 1 2 1
2 3 11 34 1 1 1 1
1 5 8 9 2 1 3 2
11 1 9 18 3 1 1
1 1 50 16 4 1
11 1 1 13 44 18 4
3 3 2 4 2 12 40 15
2 21 1 2 2 12 47
10 1 40 13 5 3 1 1
4 BNy 1 12 37 16 7 5 2 31
96 4 10 31 15 5 11 1
3 5 15 34 8 1 1 1
2 6 5 16 1 2 3 1
1 16 1 1 1
1 1 1 45 17 3 1
111 2 1 14 42 17 2
1 4 2 3 3 3 15 40 12
11 1 1 2 3 2046
2 1 1 1 201 3 21 1 1 1 1 1
1 2 1 48 1 1 1261 2 7 1 1 2 5 1
1 44 11 1 1 1 32144 2 111 11
3 1 1 1 1 2 1 1 2 2 4152 1 1 2 1 1
1 11 1 1 1 1 7 2 2 11 1 3 1
1 1 1 1 11 1 1 11 1 2
1 1 1 11 1 1 1 1253 1 1
1 2 1 11 2 1 2 1 2 1 1 3 24 3 1
2 1 47 1 3 1 15 1 1 3 1 1 4 22 2
11 1 11 1111 1 2 1 1 2 32

Figure 10. Estimated transition matrices (x 100) on CIFAR100 (first 10 classes).
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